Programming in gamedev (performance related) - c++

I am just wondering how some things work in gamedev:
I know, that the performance is actually crucial so there is still (and I think never will be) no place to use managed languages/platforms as Java/.NET just because of their performance. But... recently I have read somewhere here on SO, that even though people creating games use C++ as a primary language, they actually do not use STL or Boost (or a lot of them). In think it has something in common with performance, right? If I am wrong, could you please tell me what are the reasons to avoid those libraries (that I think make developer's life much easier)? Is it because of licensing (Boost)? And what about EA's version of STL? Do other studios make their own versions too?
How "close to metal" game programming really is? Do you go deeper and closer to the machine? Do you sometimes use Assembly for critical inner loops, or C++ is actually the lowest abstraction layer that you use at the moment? I assume that in such products where performance is the most important thing profiling is very, very common task - but are you sometimes forced to use assembly to speed some parts up, or good C++ is "good enough"?
Edit:
Sorry, It may not have been clear, but I am interested in answers from people having game industry experience. I am not interested in some assumptions given by people who do not have commercial experience in game development. I am also not interested in examples of some niche-games created in C#/Java whatever. However if you know a product that looks better than FarCry2 (just and example, but your favourite modern great looking game name here), and is written entirely in Java/.NET, and has similar performance to FarCry2... do not hesitate to mention this product! Thanks.

1.
Contrary to some beliefs, the STL is quite optimized and not at all bad code. The reason for why most game studios don't use it is memory. You don't have as much control over memory allocation and deallocation as if you would write your own version of the STL containers. This is also the reason why managed languages are not preferred.
Writing your own containers will let you write cross platform code and do memory tracking easier. This is especially true on consoles where, for instance the PS3, requires detailed knowledge of the hardware in order to get the best performance out of it. Which usually in the end means that you need full control over memory flow between the PPU, SPUs and RSX.
2.
Assembler is only "required" (in quotes since it's not actually required but helps) for very specialized operations, e.g. math library functions. What's more common is SIMD intrinsics which vectorizes the code. However, most studios have legacy code which is quite optimized and since these optimizations are quite low level it's not code that needs to change greatly between hardware generations. I'd say on consoles it's much more common that you use lower level code.

I know, that the performance is actually crucial so there is still (and I think never will be) no place to use managed languages/platforms as Java/.NET just because of their performance.
No, you don't know this. You think it, you want to believe it because you romanticize game development, and because you think high-level languages can't be fast.
.NET performance is perfectly good enough for 90% of the games out there. And it's only going to get better. There is no inherent reason why managed platforms must be slower. They have the potential to be faster because they're JIT'ed. In practice, their performance tends to be about the same as reasonably good C++ code, much better than typical C++ code, and slightly worse than really good C++ code. And most big games use more than one language anyway. They use scripting languages, like Lua or Python, or some home-brewed stuff, all of which are orders of magnitudes slower than .NET.
Similarly, there is absolutely no reason why most of your game couldn't be written in .NET. And then the three really performance-critical functions can, if necessary, be ported to native C++ later.
But... recently I have read somewhere here on SO, that even though people creating games use C++ as a primary language, they actually do not use STL or Boost (or a lot of them). In think it has something in common with performance, right? If I am wrong, could you please tell me what are the reasons to avoid those libraries
Same as you're guilty of above... Superstition about game development. "Oh no, we can't afford to use other people's code! It's far too inefficient". Game development is stuck in the 80's in terms of programming practices and methodologies. In other words, don't worry too much about what other game developers do. If the STL or Boost make your code easier to write, then use it! And then, if you experience performance problems, profile it, and if necessary, replace that particular library component with your own.
But most of the STL is literally zero overhead. And 95% of the code in any game is not performance critical. Treat game development like you would any other programming. Don't treat it as some magical land where every line of code must be perfectly optimized and where normal rules don't apply.
And what about EA's version of STL? Do other studios make their own versions too?
As far as I know, no. EA made it partly for internal use, but also as input to the C++ community as a whole, as an example of what they (and a lot of game developers) would like to see from future revisions to the standard (it was submitted to the standards committee as well)

I can recommend the book C++ for game programmers. It has an in-depth discussion of the performance cost of c++ features such as the STL, exceptions and RTTI. It also touches on having your own memory manager, and various common performance optimizations.
Appearlenty there is a new edition out, but it has a different author. What's up with that?

About 1:
I haven't tried EA's STL version, but I can confirm from my own game development experience that the STL can sometimes be a bottleneck. So far I was always able to find workarounds though.
Boost can be very helpful, but it really depends on the particular part of boost whether it's helpful or not for performance-critical code. For example, Boost::filesystem was very useful for me, whereas boost::signals was barely useable due to very poor performance. So I implemented my own signaling library using FastDelegates instead.
About 2:
Most of the time you will get away with regular C++ code. Once the game is running and you can identify bottlenecks with your profiler, you can start optimizing those pieces of code. And even then, you might not have to write any assembler code if you do it right.
For example, my custom-built 2d game engine runs without hardware acceleration. I developed it when 3D drivers were still quite buggy and most casual gamers have outdated graphics card drivers, so compatibility was more important than pure performance at that time.
Still, in our game latest game Gemsweeper, we are using a lot of alpha blending with 8-bit alpha masks and the game still has to run on 500 mhz cpu's. So alpha blending turned out to be a performance critical area.
To optimize this, I've used the VectorC compiler so that I could take advantage of MMX, SSE and the like without having to write assembler code. But the same code can be fast on one CPU and slow on the other (e.g. Intel vs. AMD), so I also compiled the alpha blending code several times with different optimization settings. The game runs a benchmark at runtime to find the fastest blitting module for each blitting method and uses that module from then on.
I've compared the result with some other 2d blending libraries, one of which claimed to be pure hand-optimized assembler and my engine had about the same performance in average, as measured on different CPUs.
Bottom line:
Do not optimize without measuring first and think about alternatives before starting to write assembler. This usually wields good enough results and wil save you a lot of time.

We use 'STL' (ie. the standard C++ library) and a small amount of Boost. However some of it is avoided or frowned upon (std::map, std::list, boost::shared_ptr) typically for the over-exuberant memory allocation policies or poor cache coherency. These can typically be worked around, eg. with custom allocators, but instead we have other approaches to the same problems with their own benefits.
As for how close to the metal it really is, it depends. In our project C++ is the lowest level we go. In another project in this studio, there is a little assembly, especially on the non-PC platforms. These days in certain projects you're just as likely to be limited by the GPU as by the CPU so the days of low level code optimisation are getting fewer and the days of optimising shaders and art assets are growing.
Be wary of claiming that Java/.NET etc is never used however. Not everybody needs the performance of FarCry2 (which is a pretty excessive spec) which is why you're seeing more and more games written in managed languages with C++ just for optimisation.

It is true that in game development, STL is not used. In spite of what certain people always rush to claim, they also never use Java or C# or other managed languages.
I'm not talking about small X-Box Live Arcade downloadable games or web browser games, or such things. I'm talking about high-end development in AAA games.
They don't use STL. However, they do use their own custom implementations that look a lot like STL. There will be smart-arrays, there will be hash tables, there will be smart pointers, they just won't be STL.
Consoles have some performance characteristics that are very different from PCs. Even game projects that exclusively target PC are usually using codebases that have been used for console projects in the past. A lot of tweaking goes into making the basic template structures work as desired.
Most game studios also want code that they can adapt to other platforms. Locking into an implementation from MS/Sony/Nintendo makes for a lot more pain when it comes time to port the game to a new platform. The provided template libraries (which aren't necessarily STL to start with) are often less than stellar. At least they are that way early in the hardware cycle when a studio is ironing out the engine they plan to keep using for the next five years.
At the studios I've worked at, I've certainly seen a fair degree of "not-built-here" attitude to dismiss third party code. Sometimes it's justified, sometimes it's not. In the case of basic data structure templates, it typically is.
As for your second question, assembler is occasionally used. But only in isolated situations where a large volume of math needs to happen very frequently. An entire engine might contain two or three smallish files of asm blocks.

You can find out for yourself (to a degree) by looking at game SDKs.
Almost all the id Tech 4 games (DooM III, Prey, Quake IV, ET:QW) have SDKs out, complete with physics, script, AI, math, etc. systems included. The only asm used is for specialized math code, everything else is pure C++.
Crytek has a Crysis SDK out (you'll need the game installed to install the SDK though) and Far Cry SDK.
Valve has the Source SDK available to anyone who has purchased a Source game through steam.
There are a lot more if you look. A lot of the code isn't particularly clean or flexible (sometimes not even fast), but I suppose it's easier to adjust things in code you've written as opposed to monolithic libraries full of hard to understand template-fu.

No, you are largely wrong. Both .NET and Java have been used in commercial games, certainly on Windows (and probably on consoles too).
STL is also used widely, I know that quite a large proportion of amateur games developers use it.
Probably the main reason for not using STL is inertia, and using third party libraries/engines which do not.
I imagine that historically on some platforms, good STL implementations were no available, especially on RAM-limited stuff like PS2.

Related

Alternatives to C and asm on microcontrollers [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
My background is like this: embedded/C, then C++, then higher level OO languages (Java, Scala, Ruby, Groovy, etc.), and now I am doing a small project involving MSP430 microcontroller. Meanwhile, inspired by that, I am contemplating a number of potential pet embedded system projects (meshes and/or RTLS look appealing). So my question is focused primarily on MSP430 for now, though, as an aside, I'd love to have a broader picture, too, involving other microcontrollers.
I was a bit surprised finding out that, after so many years, I might need to go back to C, with its macros, naming conventions, and all. My brain used to be wired for C, but that was many, many years ago.
So what alternatives are available?
C++ feels much more agreeable to me, and, fortunately, seems doable: http://stonepile.fi/object-oriented-approach-to-embedded-programming-with-c/
So if I am to program C++, I just need to inline a lot, avoid virtual functions when possible, and I should be good, right? (at least, memory-wise; they did not benchmark for performance at the above link).
However, if it's so easy, why do people program C? I must be missing something.
The above link also seems to provide a wrapper library for pico]OS. Has anyone used picoOS on MSP430, how reliable is it, and how much resources does it take?
What are the pros and cons of Energia for a simple MS430 project? I tried it, it seems very intuitive and self-documenting, but does it result in as neat a code under the hood? For instance, does Energia initialize unused GPIO to the off state to save energy? Does it initialize unused interrupts? What is the overhead in terms of memory and speed? Etc.
Edit: As a long-time Eclipse person, I'd love to use CCS. I saw that Energia sketches can be imported to CCS. Does it mean that CCS have full support for Energia and can be used as an Energia IDE?
Has anyone used Java Grinder http://hackaday.com/2014/02/10/java-grinder-spits-out-dspic-and-msp430-assembly-code/ ? It seems appealing, but because it spits out an Assembly and not C/C++ code, it's a bit scary to commit to it: what if I am locked into it and it's not ready for the prime time? If it generated C code, I could have easily dropped it if it did not work.
I mentioned Java and my question was deleted, as it's self-evident that other than grinder-like syntactic sugar (not that I mind syntactic sugar!), Java can't run on MSP430. I guess I'll ask another question re WHERE Java can run. This has already grown too long.
What other languages/environments are out there, that fill the niche between low- and hig-level languages?
you seem to have several questions here so I shall go through in the order you numbered them.
Most micros will indeed run C++ (assuming the manufacturer or an open source project provides a compiler back-end), however you have to be wary of a number of drawbacks. C++ Is less deterministic, as in, it provides a significantly higher level of abstraction, which one likely does not want an a resource constrained embedded system, and by and large it is not needed either as embedded systems are rarely powerful enough to usefully run the enormously complex algorithms that warrant a high level language like C++. It is also likely to cause a wide range of hard to track bugs, given the difficulty of debugging code from an embedded system having bugs which are simple and easy to trace are very much nicer. However very importantly, the C++ standard libraries are enormous, they will use excessive ram and very likely waste much of your limited memory space. Thus, even if you do use C++, you wont be able to use any of the techniques that make it powerful.
Simply, I have not used it, however like any RTOS, it is useful if you want a slightly higher level interface, however for a micro the tiny size of the MSP430 it seems overkill, I cannot imagine you doing anything on there that warrants an ROTS, if you need multitasking it would be better to provide simple cooperative tasking yourself.
Unfortunately I have not used that platform either, however given it is based on wiring, my guess it that it does not provide high levels of hardware specific optimization, if you want that I recommend using it for the bulk of your code but make calls into lower level libraries when needed. Beyond that however, it does provide a lovely, self documenting interface, I strongly encourage you to try it. It will also make your code many times easier port if you switch to another micro later (many systems from many companies provide wiring bindings).
You really answer this yourself here, it could be very powerful but is still very immature, I would avoid it purely because of this lock-in until it becomes more mature, then it is worth re-assessing.
Java works nicely on more powerful ARM chips, that is the only place I have seen it in wide use, and implemented fairly efficiently in a micro (ARM provides hardware assistance specifically for Java). Other than this Java is a poor fit for the micro world, at one point it appeared it might go somewhere but this was largely unrealized, for now C likes are the way to go for smaller micros.
Unfortunately there is not really a huge amount of choice other than C. My best recommendation is using higher level libs like wiring. That gives you slightly nicer interfaces without killing efficiency, otherwise there is little point in using a tiny micro if you need high levels of abstraction.
In summary, C does a fairly good job here, I do not think there has been any motivation or effort to make a good replacement. And frankly I largely feel this way too, C never became a bad language, it is still well suited for small systems for the same reasons as it was before. It provides power, efficiency and predictability.
I hope this helps somewhat, if you have any queries please comment me and I will see what I can do to help.

Best C++ programming practices in professional game development environments? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 8 years ago.
Improve this question
I'm well educated in the C++ programming language regarding syntax, STL, etc. I haven't done any true projects with it yet other than some college courses. My goal is to start writing progams but attempt to keep it to industry best practices. One of my main goals is to work in the game industry. A door is opening which lead me to ask these questions.
Are C++ game developers usually limited on using all the C++ features? Is it true more or less for each platform?
Is STL used these days in the environment, or should I avoid it?
Do they treat C++ as "everything must be an object" or is it a mix of paradigms?
Any features they tend to not use?
Is C still used, and is it good to show a project completed in it?
I did talk to a famous game designer and he said they don't use STL and said to use basic encapsulation with classes, but he said not to use all other advanced C++ features. The idea is to keep it simple. Is this common?
Thanks in advance!
Bear in mind that "games development" covers everything from phones to websites to PSPs and DS to Wii, Xbox, PS3 and PC/Mac, so the answers you get may vary from one product/developer/platform to another.
1) Yes. Games development can mean that you have to use a particular compiler for your target platform, which may not support some of the "newer" features of C++. You may be restricted on which libraries the development studio will allow you to use. In addition, hardware restrictions on some platforms may influence how you code (e.g. on some systems the cost of virtual functions can be excessively high compared to a PC, so your designs can be restricted away from pure OO for performance reasons. Some systems have limited resources (memory, disk, etc) which will influence your design a lot. On the Playstation3 you may need to write vector-processing SPU tasks rather than traditional single/multithreaded code. etc).
2) Yes. (it's commonly used, as there's usually no point wasting time rolling your own, probably less efficient, equivalents)
3) A mix. Generally in games the key goals are (in rough order): Deliver the impossible on time (why are you going home now, it's only 10pm?), deliver high performance, and try not to crash.
4,6) Generally keep the code simple and flexible so you can develop fast and change to suit the producer's latest vision. You usually have tight deadlines so a lot of design and careful coding tends to be difficult to achieve. The industry unfortunately tends to work on the "churn out the code quickly so we can throw it away and start on the next product", although it is slowly coming around to the idea of re-usable libraries (and more methodical professional practices like unit tests, etc).
A typical scenario is to be asked to code up a quick and dirty demo for the boss, and then when you think you'll be able to throw it away and write it properly, the boss says "we don't have time to rewrite something that already works, start on the next level". So if you're asked to be quick'n'dirty, try not to burn too many bridges or you'll regret it.
5) You may use C, but it depends on the platform and the development house. These days most devlopment will be C++ even if parts of the code are effectively "little more than C" in terms of syntax and features used.
These questions are not at all unique to game development. You will find they vary as much by field as they do by company. I can think of two game design firms that use STL off the top of my head, and also of a few that don't.
1) Define "all C++ features". They typically don't use goto, if that's what you mean.
2) Yes STL is used. You shouldn't avoid it, or not avoid it - use the tools you need to get the job done every time you have a job that needs to get done. Keeping what you use in line with other ways similar problems were tackled -within that project or context- is importent.
3) Depends where you are, both in games and out of games. Some are graduated C guys who want things more C like. Others are C#/Java guys who are more OO (Object Obsessed).
4) goto
5) Yes, and yes. Knowing more than one language is always a good thing. Even if it's just C to C++.
6) Again, use the tools available to solve your problems. Keeping it simple is good when you can, sure.
1) No limitation really, except that you should follow programming guides so as to use them properly (i.e. avoid dinosaurs when using goto's).
2) Yes, its used, and Boost also (which is kinda the preview of the next STL).
3) Mix, always a mix. To say that C++ is only object-oriented is to misunderstand the language. "Everything is an object" is really a Java (or things like it) thing; check out C++'s concept of POD, as an example of how not everything is an object.
4) same as 1)
5) It is used, but as far as I've seen, no new project is being created in C.
6) No... he kinda said the opposite of what I've just said.
Generally, some parts of C++ are limited for patform and performance reasons.
Exceptions and RTTI are normally disabled. Exceptions are expensive when they unwind the stack, and RTTI uses too much memory. Lack of exceptions is particularly a pain because rather than come up with another error handling system, programmers tend to just return NULL. :)
Floats are used almost exclusively over doubles, for performance reasons.
Virtual functions and inheritence can be used, but the virtual table lookup can be costly so sometimes it's optimised out.
The STL can be used, but you normally have to write your own allocators to avoid fragging memory (see http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html). It's more common to see custom containers - of varying quality. I've never come across boost being used in a console project.
Most code is OO, almost to a fault.
Best C++ programming practices in professional game development environments?
The question is too broad.
Are C++ game developers usually limited on using all the C++ features? Is it true more or less for each platform?
No, or at least extremely unlikely. Depends on platform/compiler.
Is STL used these days in the environment, or should I avoid it?
You shouldn't avoid it, but:
you'll definitely need a profiler if you want stl containers
STL containers are extremely slow in debug builds. This might be a problem, because if you're frequently accessing them, there will be a huge performance drop (say, from 300 fps to 50) in debug build (when compared to release build). Debug code is already slower, and stl containers have large amount of "security check" in debug build.
Do they treat C++ as "everything must be an object"
Every idea is bad if you take it to extremes. "Everything must be an object" is one of those.
Any features they tend to not use?
Why? Unless there is a compiler bug or performance loss there is no point in avoiding feature. Besides, there are commercial 3D games written in java, so I see no point in avoiding feature of compiled language.
Is C still used, and is it good to show a project completed in it?
Some opensource projects may use C, but I can't remember a game completely written in it. There is Q3 engine, but afaik it is mix of C/C++.
I did talk to a famous game designer and he said they don't use STL and said to use basic encapsulation with classes, but he said not to use all other advanced C++ features.
They could decide to avoid stl simply because containers are slow in debug build. It is unclear what exactly you call "advanced C++ features". Also, keep in mind that he is designer, not programmer.
The idea is to keep it simple. Is this common?
The idea may or may not be common, but it is a correct idea for a small teams. With limited human resources everything should be made as simple as possible - to reduce development costs. If you stick to concept like "everything should be an object", decide to build "nice-looking" class hierarchy, etc, AND if you have limited resources, then you are doomed - It is very possible that you'll never finish your project and will be rewriting code forever and trying to decide what should be derived from what. Needless project flexibility and extensibility may kill small project. Game engine doesn't have to be complicated.
Large teams may afford complex solutions, but complexity leads to additional bugs. For example, you could look at sims 3 - it has a VERY advanced system (object "plugins", game resource management, GPU resource management, content "streaming", etc, and I think they even put game logic into a few .NET modules that are stored within game archive...), but extensibility of the system resulted in mountain of bugs after certain updates.
Electronic Arts as one example uses STL, but felt compelled to create their own version of it called EASTL.
Are C++ game developers usually limited on using all the C++ features? Is it true more or less for each platform? These days, I think it's pretty good on the main console platforms but if you were developing for mobile devices I doubt it's quite so even
Is STL used these days in the environment, or should I avoid it? It is used and should be used... but some people don't trust it because in the past STL support was much less even, and sometimes had performance problems
Do they treat C++ as "everything must be an object" or is it a mix of paradigms? Far too general. Varies from person to person and company to company. On average, game developers have a reputation for being less focused on software engineering and more on hacking code, but that's far too generalised to really be of use. However spouting for 30min about design patterns and frameworks and abstractions in an interview is probably not a wonderful plan
Any features they tend to not use? STL still has a bad rep amongst those who worked on older platforms. Exceptions also and RTTI, probably sicne they weren't well supported (and maybe are still not)
Is C still used, and is it good to show a project completed in it? I'm sure it is, and if you have a project then show it, but it's not anywhere near as widely used as C++
I did talk to a famous game designer and he said they don't use STL and said to use basic encapsulation with classes, but he said not to use all other advanced C++ features. The idea is to keep it simple. Is this common?
That view is pretty common but it doesn't mean it's right. You might want to tread carefully to avoid upsetting a 20-year veteran who has not moved with the times
I'm going to assume you're referring to people who develop full-price games for consoles and PC.
"Are C++ game developers usually limited on using all the C++ features?"
I think most are avoiding exceptions, RTTI, and many avoid the STL part of the standard library. They're probably using templates, though not much metaprogramming. I don't think this varies much across platform. But it does vary from company to company.
"Is STL used these days in the environment, or should I avoid it?"
It is used by many, but not all. Don't avoid it - it's a useful tool that is very good at the tasks it is designed for. Just make sure you can get by without it.
"Do they treat C++ as "everything must be an object" or is it a mix of paradigms?"
Different places will work in different ways. There's nothing intrinsic to object orientation in C++ that makes it good or bad for game development. Bear in mind that there is often legacy code or 3rd party libraries that are written in C or designed to be operated from C, so it's very rare that you'll have C++ throughout.
"Any features they tend to not use?"
I think we covered this above.
"Is C still used, and is it good to show a project completed in it?"
Yes, and no. Life is too short to spend on mastering every related language and dialect before you get your first job. Showing the ability to use a C-style library (eg. SDL) should suffice. Obviously if you set your goals on joining a company that just uses C, you will have to consider that.
"I did talk to a famous game designer and he said they don't use STL and said to use basic encapsulation with classes, but he said not to use all other advanced C++ features. The idea is to keep it simple. Is this common?"
See above. Incidentally, game "designers" typically aren't programmers, so watch your terminology. If you apply for a game designer role, you won't usually be showing programming skills.

F# performance in scientific computing

I am curious as to how F# performance compares to C++ performance? I asked a similar question with regards to Java, and the impression I got was that Java is not suitable for heavy numbercrunching.
I have read that F# is supposed to be more scalable and more performant, but how is this real-world performance compares to C++? specific questions about current implementation are:
How well does it do floating-point?
Does it allow vector instructions
how friendly is it towards optimizing
compilers?
How big a memory foot print does it have? Does it allow fine-grained control over memory locality?
does it have capacity for distributed
memory processors, for example Cray?
what features does it have that may be of interest to computational science where heavy number processing is involved?
Are there actual scientific computing
implementations that use it?
Thanks
I am curious as to how F# performance compares to C++ performance?
Varies wildly depending upon the application. If you are making extensive use of sophisticated data structures in a multi-threaded program then F# is likely to be a big win. If most of your time is spent in tight numerical loops mutating arrays then C++ might be 2-3× faster.
Case study: Ray tracer My benchmark here uses a tree for hierarchical culling and numerical ray-sphere intersection code to generate an output image. This benchmark is several years old and the C++ code has been improved upon dozens of times over the years and read by hundreds of thousands of people. Don Syme at Microsoft managed to write an F# implementation that is slightly faster than the fastest C++ code when compiled with MSVC and parallelized using OpenMP.
I have read that F# is supposed to be more scalable and more performant, but how is this real-world performance compares to C++?
Developing code is much easier and faster with F# than C++, and this applies to optimization as well as maintenance. Consequently, when you start optimizing a program the same amount of effort will yield much larger performance gains if you use F# instead of C++. However, F# is a higher-level language and, consequently, places a lower ceiling on performance. So if you have infinite time to spend optimizing you should, in theory, always be able to produce faster code in C++.
This is exactly the same benefit that C++ had over Fortran and Fortran had over hand-written assembler, of course.
Case study: QR decomposition This is a basic numerical method from linear algebra provided by libraries like LAPACK. The reference LAPACK implementation is 2,077 lines of Fortran. I wrote an F# implementation in under 80 lines of code that achieves the same level of performance. But the reference implementation is not fast: vendor-tuned implementations like Intel's Math Kernel Library (MKL) are often 10x faster. Remarkably, I managed to optimize my F# code well beyond the performance of Intel's implementation running on Intel hardware whilst keeping my code under 150 lines of code and fully generic (it can handle single and double precision, and complex and even symbolic matrices!): for tall thin matrices my F# code is up to 3× faster than the Intel MKL.
Note that the moral of this case study is not that you should expect your F# to be faster than vendor-tuned libraries but, rather, that even experts like Intel's will miss productive high-level optimizations if they use only lower-level languages. I suspect Intel's numerical optimization experts failed to exploit parallelism fully because their tools make it extremely cumbersome whereas F# makes it effortless.
How well does it do floating-point?
Performance is similar to ANSI C but some functionality (e.g. rounding modes) is not available from .NET.
Does it allow vector instructions
No.
how friendly is it towards optimizing compilers?
This question does not make sense: F# is a proprietary .NET language from Microsoft with a single compiler.
How big a memory foot print does it have?
An empty application uses 1.3Mb here.
Does it allow fine-grained control over memory locality?
Better than most memory-safe languages but not as good as C. For example, you can unbox arbitrary data structures in F# by representing them as "structs".
does it have capacity for distributed memory processors, for example Cray?
Depends what you mean by "capacity for". If you can run .NET on that Cray then you could use message passing in F# (just like the next language) but F# is intended primarily for desktop multicore x86 machines.
what features does it have that may be of interest to computational science where heavy number processing is involved?
Memory safety means you do not get segmentation faults and access violations. The support for parallelism in .NET 4 is good. The ability to execute code on-the-fly via the F# interactive session in Visual Studio 2010 is extremely useful for interactive technical computing.
Are there actual scientific computing implementations that use it?
Our commercial products for scientific computing in F# already have hundreds of users.
However, your line of questioning indicates that you think of scientific computing as high-performance computing (e.g. Cray) and not interactive technical computing (e.g. MATLAB, Mathematica). F# is intended for the latter.
In addition to what others said, there is one important point about F# and that's parallelism. The performance of ordinary F# code is determined by CLR, although you may be able to use LAPACK from F# or you may be able to make native calls using C++/CLI as part of your project.
However, well-designed functional programs tend to be much easier to parallelize, which means that you can easily gain performance by using multi-core CPUs, which are definitely available to you if you're doing some scientific computing. Here are a couple of relevant links:
F# and Task-Parallel library (blog by Jurgen van Gael, who is doing machine-learning stuff)
Another interesting answer at SO regarding parllelism
An example of using Parallel LINQ from F#
Chapter 14 of my book discusses parallelism (source code is available)
Regarding distributed computing, you can use any distributed computing framework that's available for the .NET platform. There is a MPI.NET project, which works well with F#, but you may be also able to use DryadLINQ, which is a MSR project.
Some articles: F# MPI tools for .NET, Concurrency with MPI.NET
DryadLINQ project hompepage
F# does floating point computation as fast as the .NET CLR will allow it. Not much difference from C# or other .NET languages.
F# does not allow vector instructions by itself, but if your CLR has an API for these, F# should not have problems using it. See for instance Mono.
As far as I know, there is only one F# compiler for the moment, so maybe the question should be "how good is the F# compiler when it comes to optimisation?". The answer is in any case "potentially as good as the C# compiler, probably a little bit worse at the moment". Note that F# differs from e.g. C# in its support for inlining at compile time, which potentially allows for more efficient code which rely on generics.
Memory foot prints of F# programs are similar to that of other .NET languages. The amount of control you have over allocation and garbage collection is the same as in other .NET languages.
I don't know about the support for distributed memory.
F# has very nice primitives for dealing with flat data structures, e.g. arrays and lists. Look for instance at the content of the Array module: map, map2, mapi, iter, fold, zip... Arrays are popular in scientific computing, I guess due to their inherently good memory locality properties.
For scientific computation packages using F#, you may want to look at what Jon Harrop is doing.
As with all language/performance comparisons, your mileage depends greatly on how well you can code.
F# is a derivative of OCaml. I was surprised to find out that OCaml is used a lot in the financial world, where number crunching performance is very important. I was further surprised to find out that OCaml is one of the faster languages, with performance on par with the fastest C and C++ compilers.
F# is built on the CLR. In the CLR, code is expressed in a form of bytecode called the Common Intermediate Language. As such, it benefits from the optimizing capabilities of the JIT, and has performance comparable to C# (but not necessarily C++), if the code is written well.
CIL code can be compiled to native code in a separate step prior to runtime by using the Native Image Generator (NGEN). This speeds up all later runs of the software as the CIL-to-native compilation is no longer necessary.
One thing to consider is that functional languages like F# benefit from a more declarative style of programming. In a sense, you are over-specifying the solution in imperative languages such as C++, and this limits the compiler's ability to optimize. A more declarative programming style can theoretically give the compiler additional opportunities for algorithmic optimization.
It depends on what kind of scientific computing you are doing.
If you are doing traditional heavy computing, e.g. linear algebra, various optimizations, then you should not put your code in .Net framework, at least not suitable in F#. Because this is at the algorithm level, most of the algorithms must be coded in an imperative languages to have good performance in running time and memory usage. Others mentioned parallel, I must say it is probably useless when you doing low level stuff like parallel an SVD implementation. Because when you know how to parallel an SVD, you simply won't use an high level languages, Fortran, C or modified C(e.g. cilk) are your friends.
However, a lot of the scientific computing today is not of this kind, which is some kind of high level applications, e.g. statistical computing and data mining. In these tasks, aside from some linear algebra, or optimization, there are also a lot of data flows, IOs, prepossessing, doing graphics, etc. For these tasks, F# is really powerful, for its succinctness, functional, safety, easy to parallel, etc.
As others have mentioned, .Net well supports Platform Invoke, actually quite a few projects inside MS are use .Net and P/Invoke together to improve the performance at the bottle neck.
I don't think that you'll find a lot of reliable information, unfortunately. F# is still a very new language, so even if it were ideally suited for performance heavy workloads there still wouldn't be that many people with significant experience to report on. Furthermore, performance is very hard to accurately gauge and microbenchmarks are hard to generalize. Even within C++, you can see dramatic differences between compilers - are you wondering whether F# is competitive with any C++ compiler, or with the hypothetical "best possible" C++ executable?
As to specific benchmarks against C++, here are some possibly relevant links: O'Caml vs. F#: QR decomposition; F# vs Unmanaged C++ for parallel numerics. Note that as an author of F#-related material and as the vendor of F# tools, the writer has a vested interest in F#'s success, so take these claims with a grain of salt.
I think it's safe to say that there will be some applications where F# is competitive on execution time and likely some others where it isn't. F# will probably require more memory in most cases. Of course the ultimate performance will also be highly dependent on the skill of the programmer - I think F# will almost certainly be a more productive language to program in for a moderately competent programmer. Furthermore, I think that at the moment, the CLR on Windows performs better than Mono on most OSes for most tasks, which may also affect your decisions. Of course, since F# is probably easier to parallelize than C++, it will also depend on the type of hardware you're planning to run on.
Ultimately, I think that the only way to really answer this question is to write F# and C++ code representative of the type of calculations that you want to perform and compare them.
Here are two examples I can share:
Matrix multiplication:
I have a blog post comparing different matrix multiplication implementations.
LBFGS
I have a large scale logistic regression solver using LBFGS optimization, which is coded in C++. The implementation is well tuned. I modified some code to code in C++/CLI, i.e. I compiled the code into .Net. The .Net version is 3 to 5 times slower than the naive compiled one on different datasets. If you code LBFGS in F#, the performance can not be better than C++/CLI or C#, (but would be very close).
I have another post on Why F# is the language for data mining, although not quite related to the performance issue you concern here, it is quite related to scientific computing in F#.
If I say "ask again in 2-3 years" I think that will answer your question completely :-)
First, don't expect F# to be any different than C# perf-wise, unless you are doing some convoluted recursions on purpose and I'd guess you are not since you asked about numerics.
Floating-point wise it is bound to be better than Java since CLR doesn't aim at cross-platform uniformity, meaning that JIT will go to 80-bits whenever it can. On the other side you don't control over that beyond watching the number of variables to make sure there's enough FP registers.
Vector-wise, if you scream loud enough maybe something happens in 2-3 yr since Direct3D is entering .NET as a general API anyway and C# code done in XNA runs on Xbox whihc is as close to the bare metal you can get with CLR. That still means that you'd need do so some intermediary code on your own.
So don't expect CUDA or even ability to just link NVIDIA libs and get going. You'd have much more luck trying that approach with Haskell if for some reason you really, really need a "functional" language since Haskell was designed to be linking-friendly out of pure necessity.
Mono.Simd has been mentioned already and while it should be back-portable to CLR it might be quite some work to actually do it.
There,s quite some code in a social.msdn posting on using SSE3 in .NET, vith C++/CLI and C#, come array blitting, injecting SSE3 code for perf etc.
There was some talk about running CECIL on compiled C# to extract parts into HLSL, compile into shaders and link a glue code to schedule it (CUDA is doing the equivalent anyway) but I don't think that there's anything runnable coming out of that.
A thing that might be worth more to you if you want to try something soon is PhysX.Net on codeplex. Don't expect it to just unpack and do the magic. However, ih has currently active author and the code is both normal C++ and C++/CLI and yopu can probably get some help from the author if you want to go into details and maybe use similar approach for CUDA. For full speed CUDA you'll still need to compile your own kernels and then just interface to .NET so the easier that part goes the happier you are going to be.
There is a CUDA.NET lib which is supposed to be free but the page gives just e-mail address so expect some strings attached, and while the author writes a blog he's not particularly talkative about what's inside the lib.
Oh and if you have the budget yo might give that Psi Lambda a look (KappaCUDAnet is the .NET part). Apparently they are going to jack up the prices in Nov (if it's not a sales trick :-)
Firstly C is significantly faster than C++.. So if you need so much speed you should make the lib etc in c.
With regards to F# most bench marks use Mono which is up to 2 * slower than MS CLR due t partially to its use of the boehm GC ( they have a new GC and LVVM but these are still immature dont support generics etc).
.NEt languages itself are compiled to an IR ( the CIL) which compile to native code as efficiently as C++. There is one problem set that most GC languages suffer in and that is large amounts of mutable writes ( this includes C++ .NET as mentioned above) . And there is a certain scientific problem set that requires this , these when needed should probably use a native library or use the Flyweight pattern to reuse objects from a pool ( which reduces writes) . The reason is there is a write barrier in the .NET CLR where when updating a reference field (including a box) it will set a bit in a table saying this table is modified . If your code consists of lots of such writes it will suffer.
That said a .NET app like C# using lots of static code , structs and ref/out on the structs can produce C like performance but it is very difficult to code like this or maintain the code ( like C) .
Where F# shines however is parralelism over immutable data which goes hand and hand with more read based problems. Its worth noting most benchmarks are much higher in mutable writes than real life applications.
With regard to floating point , you should use an alternative lib ( ie the .Net one) to the oCaml ones due to it being slow. C/C++ allows faster for lower precision which oCaml doesnt by default.
Lastly i woudl argue a high level language like C#, F# and proper profiling will give you betetr pefromance than c and C++ for the same developer time. If you change a bottle neck to a c lib pinvoke call you will also end up with C like performance for critical areas. That said if you have unlimited budget and care more about speed then maintenance than C is the way to go ( not C++) .
Last I knew, most scientific computing was still done in FORTRAN. It's still faster than anything else for linear algebra problems - not Java, not C, not C++, not C#, not F#. LINPACK is nicely optimized.
But the remark about "your mileage may vary" is true of all benchmarks. Blanket statements (except mine) are rarely true.

Is C++ still actively used for general purpose development? [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Which sector of software industry uses C++?
C++ was for many years the holy grail of mission critical high performance development. However, it seems that for the past 10 years like much of the development world has moved to Java and C#. My quesiton is this, is C++ effectively relegated to embedded systems, OS, Browser and other special purpose development? Should I let this skillset go the way of the VB 6 and other skillsets that are no longer showing the same level of demand and value in the market? I love C++ and would love to update my knowledge in it, but I wouldn't even know where to begin to try to apply it to common business problems today.
Regards.
First of all, I doubt anybody can give a definitive answer -- there's just no way to tell exactly how much any particular language is really used. Nearly anything you can measure is a secondary measurement, such as how many people are advertising jobs using that language. The problem is that this tends to show relatively new languages as dominating to a much greater degree than is real.
That said, my belief is as follows. At one time, C++ was the hot new language on the block, and there was a bubble when it dominated the market. That bubble deflated quite a while ago. Since then, use of C++ has been growing on an absolute basis, but the market has been growing (quite a bit) faster so its shrinking on a relative basis.
There are a couple of reasons this doesn't show up in most secondary measures such as job advertisements though. A couple of the obvious ones include:
Many teams producing C++ have now had years to "settle in", so the turnover rate is relatively low.
It's now well established where it's used, so positions tend to be filled by internal promotions.
There's another effect I almost hesitate to mention, but it's true no matter how little a lot of people like it: there are both programmers and managers who are more excited about "new" than effective. This leads to a large group of wannabes who are constantly on the move to the latest and greatest "technology" (whether that happens to be a language, framework, platform, or whatever). They get a job, loaf (or worse, actually write some code), then move on to their next victim...er...employer. They cause a lot of "churn", and inflate the number of job advertisements, but produce little or nothing of any real value. That group moved from C++ to Java a long time ago, and have long since moved from Java to C# to Ruby on Rails to Hadoop to whatever the managers are excited about this week.
Lest I sound excessively negative, I should add that along the way, a few of them really find something they're good at, and (mostly) tend to stay with that. Unfortunately, for every one who does, there are at least five more new graduates to join the throng...
"C++ effectively relegated to embedded systems, OS, Browser"
"other special purpose development"
You mean 99% of the code people run on a daily basis?
C++ is still heavily used in many mission critical financial applications. For example, most of Bloomberg's platforms are based on C++ with very little front end in other languages. Many investment banks and hedge funds use algorithmic trading systems written completely in C++ (e.g., Tower Research Capital, Knight Capital, etc.).
If you've been out of C++ for a while, you may need to get used to a whole bunch of now-standard libraries. When I was doing most of my C++, STL was fairly new and you either adopted the Microsoft libs or did not. If I went back to C++ now, I'll have to learn all the new libraries to be effective.
I think most of the movement to other languages is related to web development and web-centric development. The main exception to that would be Google, which still primarily use C++ and Python.
C++ is still valuable for many high performance apps. There are other technologies, and depends on the situation different languages are better suited for your needs. But if you want strong performance, good control of what your code is doing, and flexible networking and programming stack, C++ is still a good choice.
A better suggestion is: let the problems come to you and find the language that best suites the situation, rather than take a language and go look for problems.
Still: if you know C++ well, you can learn/program in anything.
To this day, C++ is the only language which is both object oriented and compiled (or at least, which has a mature ecosystem of optimizing compilers). Which leaves it as the sole choice for most large scale, compute-intense projects.
To me the prominent example is games and game engines - these are huuuuuge projects that squeeze machines for milisecond-fractions. MS is trying to get some traction for XNA (a managed game-dev framework - basically a DirectX wrapper ), but most probably would never get any for AAA game productions.
If I take a look at the applications I have installed on the laptop I am writing this message on, I see a lot of C/C++ and few (if any) managed apps. Examples? Google Chrome, Firefox, iTunes, uTorrent, Spotify, Picasa, Google Earth, OpenOffice, Notepad++, IrfanView... this list goes on and on. I write desktop applications for a living, which are installed on thousands of PCs worldwide, and C++ is still my language of choice. The lack of dependencies (WTL is your friend) is a massive plus IMHO (and that of my customers I should add!.) YMMV though - as a seasoned developer I think I am productive enough in C++, but I can't speak for everybody.
It hasn't gone away if you need to do something really, really fast. If "fast enough" is OK, then C# and Java are fine, but if you have a calculation that takes hours or days, or you need something to happen on the microsecond timescale (i.e. high frequency trading) C++ is still the language to use.
More often than not, we get lost in the hype cycle. First there was Java, then came PHP, and currently is Python. But the fact of the matter is development of general purpose desktop application still requires use of libraries like Carbon/Cocoa for mac, GTK/QT for Linux, MFC for Windows. All of which are C/C++ based. So are most applications written for these platforms. So calling C++ as being relegated to embedded is not right, although yeah its being extensively used now, unlike earlier when it was just assembly or C at the max. In my opinion, if you want a high performance application with great looking GUI, it still has to be done in C/C++.
Different languages are prevalent in different domains. It is interesting that you think it might be rendered unimportant by being relegated to embedded systems when in fact that is where most software development occurs; at least in terms of number of projects/products.
There are many ways of measuring, and a number of them are presented here: http://langpop.com/. The evidence suggests that C++ remains important.
I'm not sure whether the gaming industry falls under "general purpose development", but if you want to develop anything that you intend to get working on more than a single console, C++ is what's for lunch. While many gaming and 3D libraries have extensions for other languages, they -all- have extensions for C/C++.
C++ is still used everywhere you want the best performance. Its major advantage is that you can use literally for everything. In addition to what other people have said you can also use it to power websites, for instance OkCupid uses it almost exclusively.
As the recent Hip Hop of Facebook shows, in the end, if you can afford it (ie. you have a large and competent team) you can always gains something using it. Then it also a matter of scale, other than industry.
C++ is still very popular. For instance, combined with Qt it is often used.
C++ is usually used for systems work, generally defined as software where the UI is not central, not application work -- where the UI is central. So, for general business use it's probably not very interesting and those problems are better solved with a higher level language. However, there will always be low level systems work to be done, and C or C++ is the practical answer for those problems right now.
As a general development language? Well, it depends on your industry, but I've worked in two different industries and there is always plenty of C++ work:
Telecoms
Embedded devices often use C and C++ for core services
Network equipment, often very complex, heavily utilize C++
Software apps that work with hardware will often be written in C++
Financial Services
Trade Execution systems are often in C++. You cannot have your garbage collection kick in when you're executing an order for a customer.
Algorithmic and high-frequency trading systems are usually in C++
General trading systems that do not have strict speed requirements seem to be in C++ and Java, with C# starting to show up as well.
Administrative applications tends to be written in Java, VB, or C# these days
Recently there is a trend towards functional languages for quantitative analysis, so F# and Haskell are starting to appear, and SAS and Matlab are always common too
I read somewhere that Nyse/Euronext uses Java, but that they disable the garbage collector and run on servers with insane amounts of memory.

Will my iPhone app take a performance hit if I use Objective-C for low level code?

When programming a CPU intensive or GPU intensive application on the iPhone or other portable hardware, you have to make wise algorithmic decisions to make your code fast.
But even great algorithm choices can be slow if the language you're using performs more poorly than another.
Is there any hard data comparing Objective-C to C++, specifically on the iPhone but maybe just on the Mac desktop, for performance of various similar language aspects? I am very familiar with this article comparing C and Objective-C, but this is a larger question of comparing two object oriented languages to each other.
For example, is a C++ vtable lookup really faster than an Obj-C message? How much faster? Threading, polymorphism, sorting, etc. Before I go on a quest to build a project with duplicate object models and various test code, I want to know if anybody has already done this and what the results where. This type of testing and comparison is a project in and of itself and can take a considerable amount of time. Maybe this isn't one project, but two and only the outputs can be compared.
I'm looking for hard data, not evangelism. Like many of you I love and hate both languages for various reasons. Furthermore, if there is someone out there actively pursuing this same thing I'd be interesting in pitching in some code to see the end results, and I'm sure others would help out too. My guess is that they both have strengths and weaknesses, my goal is to find out precisely what they are so that they can be avoided/exploited in real-world scenarios.
Mike Ash has some hard numbers for performance of various Objective-C method calls versus C and C++ in his post "Performance Comparisons of Common Operations". Also, this post
by Savoy Software is an interesting read when it comes to tuning the performance of an iPhone application by using Objective-C++.
I tend to prefer the clean, descriptive syntax of Objective-C over Objective-C++, and have not found the language itself to be the source of my performance bottlenecks. I even tend to do things that I know sacrifice a little bit of performance if they make my code much more maintainable.
Yes, well written C++ is considerably faster. If you're writing performance critical programs and your C++ is not as fast as C (or within a few percent), something's wrong. If your ObjC implementation is as fast as C, then something's usually wrong -- i.e. the program is likely a bad example of ObjC OOD because it probably uses some 'dirty' tricks to step below the abstraction layer it is operating within, such as direct ivar accesses.
The Mike Ash 'comparison' is very misleading -- I would never recommend the approach to compare execution times of programs you have written, or recommend it to compare C vs C++ vs ObjC. The results presented are provided from a test with compiler optimizations disabled. A program compiled with optimizations disabled is rarely relevant when you are measuring execution times. To view it as a benchmark which compares C++ against Objective-C is flawed. The test also compares individual features, rather than entire, real world optimized implementations -- individual features are combined in very different ways with both languages. This is far from a realistic performance benchmark for optimized implementations. Examples: With optimizations enabled, IMP cache is as slow as virtual function calls. Static dispatch (as opposed to dynamic dispatch, e.g. using virtual) and calls to known C++ types (where dynamic dispatch may be bypassed) may be optimized aggressively. This process is called devirtualization, and when it is used, a member function which is declared virtual may even be inlined. In the case of the Mike Ash test where many calls are made to member functions which have been declared virtual and have empty bodies: these calls are optimized away entirely when the type is known because the compiler sees the implementation and is able to determine dynamic dispatch is unnecessary. The compiler can also eliminate calls to malloc in optimized builds (favoring stack storage). So, enabling compiler optimizations in any of C, C++, or Objective-C can produce dramatic differences in execution times.
That's not to say the presented results are entirely useless. You could get some useful information about external APIs if you want to determine if there are measurable differences between the times they spend in pthread_create or +[NSObject alloc] on one platform or architecture versus another. Of course, these two examples will be using optimized implementations in your test (unless you happen to be developing them). But for comparing one language to another in programs you compile… the presented results are useless with optimizations disabled.
Object Creation
Consider also object creation in ObjC - every object is allocated dynamically (e.g. on the heap). With C++, objects may be created on the stack (e.g. approximately as fast as creating a C struct and calling a simple function in many cases), on the heap, or as elements of abstract data types. Each time you allocate and free (e.g. via malloc/free), you may introduce a lock. When you create a C struct or C++ object on the stack, no lock is required (although interior members may use heap allocations) and it often costs just a few instructions or a few instructions plus a function call.
As well, ObjC objects are reference counted instances. The actual need for an object to be a std::shared_ptr in performance critical C++ is very rare. It's not necessary or desirable in C++ to make every instance a shared, reference counted instance. You have much more control over ownership and lifetime with C++.
Arrays and Collections
Arrays and many collections in C and C++ also use strongly typed containers and contiguous memory. Since the address of the next element's members are often known, the optimizer can do much more, and you have great cache and memory locality. With ObjC, that's far from reality for standard objects (e.g. NSObject).
Dispatch
Regarding methods, many C++ implementations use few virtual/dynamic calls, particularly in highly optimized programs. These are static method calls and fodder for the optimizers.
With ObjC methods, each method call (objc message send) is dynamic, and is consequently a firewall for the optimizer. Ultimately, that results in many restrictions or inconveniences regarding what you can and cannot do to keep performance at a minimum when writing performance critical ObjC. This may result in larger methods, IMP caching, frequent use of C.
Some realtime applications cannot use any ObjC messaging in their render paths. None -- audio rendering is a good example of this. ObjC dispatch is simply not designed for realtime purposes; Allocations and locks may happen behind the scenes when messaging objects, making the complexity/time of objc messaging unpredictable enough that the audio rendering may miss its deadline.
Other Features
C++ also provides generics/template implementations for many of its libraries. These optimize very well. They are typesafe, and a lot of inlining and optimizations may be made with templates (consider it polymorphism, optimization, and specialization which takes place at compilation). C++ adds several features which just are not available or comparable in strict ObjC. Trying to directly compare langs, objects, and libraries which are very different is not so useful -- it's a very small subset of actual realizations. It's better to expand the question to a library/framework or real program, considering many aspects of design and implementation.
Other Points
C and C++ symbols can be more easily removed and optimized away in various stages of the build (stripping, dead code elimination, inlining and early inlining, as well as Link Time Optimization). The benefits of this include reduced binary sizes, reduced launch/load times, reduced memory consumption, etc.. For a single app, that may not be such a big deal; but if you reuse a lot of code, and you should, then your shared libraries could add a lot of unnecessary weight to the program, if implemented ObjC -- unless you are prepared to jump through some flaming hoops. So scalability and reuse are also factors in medium/large projects, and groups where reuse is high.
Included Libraries
ObjC library implementors also optimize for the environment, so its library implementors can make use of some language and environment features to offer optimized implementations. Although there are some pretty significant restrictions when writing an optimized program in pure ObjC, some highly optimized implementations exist in Cocoa. This is one of Cocoa's strong points, although the C++ standard library (what some people call the STL) is no slouch either. Cocoa operates at a much higher level of abstraction than C++ -- if you don't know well what you're doing (or should be doing), operating closer to the metal can really cost you. Falling back on to a good library implementation if you are not an expert in some domain is a good thing, unless you are really prepared to learn. As well, Cocoa's environments are limited; you can find implementations/optimizations which make better use of the OS.
If you're writing optimized programs and have experience doing so in both C++ and ObjC, clean C++ implementations will often be twice as fast or faster than clean ObjC (yes, you can compare against Cocoa). If you know how to optimize, you can often do better than higher level, general purpose abstractions. Although, some optimized C++ implementations will be as fast as or slower than Cocoa's (e.g. my initial attempt at file I/O was slower than Cocoa's -- primarily because the C++ implementation initializes its memory).
A lot of it comes down to the language features you are familiar with. I use both langs, they both have different strengths and models/patterns. They complement each other quite well, and there are great libraries for both. If you're implementing a complex, performance critical program, correct use of C++'s features and libraries will give you much more control and provide significant advantages for optimization, such that in the right hands, "several times faster" is a good default expectation (don't expect to win every time, or without some work, however). Remember, it takes years to understand C++ well enough to really reach that point.
I keep the majority of my performance critical paths as C++, but also recognize that ObjC is also a very good solution for some problems, and that there are some very good libraries available.
It's very hard to collect "hard data" for this that's not misguiding.
The biggest problem with doing a feature-to-feature comparison like you suggest is that the two languages encourage very different coding styles. Objective-C is a dynamic language with duck typing, where typical C++ usage is static. The same object-oriented architecture problem would likely have very different ideal solutions using C++ or Objective-C.
My feeling (as I have programmed much in both languages, mostly on huge projects): To maximize Objective-C performance, it has to be written very close to C. Whereas with C++, it's possible to make much more use of the language without any performance penalty compared to C.
Which one is better? I don't know. For pure performance, C++ will always have the edge. But the OOP style of Objective-C definitely has its merits. I definitely think it is easier to keep a sane architecture with it.
This really isn't something that can be answered in general as it really depends on how you use the language features. Both languages will have things that they are fast at, things that they are slow at, and things that are sometimes fast and sometimes slow. It really depends on what you use and how you use it. The only way to be certain is to profile your code.
In Objective C you can also write c++ code, so it might be easier to code in Objective C for the most part, and if you find something that doesn't perform well in it, then you can have a go at writting a c++ version of it and seeing if that helps (C++ tends to optimize better at compile time). Objective C will be easier to use if APIs you are interfacing with are also written in it, plus you might find it's style of OOP is easier or more flexible.
In the end, you should go with what you know you can write safe, robust code in and if you find an area that needs special attention from the other language, then you can swap to that. X-Code does allow you to compile both in the same project.
I have a couple of tests I did on an iPhone 3G almost 2 years ago, there was no documentation or hard numbers around in those days. Not sure how valid they still are but the source code is posted and attached.
This isn't a very extensive test, I was mainly interested in NSArray vs C Array for iterating a large number of objects.
http://memo.tv/nsarray_vs_c_array_performance_comparison
http://memo.tv/nsarray_vs_c_array_performance_comparison_part_ii_makeobjectsperformselector
You can see the C Array is much faster at high iterations. Since then I've realized that the bottleneck is probably not the iteration of the NSArray but the sending of the message. I wanted to try methodForSelector and calling the methods directly to see how big the difference would be but never got round to it. According to Mike Ash's benchmarks it's just over 5x faster.
I don't have hard data for Objective C, but I do have a good place to look for C++.
C++ started as C with Classes according to Bjarne Stroustroup in his reflection on the early years of C++ (http://www2.research.att.com/~bs/hopl2.pdf), so C++ can be thought of (like Objective C) as pushing C to its limits for object orientation.
What are those limits? In the 1994-1997 time frame, a lot of researchers figured out that object-orientation came at a cost due to dynamic binding, e.g. when C++ functions are marked virtual and there may/may not be children classes that override these functions. (In Java and C#, all functions expect ctors are inherently virtual, and there isnt' much you can do about it.) In "A Study of Devirtualization Techniques for a Java Just-In-Time Compiler" from researchers at IBM Research Tokyo, they contrast the techniques used to deal with this, including one from Urz Hölzle and Gerald Aigner. Urz Hölzle, in a separate paper with Karel Driesen, had shown that on average 5.7% of time in C++ programs (and up to ~50%) was spent in calling virtual functions (e.g. vtables + thunks). He later worked with some Smalltalk researachers in what ended up the Java HotSpot VM to solve these problems in OO. Some of these features are being backported to C++ (e.g. 'protected' and Exception handling).
As I mentioned, C++ is static typed where Objective C is duck typed. The performance difference in execution (but not lines of code) probably is a result of this difference.
This study says to really get the performance in a CPU intensive game, you have to use C. The linked article is complete with a XCode project that you can run.
I believe the bottom line is: Use Objective-C where you must interact with the iPhone's functions (after all, putting trampolines everywhere can't be good for anyone), but when it comes to loops, things like vector object classes, or intensive array access, stick with C++ STL or C arrays to get good performance.
I mean it would be totally silly to see position = [[Vector3 alloc] init] ;. You're just asking for a performance hit if you use references counts on basic objects like a position vector.
yes. c++ reign supreme in performance/expresiveness/resource tradeoff.
"I'm looking for hard data, not evangelism". google is your best friend.
obj-c nsstring is swapped with c++'s by apple enginneers for performance. in a resource constrained devices, only c++ cuts it as a MAINSTREAM oop language.
NSString stringWithFormat is slow
obj-c oop abstraction is deconstructed into procedural-based c-structs for performance, otherwise a MAGNITUDE order slower than java! the author is also aware of message caching - yet no-go. so modeling lots of small players/enemies objects is done in oop with c++ or else, lots of Procedural structs with a simple OOP wrapper around it with obj-c. there can be one paradigm that equates Procedural + Object-Oriented Programming = obj-c.
http://ejourneyman.wordpress.com/2008/04/23/writing-a-ray-tracer-for-cocoa-objective-c/