does presence of mutex help getting rid of volatile key word ? - c++

I have a multi-R/W lock class that keeps the read, write and pending read , pending write counters. A mutex guards them from multiple threads.
My question is Do we still need the counters to be declared as volatile so that the compiler won't screw it up while doing the optimization.
Or does the compiler takes into account that the counters are guarded by the mutex.
I understand that the mutex is a run time mechanism to for synchronization and "volatile" keyword is a compile time indication to the compiler to do the right thing while doing the optimizations.
Regards,
-Jay.

There are 2 basically unrelated items here, that are always confused.
volatile
threads, locks, memory barriers, etc.
volatile is used to tell the compiler to produce code to read the variable from memory, not from a register. And to not reorder the code around. In general, not to optimize or take 'short-cuts'.
memory barriers (supplied by mutexes, locks, etc), as quoted from Herb Sutter in another answer, are for preventing the CPU from reordering read/write memory requests, regardless of how the compiler said to do it. ie don't optimize, don't take short cuts - at the CPU level.
Similar, but in fact very different things.
In your case, and in most cases of locking, the reason that volatile is NOT necessary, is because of function calls being made for the sake of locking. ie:
Normal function calls affecting optimizations:
external void library_func(); // from some external library
global int x;
int f()
{
x = 2;
library_func();
return x; // x is reloaded because it may have changed
}
unless the compiler can examine library_func() and determine that it doesn't touch x, it will re-read x on the return. This is even WITHOUT volatile.
Threading:
int f(SomeObject & obj)
{
int temp1;
int temp2;
int temp3;
int temp1 = obj.x;
lock(obj.mutex); // really should use RAII
temp2 = obj.x;
temp3 = obj.x;
unlock(obj.mutex);
return temp;
}
After reading obj.x for temp1, the compiler is going to re-read obj.x for temp2 - NOT because of the magic of locks - but because it is unsure whether lock() modified obj. You could probably set compiler flags to aggressively optimize (no-alias, etc) and thus not re-read x, but then a bunch of your code would probably start failing.
For temp3, the compiler (hopefully) won't re-read obj.x.
If for some reason obj.x could change between temp2 and temp3, then you would use volatile (and your locking would be broken/useless).
Lastly, if your lock()/unlock() functions were somehow inlined, maybe the compiler could evaluate the code and see that obj.x doesn't get changed. But I guarantee one of two things here:
- the inline code eventually calls some OS level lock function (thus preventing evaluation) or
- you call some asm memory barrier instructions (ie that are wrapped in inline functions like __InterlockedCompareExchange) that your compiler will recognize and thus avoid reordering.
EDIT: P.S. I forgot to mention - for pthreads stuff, some compilers are marked as "POSIX compliant" which means, among other things, that they will recognize the pthread_ functions and not do bad optimizations around them. ie even though the C++ standard doesn't mention threads yet, those compilers do (at least minimally).
So, short answer
you don't need volatile.

From Herb Sutter's article "Use Critical Sections (Preferably Locks) to Eliminate Races" (http://www.ddj.com/cpp/201804238):
So, for a reordering transformation to be valid, it must respect the program's critical sections by obeying the one key rule of critical sections: Code can't move out of a critical section. (It's always okay for code to move in.) We enforce this golden rule by requiring symmetric one-way fence semantics for the beginning and end of any critical section, illustrated by the arrows in Figure 1:
Entering a critical section is an acquire operation, or an implicit acquire fence: Code can never cross the fence upward, that is, move from an original location after the fence to execute before the fence. Code that appears before the fence in source code order, however, can happily cross the fence downward to execute later.
Exiting a critical section is a release operation, or an implicit release fence: This is just the inverse requirement that code can't cross the fence downward, only upward. It guarantees that any other thread that sees the final release write will also see all of the writes before it.
So for a compiler to produce correct code for a target platform, when a critical section is entered and exited (and the term critical section is used in it's generic sense, not necessarily in the Win32 sense of something protected by a CRITICAL_SECTION structure - the critical section can be protected by other synchronization objects) the correct acquire and release semantics must be followed. So you should not have to mark the shared variables as volatile as long as they are accessed only within protected critical sections.

volatile is used to inform the optimizer to always load the current value of the location, rather than load it into a register and assume that it won't change. This is most valuable when working with dual-ported memory locations or locations that can be updated real-time from sources external to the thread.
The mutex is a run-time OS mechanism that the compiler really doesn't know anything about - so the optimizer wouldn't take that into account. It will prevent more than one thread from accessing the counters at one time, but the values of those counters are still subject to change even while the mutex is in effect.
So, you're marking the vars volatile because they can be externally modified, and not because they're inside a mutex guard.
Keep them volatile.

While this may depend on the threading library you are using, my understanding is that any decent library will not require use of volatile.
In Pthreads, for example, use of a mutex will ensure that your data gets committed to memory correctly.
EDIT: I hereby endorse tony's answer as being better than my own.

You still need the "volatile" keyword.
The mutexes prevent the counters from concurrent access.
"volatile" tells the compiler to actually use the counter
instead of caching it into a CPU register (which would not
be updated by the concurrent thread).

Related

c++11 register cache thread safety

in volatile: The Multithreaded Programmer's Best Friend, Andrei Alexandrescu gives this example:
class Gadget
{
public:
void Wait()
{
while (!flag_)
{
Sleep(1000); // sleeps for 1000 milliseconds
}
}
void Wakeup()
{
flag_ = true;
}
...
private:
bool flag_;
};
he states,
... the compiler concludes that it can cache flag_ in a register ... it harms correctness: after you call Wait for some Gadget object, although another thread calls Wakeup, Wait will loop forever. This is because the change of flag_ will not be reflected in the register that caches flag_.
then he offers a solution:
If you use the volatile modifier on a variable, the compiler won't cache that variable in registers — each access will hit the actual memory location of that variable.
now, other people mentioned on stackoverflow and elsewhere that volatile keyword doesn't really offer any thread-safety guarantees, and i should use std::atomic or mutex synchronization instead, which i do agree.
however, going the std::atomic route for example, which internally uses memory fences read_acquire and write_release (Acquire and Release Semantics), i don't see how it actually fixes the register-cache problem in particular.
in case of x86 for example, every load on x86/64 already implies acquire semantics and every store implies release semantics such that compiled code under x86 doesn't emit any actual memory barriers at all. (The Purpose of memory_order_consume in C++11)
g = Guard.load(memory_order_acquire);
if (g != 0)
p = Payload;
On Intel x86-64, the Clang compiler generates compact machine code for this example – one machine instruction per line of C++ source code. This family of processors features a strong memory model, so the compiler doesn’t need to emit special memory barrier instructions to implement the read-acquire.
so.... just assuming x86 arch for now, how does std::atomic solve the cache in registry problem? w/ no memory barrier instructions for read-acquire in compiled code, it seems to be the same as the compiled code for just regular read.
Did you notice that there was no load from just a register in your code? There was an explicit memory load from _Guard. So it did in fact prevent caching in a register.
Now how it does this is up to the specific platform's implementation of std::atomic, but it must do this.
And, by the way, Alexandrescu's reasoning is completely wrong for modern platforms. While it's true that volatile prevents the compiler from caching in a register, it doesn't prevent similar caching being done by the CPU or by hardware. On some platforms, it might happen to be adequate, but there is absolutely no reason to write gratuitously non-portable code that might break on a future CPU, compiler, library, or platform when a fully-portable alternative is readily available.
volatile is not necessary for any "sane" implementation when the Gadget example is changed to use std::atomic<bool>. The reason for this is not that the standard forbids the use of registers, instead (§29.3/13 in n3690):
Implementations should make atomic stores visible to atomic loads within a reasonable amount of time.
Of course, what constitutes "reasonable" is open to interpretation, and it's "should", not "shall", so an implementation might ignore the requirement without violating the letter of the standard. Typical implementations do not cache the results of atomic loads, nor (much) delay issuing an atomic store to the CPU, and thus leave the decision largely to the hardware. If you would like to enforce this behavior, you should use volatile std::atomic<bool> instead. In both cases, however, if another thread sets the flag, the Wait() should be finite, but if your compiler and/or CPU are so willing, can still take much longer than you would like.
Also note that a memory fence does not guarantee that a store becomes visible to another thread immediately nor any sooner than it otherwise would. So even if the compiler added fence instructions to Gadget's methods, they wouldn't help at all. Fences are used to guarantee consistency, not to increase performance.

Volatile vs. memory fences

The code below is used to assign work to multiple threads, wake them up, and wait until they are done. The "work" in this case consists of "cleaning a volume". What exactly this operation does is irrelevant for this question -- it just helps with the context. The code is part of a huge transaction processing system.
void bf_tree_cleaner::force_all()
{
for (int i = 0; i < vol_m::MAX_VOLS; i++) {
_requested_volumes[i] = true;
}
// fence here (seq_cst)
wakeup_cleaners();
while (true) {
usleep(10000); // 10 ms
bool remains = false;
for (int vol = 0; vol < vol_m::MAX_VOLS; ++vol) {
// fence here (seq_cst)
if (_requested_volumes[vol]) {
remains = true;
break;
}
}
if (!remains) {
break;
}
}
}
A value in a boolean array _requested_volumes[i] tells whether thread i has work to do. When it is done, the worker thread sets it to false and goes back to sleep.
The problem I am having is that the compiler generates an infinite loop, where the variable remains is always true, even though all values in the array have been set to false. This only happens with -O3.
I have tried two solutions to fix that:
Declare _requested_volumes volatile
(EDIT: this solution does work actually. See edit below)
Many experts say that volatile has nothing to do with thread synchronization, and it should only be used in low-level hardware accesses. But there's a lot of dispute over this on the Internet. The way I understand it, volatile is the only way to refrain the compiler from optimizing away accesses to memory which is changed outside of the current scope, regardless of concurrent access. In that sense, volatile should do the trick, even if we disagree on best practices for concurrent programming.
Introduce memory fences
The method wakeup_cleaners() acquires a pthread_mutex_t internally in order to set a wake-up flag in the worker threads, so it should implicitly produce proper memory fences. But I'm not sure if those fences affect memory accesses in the caller method (force_all()). Therefore, I manually introduced fences in the locations specified by the comments above. This should make sure that writes performed by the worker thread in _requested_volumes are visible in the main thread.
What puzzles me is that none of these solutions works, and I have absolutely no idea why. The semantics and proper use of memory fences and volatile is confusing me right now. The problem is that the compiler is applying an undesired optimization -- hence the volatile attempt. But it could also be a problem of thread synchronization -- hence the memory fence attempt.
I could try a third solution in which a mutex protects every access to _requested_volumes, but even if that works, I would like to understand why, because as far as I understand, it's all about memory fences. Thus, it should make no difference whether it's done explicitly or implicitly via a mutex.
EDIT: My assumptions were wrong and Solution 1 actually does work. However, my question remains in order to clarify the use of volatile vs. memory fences. If volatile is such a bad thing, that should never be used in multithreaded programming, what else should I use here? Do memory fences also affect compiler optimizations? Because I see these as two orthogonal issues, and therefore orthogonal solutions: fences for visibility in multiple threads and volatile for preventing optimizations.
Many experts say that volatile has nothing to do with thread synchronization, and it should only be used in low-level hardware accesses.
Yes.
But there's a lot of dispute over this on the Internet.
Not, generally, between "the experts".
The way I understand it, volatile is the only way to refrain the compiler from optimizing away accesses to memory which is changed outside of the current scope, regardless of concurrent access.
Nope.
Non-pure, non-constexpr non-inlined function calls (getters/accessors) also necessarily have this effect. Admittedly link-time optimization confuses the issue of which functions may really get inlined.
In C, and by extension C++, volatile affects memory access optimization. Java took this keyword, and since it can't (or couldn't) do the tasks C uses volatile for in the first place, altered it to provide a memory fence.
The correct way to get the same effect in C++ is using std::atomic.
In that sense, volatile should do the trick, even if we disagree on best practices for concurrent programming.
No, it may have the desired effect, depending on how it interacts with your platform's cache hardware. This is brittle - it could change any time you upgrade a CPU, or add another one, or change your scheduler behaviour - and it certainly isn't portable.
If you're really just tracking how many workers are still working, sane methods might be a semaphore (synchronized counter), or mutex+condvar+integer count. Either are likely more efficient than busy-looping with a sleep.
If you're wedded to the busy loop, you could still reasonably have a single counter, such as std::atomic<size_t>, which is set by wakeup_cleaners and decremented as each cleaner completes. Then you can just wait for it to reach zero.
If you really want a busy loop and really prefer to scan the array each time, it should be an array of std::atomic<bool>. That way you can decide what consistency you need from each load, and it will control both the compiler optimizations and the memory hardware appropriately.
Apparently, volatile does the necessary for your example. The topic of volatile qualifier itself is too broad: you can start by searching "C++ volatile vs atomic" etc. There are a lot of articles and questions&answers on the internet, e.g. Concurrency: Atomic and volatile in C++11 memory model .
Briefly, volatile tells the compiler to disable some aggressive optimizations, particularly, to read the variable each time it is accessed (rather than storing it in a register or cache). There are compilers which do more so making volatile to act more like std::atomic: see Microsoft Specific section here. In your case disablement of an aggressive optimization is exactly what was necessary.
However, volatile doesn't define the order for the execution of the statements around it. That is why you need memory order in case you need to do something else with the data after the flags you check have been set.
For inter-thread communication it is appropriate to use std::atomic, particularly, you need to refactor _requested_volumes[vol] to be of type std::atomic<bool> or even std::atomic_flag: http://en.cppreference.com/w/cpp/atomic/atomic .
An article that discourages usage of volatile and explains that volatile can be used only in rare special cases (connected with hardware I/O): https://www.kernel.org/doc/Documentation/volatile-considered-harmful.txt

Are mutex lock functions sufficient without volatile?

A coworker and I write software for a variety of platforms running on x86, x64, Itanium, PowerPC, and other 10 year old server CPUs.
We just had a discussion about whether mutex functions such as pthread_mutex_lock() ... pthread_mutex_unlock() are sufficient by themselves, or whether the protected variable needs to be volatile.
int foo::bar()
{
//...
//code which may or may not access _protected.
pthread_mutex_lock(m);
int ret = _protected;
pthread_mutex_unlock(m);
return ret;
}
My concern is caching. Could the compiler place a copy of _protected on the stack or in a register, and use that stale value in the assignment? If not, what prevents that from happening? Are variations of this pattern vulnerable?
I presume that the compiler doesn't actually understand that pthread_mutex_lock() is a special function, so are we just protected by sequence points?
Thanks greatly.
Update: Alright, I can see a trend with answers explaining why volatile is bad. I respect those answers, but articles on that subject are easy to find online. What I can't find online, and the reason I'm asking this question, is how I'm protected without volatile. If the above code is correct, how is it invulnerable to caching issues?
Simplest answer is volatile is not needed for multi-threading at all.
The long answer is that sequence points like critical sections are platform dependent as is whatever threading solution you're using so most of your thread safety is also platform dependent.
C++0x has a concept of threads and thread safety but the current standard does not and therefore volatile is sometimes misidentified as something to prevent reordering of operations and memory access for multi-threading programming when it was never intended and can't be reliably used that way.
The only thing volatile should be used for in C++ is to allow access to memory mapped devices, allow uses of variables between setjmp and longjmp, and to allow uses of sig_atomic_t variables in signal handlers. The keyword itself does not make a variable atomic.
Good news in C++0x we will have the STL construct std::atomic which can be used to guarantee atomic operations and thread safe constructs for variables. Until your compiler of choice supports it you may need to turn to the boost library or bust out some assembly code to create your own objects to provide atomic variables.
P.S. A lot of the confusion is caused by Java and .NET actually enforcing multi-threaded semantics with the keyword volatile C++ however follows suit with C where this is not the case.
Your threading library should include the apropriate CPU and compiler barriers on mutex lock and unlock. For GCC, a memory clobber on an asm statement acts as a compiler barrier.
Actually, there are two things that protect your code from (compiler) caching:
You are calling a non-pure external function (pthread_mutex_*()), which means that the compiler doesn't know that that function doesn't modify your global variables, so it has to reload them.
As I said, pthread_mutex_*() includes a compiler barrier, e.g: on glibc/x86 pthread_mutex_lock() ends up calling the macro lll_lock(), which has a memory clobber, forcing the compiler to reload variables.
If the above code is correct, how is it invulnerable to caching
issues?
Until C++0x, it is not. And it is not specified in C. So, it really depends on the compiler. In general, if the compiler does not guarantee that it will respect ordering constraints on memory accesses for functions or operations that involve multiple threads, you will not be able to write multithreaded safe code with that compiler. See Hans J Boehm's Threads Cannot be Implemented as a Library.
As for what abstractions your compiler should support for thread safe code, the wikipedia entry on Memory Barriers is a pretty good starting point.
(As for why people suggested volatile, some compilers treat volatile as a memory barrier for the compiler. It's definitely not standard.)
The volatile keyword is a hint to the compiler that the variable might change outside of program logic, such as a memory-mapped hardware register that could change as part of an interrupt service routine. This prevents the compiler from assuming a cached value is always correct and would normally force a memory read to retrieve the value. This usage pre-dates threading by a couple decades or so. I've seen it used with variables manipulated by signals as well, but I'm not sure that usage was correct.
Variables guarded by mutexes are guaranteed to be correct when read or written by different threads. The threading API is required to ensure that such views of variables are consistent. This access is all part of your program logic and the volatile keyword is irrelevant here.
With the exception of the simplest spin lock algorithm, mutex code is quite involved: a good optimized mutex lock/unlock code contains the kind of code even excellent programmer struggle to understand. It uses special compare and set instructions, manages not only the unlocked/locked state but also the wait queue, optionally uses system calls to go into a wait state (for lock) or wake up other threads (for unlock).
There is no way the average compiler can decode and "understand" all that complex code (again, with the exception of the simple spin lock) no matter way, so even for a compiler not aware of what a mutex is, and how it relates to synchronization, there is no way in practice a compiler could optimize anything around such code.
That's if the code was "inline", or available for analyse for the purpose of cross module optimization, or if global optimization is available.
I presume that the compiler doesn't actually understand that
pthread_mutex_lock() is a special function, so are we just protected
by sequence points?
The compiler does not know what it does, so does not try to optimize around it.
How is it "special"? It's opaque and treated as such. It is not special among opaque functions.
There is no semantic difference with an arbitrary opaque function that can access any other object.
My concern is caching. Could the compiler place a copy of _protected
on the stack or in a register, and use that stale value in the
assignment?
Yes, in code that act on objects transparently and directly, by using the variable name or pointers in a way that the compiler can follow. Not in code that might use arbitrary pointers to indirectly use variables.
So yes between calls to opaque functions. Not across.
And also for variables which can only be used in the function, by name: for local variables that don't have either their address taken or a reference bound to them (such that the compiler cannot follow all further uses). These can indeed be "cached" across arbitrary calls include lock/unlock.
If not, what prevents that from happening? Are variations of this
pattern vulnerable?
Opacity of the functions. Non inlining. Assembly code. System calls. Code complexity. Everything that make compilers bail out and think "that's complicated stuff just make calls to it".
The default position of a compiler is always the "let's execute stupidly I don't understand what is being done anyway" not "I will optimize that/let's rewrite the algorithm I know better". Most code is not optimized in complex non local way.
Now let's assume the absolute worse (from out point of view which is that the compiler should give up, that is the absolute best from the point of view of an optimizing algorithm):
the function is "inline" (= available for inlining) (or global optimization kicks in, or all functions are morally "inline");
no memory barrier is needed (as in a mono-processor time sharing system, and in a multi-processor strongly ordered system) in that synchronization primitive (lock or unlock) so it contains no such thing;
there is no special instruction (like compare and set) used (for example for a spin lock, the unlock operation is a simple write);
there is no system call to pause or wake threads (not needed in a spin lock);
then we might have a problem as the compiler could optimize around the function call. This is fixed trivially by inserting a compiler barrier such as an empty asm statement with a "clobber" for other accessible variables. That means that compiler just assumes that anything that might be accessible to a called function is "clobbered".
or whether the protected variable needs to be volatile.
You can make it volatile for the usual reason you make things volatile: to be certain to be able to access the variable in the debugger, to prevent a floating point variable from having the wrong datatype at runtime, etc.
Making it volatile would actually not even fix the issue described above as volatile is essentially a memory operation in the abstract machine that has the semantics of an I/O operation and as such is only ordered with respect to
real I/O like iostream
system calls
other volatile operations
asm memory clobbers (but then no memory side effect is reordered around those)
calls to external functions (as they might do one the above)
Volatile is not ordered with respect to non volatile memory side effects. That makes volatile practically useless (useless for practical uses) for writing thread safe code in even the most specific case where volatile would a priori help, the case where no memory fence is ever needed: when programming threading primitives on a time sharing system on a single CPU. (That may be one of the least understood aspects of either C or C++.)
So while volatile does prevent "caching", volatile doesn't even prevent compiler reordering of lock/unlock operation unless all shared variables are volatile.
Locks/synchronisation primitives make sure the data is not cached in registers/cpu cache, that means data propagates to memory. If two threads are accessing/ modifying data with in locks, it is guaranteed that data is read from memory and written to memory. We don't need volatile in this use case.
But the case where you have code with double checks, compiler can optimise the code and remove redundant code, to prevent that we need volatile.
Example: see singleton pattern example
https://en.m.wikipedia.org/wiki/Singleton_pattern#Lazy_initialization
Why do some one write this kind of code?
Ans: There is a performance benefit of not accuiring lock.
PS: This is my first post on stack overflow.
Not if the object you're locking is volatile, eg: if the value it represents depends on something foreign to the program (hardware state).
volatile should NOT be used to denote any kind of behavior that is the result of executing the program.
If it's actually volatile what I personally would do is locking the value of the pointer/address, instead of the underlying object.
eg:
volatile int i = 0;
// ... Later in a thread
// ... Code that may not access anything without a lock
std::uintptr_t ptr_to_lock = &i;
some_lock(ptr_to_lock);
// use i
release_some_lock(ptr_to_lock);
Please note that it only works if ALL the code ever using the object in a thread locks the same address. So be mindful of that when using threads with some variable that is part of an API.

Why is volatile not considered useful in multithreaded C or C++ programming?

As demonstrated in this answer I recently posted, I seem to be confused about the utility (or lack thereof) of volatile in multi-threaded programming contexts.
My understanding is this: any time a variable may be changed outside the flow of control of a piece of code accessing it, that variable should be declared to be volatile. Signal handlers, I/O registers, and variables modified by another thread all constitute such situations.
So, if you have a global int foo, and foo is read by one thread and set atomically by another thread (probably using an appropriate machine instruction), the reading thread sees this situation in the same way it sees a variable tweaked by a signal handler or modified by an external hardware condition and thus foo should be declared volatile (or, for multithreaded situations, accessed with memory-fenced load, which is probably a better a solution).
How and where am I wrong?
The problem with volatile in a multithreaded context is that it doesn't provide all the guarantees we need. It does have a few properties we need, but not all of them, so we can't rely on volatile alone.
However, the primitives we'd have to use for the remaining properties also provide the ones that volatile does, so it is effectively unnecessary.
For thread-safe accesses to shared data, we need a guarantee that:
the read/write actually happens (that the compiler won't just store the value in a register instead and defer updating main memory until much later)
that no reordering takes place. Assume that we use a volatile variable as a flag to indicate whether or not some data is ready to be read. In our code, we simply set the flag after preparing the data, so all looks fine. But what if the instructions are reordered so the flag is set first?
volatile does guarantee the first point. It also guarantees that no reordering occurs between different volatile reads/writes. All volatile memory accesses will occur in the order in which they're specified. That is all we need for what volatile is intended for: manipulating I/O registers or memory-mapped hardware, but it doesn't help us in multithreaded code where the volatile object is often only used to synchronize access to non-volatile data. Those accesses can still be reordered relative to the volatile ones.
The solution to preventing reordering is to use a memory barrier, which indicates both to the compiler and the CPU that no memory access may be reordered across this point. Placing such barriers around our volatile variable access ensures that even non-volatile accesses won't be reordered across the volatile one, allowing us to write thread-safe code.
However, memory barriers also ensure that all pending reads/writes are executed when the barrier is reached, so it effectively gives us everything we need by itself, making volatile unnecessary. We can just remove the volatile qualifier entirely.
Since C++11, atomic variables (std::atomic<T>) give us all of the relevant guarantees.
You might also consider this from the Linux Kernel Documentation.
C programmers have often taken volatile to mean that the variable
could be changed outside of the current thread of execution; as a
result, they are sometimes tempted to use it in kernel code when
shared data structures are being used. In other words, they have been
known to treat volatile types as a sort of easy atomic variable, which
they are not. The use of volatile in kernel code is almost never
correct; this document describes why.
The key point to understand with regard to volatile is that its
purpose is to suppress optimization, which is almost never what one
really wants to do. In the kernel, one must protect shared data
structures against unwanted concurrent access, which is very much a
different task. The process of protecting against unwanted
concurrency will also avoid almost all optimization-related problems
in a more efficient way.
Like volatile, the kernel primitives which make concurrent access to
data safe (spinlocks, mutexes, memory barriers, etc.) are designed to
prevent unwanted optimization. If they are being used properly, there
will be no need to use volatile as well. If volatile is still
necessary, there is almost certainly a bug in the code somewhere. In
properly-written kernel code, volatile can only serve to slow things
down.
Consider a typical block of kernel code:
spin_lock(&the_lock);
do_something_on(&shared_data);
do_something_else_with(&shared_data);
spin_unlock(&the_lock);
If all the code follows the locking rules, the value of shared_data
cannot change unexpectedly while the_lock is held. Any other code
which might want to play with that data will be waiting on the lock.
The spinlock primitives act as memory barriers - they are explicitly
written to do so - meaning that data accesses will not be optimized
across them. So the compiler might think it knows what will be in
shared_data, but the spin_lock() call, since it acts as a memory
barrier, will force it to forget anything it knows. There will be no
optimization problems with accesses to that data.
If shared_data were declared volatile, the locking would still be
necessary. But the compiler would also be prevented from optimizing
access to shared_data within the critical section, when we know that
nobody else can be working with it. While the lock is held,
shared_data is not volatile. When dealing with shared data, proper
locking makes volatile unnecessary - and potentially harmful.
The volatile storage class was originally meant for memory-mapped I/O
registers. Within the kernel, register accesses, too, should be
protected by locks, but one also does not want the compiler
"optimizing" register accesses within a critical section. But, within
the kernel, I/O memory accesses are always done through accessor
functions; accessing I/O memory directly through pointers is frowned
upon and does not work on all architectures. Those accessors are
written to prevent unwanted optimization, so, once again, volatile is
unnecessary.
Another situation where one might be tempted to use volatile is when
the processor is busy-waiting on the value of a variable. The right
way to perform a busy wait is:
while (my_variable != what_i_want)
cpu_relax();
The cpu_relax() call can lower CPU power consumption or yield to a
hyperthreaded twin processor; it also happens to serve as a memory
barrier, so, once again, volatile is unnecessary. Of course,
busy-waiting is generally an anti-social act to begin with.
There are still a few rare situations where volatile makes sense in
the kernel:
The above-mentioned accessor functions might use volatile on
architectures where direct I/O memory access does work. Essentially,
each accessor call becomes a little critical section on its own and
ensures that the access happens as expected by the programmer.
Inline assembly code which changes memory, but which has no other
visible side effects, risks being deleted by GCC. Adding the volatile
keyword to asm statements will prevent this removal.
The jiffies variable is special in that it can have a different value
every time it is referenced, but it can be read without any special
locking. So jiffies can be volatile, but the addition of other
variables of this type is strongly frowned upon. Jiffies is considered
to be a "stupid legacy" issue (Linus's words) in this regard; fixing it
would be more trouble than it is worth.
Pointers to data structures in coherent memory which might be modified
by I/O devices can, sometimes, legitimately be volatile. A ring buffer
used by a network adapter, where that adapter changes pointers to
indicate which descriptors have been processed, is an example of this
type of situation.
For most code, none of the above justifications for volatile apply.
As a result, the use of volatile is likely to be seen as a bug and
will bring additional scrutiny to the code. Developers who are
tempted to use volatile should take a step back and think about what
they are truly trying to accomplish.
I don't think you're wrong -- volatile is necessary to guarantee that thread A will see the value change, if the value is changed by something other than thread A. As I understand it, volatile is basically a way to tell the compiler "don't cache this variable in a register, instead be sure to always read/write it from RAM memory on every access".
The confusion is because volatile isn't sufficient for implementing a number of things. In particular, modern systems use multiple levels of caching, modern multi-core CPUs do some fancy optimizations at run-time, and modern compilers do some fancy optimizations at compile time, and these all can result in various side effects showing up in a different order from the order you would expect if you just looked at the source code.
So volatile is fine, as long as you keep in mind that the 'observed' changes in the volatile variable may not occur at the exact time you think they will. Specifically, don't try to use volatile variables as a way to synchronize or order operations across threads, because it won't work reliably.
Personally, my main (only?) use for the volatile flag is as a "pleaseGoAwayNow" boolean. If I have a worker thread that loops continuously, I'll have it check the volatile boolean on each iteration of the loop, and exit if the boolean is ever true. The main thread can then safely clean up the worker thread by setting the boolean to true, and then calling pthread_join() to wait until the worker thread is gone.
volatile is useful (albeit insufficient) for implementing the basic construct of a spinlock mutex, but once you have that (or something superior), you don't need another volatile.
The typical way of multithreaded programming is not to protect every shared variable at the machine level, but rather to introduce guard variables which guide program flow. Instead of volatile bool my_shared_flag; you should have
pthread_mutex_t flag_guard_mutex; // contains something volatile
bool my_shared_flag;
Not only does this encapsulate the "hard part," it's fundamentally necessary: C does not include atomic operations necessary to implement a mutex; it only has volatile to make extra guarantees about ordinary operations.
Now you have something like this:
pthread_mutex_lock( &flag_guard_mutex );
my_local_state = my_shared_flag; // critical section
pthread_mutex_unlock( &flag_guard_mutex );
pthread_mutex_lock( &flag_guard_mutex ); // may alter my_shared_flag
my_shared_flag = ! my_shared_flag; // critical section
pthread_mutex_unlock( &flag_guard_mutex );
my_shared_flag does not need to be volatile, despite being uncacheable, because
Another thread has access to it.
Meaning a reference to it must have been taken sometime (with the & operator).
(Or a reference was taken to a containing structure)
pthread_mutex_lock is a library function.
Meaning the compiler can't tell if pthread_mutex_lock somehow acquires that reference.
Meaning the compiler must assume that pthread_mutex_lock modifes the shared flag!
So the variable must be reloaded from memory. volatile, while meaningful in this context, is extraneous.
Your understanding really is wrong.
The property, that the volatile variables have, is "reads from and writes to this variable are part of perceivable behaviour of the program". That means this program works (given appropriate hardware):
int volatile* reg=IO_MAPPED_REGISTER_ADDRESS;
*reg=1; // turn the fuel on
*reg=2; // ignition
*reg=3; // release
int x=*reg; // fire missiles
The problem is, this is not the property we want from thread-safe anything.
For example, a thread-safe counter would be just (linux-kernel-like code, don't know the c++0x equivalent):
atomic_t counter;
...
atomic_inc(&counter);
This is atomic, without a memory barrier. You should add them if necessary. Adding volatile would probably not help, because it wouldn't relate the access to the nearby code (eg. to appending of an element to the list the counter is counting). Certainly, you don't need to see the counter incremented outside your program, and optimisations are still desirable, eg.
atomic_inc(&counter);
atomic_inc(&counter);
can still be optimised to
atomically {
counter+=2;
}
if the optimizer is smart enough (it doesn't change the semantics of the code).
For your data to be consistent in a concurrent environment you need two conditions to apply:
1) Atomicity i.e if I read or write some data to memory then that data gets read/written in one pass and cannot be interrupted or contended due to e.g a context switch
2) Consistency i.e the order of read/write ops must be seen to be the same between multiple concurrent environments - be that threads, machines etc
volatile fits neither of the above - or more particularly, the c or c++ standard as to how volatile should behave includes neither of the above.
It's even worse in practice as some compilers ( such as the intel Itanium compiler ) do attempt to implement some element of concurrent access safe behaviour ( i.e by ensuring memory fences ) however there is no consistency across compiler implementations and moreover the standard does not require this of the implementation in the first place.
Marking a variable as volatile will just mean that you are forcing the value to be flushed to and from memory each time which in many cases just slows down your code as you've basically blown your cache performance.
c# and java AFAIK do redress this by making volatile adhere to 1) and 2) however the same cannot be said for c/c++ compilers so basically do with it as you see fit.
For some more in depth ( though not unbiased ) discussion on the subject read this
The comp.programming.threads FAQ has a classic explanation by Dave Butenhof:
Q56: Why don't I need to declare shared variables VOLATILE?
I'm concerned, however, about cases where both the compiler and the
threads library fulfill their respective specifications. A conforming
C compiler can globally allocate some shared (nonvolatile) variable to
a register that gets saved and restored as the CPU gets passed from
thread to thread. Each thread will have it's own private value for
this shared variable, which is not what we want from a shared
variable.
In some sense this is true, if the compiler knows enough about the
respective scopes of the variable and the pthread_cond_wait (or
pthread_mutex_lock) functions. In practice, most compilers will not try
to keep register copies of global data across a call to an external
function, because it's too hard to know whether the routine might
somehow have access to the address of the data.
So yes, it's true that a compiler that conforms strictly (but very
aggressively) to ANSI C might not work with multiple threads without
volatile. But someone had better fix it. Because any SYSTEM (that is,
pragmatically, a combination of kernel, libraries, and C compiler) that
does not provide the POSIX memory coherency guarantees does not CONFORM
to the POSIX standard. Period. The system CANNOT require you to use
volatile on shared variables for correct behavior, because POSIX
requires only that the POSIX synchronization functions are necessary.
So if your program breaks because you didn't use volatile, that's a BUG.
It may not be a bug in C, or a bug in the threads library, or a bug in
the kernel. But it's a SYSTEM bug, and one or more of those components
will have to work to fix it.
You don't want to use volatile, because, on any system where it makes
any difference, it will be vastly more expensive than a proper
nonvolatile variable. (ANSI C requires "sequence points" for volatile
variables at each expression, whereas POSIX requires them only at
synchronization operations -- a compute-intensive threaded application
will see substantially more memory activity using volatile, and, after
all, it's the memory activity that really slows you down.)
/---[ Dave Butenhof ]-----------------------[ butenhof#zko.dec.com ]---\
| Digital Equipment Corporation 110 Spit Brook Rd ZKO2-3/Q18 |
| 603.881.2218, FAX 603.881.0120 Nashua NH 03062-2698 |
-----------------[ Better Living Through Concurrency ]----------------/
Mr Butenhof covers much of the same ground in this usenet post:
The use of "volatile" is not sufficient to ensure proper memory
visibility or synchronization between threads. The use of a mutex is
sufficient, and, except by resorting to various non-portable machine
code alternatives, (or more subtle implications of the POSIX memory
rules that are much more difficult to apply generally, as explained in
my previous post), a mutex is NECESSARY.
Therefore, as Bryan explained, the use of volatile accomplishes
nothing but to prevent the compiler from making useful and desirable
optimizations, providing no help whatsoever in making code "thread
safe". You're welcome, of course, to declare anything you want as
"volatile" -- it's a legal ANSI C storage attribute, after all. Just
don't expect it to solve any thread synchronization problems for you.
All that's equally applicable to C++.
This is all that "volatile" is doing:
"Hey compiler, this variable could change AT ANY MOMENT (on any clock tick) even if there are NO LOCAL INSTRUCTIONS acting on it. Do NOT cache this value in a register."
That is IT. It tells the compiler that your value is, well, volatile- this value may be altered at any moment by external logic (another thread, another process, the Kernel, etc.). It exists more or less solely to suppress compiler optimizations that will silently cache a value in a register that it is inherently unsafe to EVER cache.
You may encounter articles like "Dr. Dobbs" that pitch volatile as some panacea for multi-threaded programming. His approach isn't totally devoid of merit, but it has the fundamental flaw of making an object's users responsible for its thread-safety, which tends to have the same issues as other violations of encapsulation.
According to my old C standard, “What constitutes an access to an object that has volatile- qualified type is implementation-defined”. So C compiler writers could have choosen to have "volatile" mean "thread safe access in a multi-process environment". But they didn't.
Instead, the operations required to make a critical section thread safe in a multi-core multi-process shared memory environment were added as new implementation-defined features. And, freed from the requirement that "volatile" would provide atomic access and access ordering in a multi-process environment, the compiler writers prioritised code-reduction over historical implemention-dependant "volatile" semantics.
This means that things like "volatile" semaphores around critical code sections, which do not work on new hardware with new compilers, might once have worked with old compilers on old hardware, and old examples are sometimes not wrong, just old.

c++ volatile multithreading variables

I'm writing a C++ app.
I have a class variable that more than one thread is writing to.
In C++, anything that can be modified without the compiler "realizing" that it's being changed needs to be marked volatile right? So if my code is multi threaded, and one thread may write to a var while another reads from it, do I need to mark the var volaltile?
[I don't have a race condition since I'm relying on writes to ints being atomic]
Thanks!
C++ hasn't yet any provision for multithreading. In practice, volatile doesn't do what you mean (it has been designed for memory adressed hardware and while the two issues are similar they are different enough that volatile doesn't do the right thing -- note that volatile has been used in other language for usages in mt contexts).
So if you want to write an object in one thread and read it in another, you'll have to use synchronization features your implementation needs when it needs them. For the one I know of, volatile play no role in that.
FYI, the next standard will take MT into account, and volatile will play no role in that. So that won't change. You'll just have standard defined conditions in which synchronization is needed and standard defined way of achieving them.
Yes, volatile is the absolute minimum you'll need. It ensures that the code generator won't generate code that stores the variable in a register and always performs reads and writes from/to memory. Most code generators can provide atomicity guarantees on variables that have the same size as the native CPU word, they'll ensure the memory address is aligned so that the variable cannot straddle a cache-line boundary.
That is however not a very strong contract on modern multi-core CPUs. Volatile does not promise that another thread that runs on another core can see updates to the variable. That requires a memory barrier, usually an instruction that flushes the CPU cache. If you don't provide a barrier, the thread will in effect keep running until such a flush occurs naturally. That will eventually happen, the thread scheduler is bound to provide one. That can take milliseconds.
Once you've taken care of details like this, you'll eventually have re-invented a condition variable (aka event) that isn't likely to be any faster than the one provided by a threading library. Or as well tested. Don't invent your own, threading is hard enough to get right, you don't need the FUD of not being sure that the very basic primitives are solid.
volatile instruct the compiler not to optimize upon "intuition" of a variable value or usage since it could be optimize "from the outside".
volatile won't provide any synchronization however and your assumption of writes to int being atomic are all but realistic!
I'd guess we'd need to see some usage to know if volatile is needed in your case (or check the behavior of your program) or more importantly if you see some sort of synchronization.
I think that volatile only really applies to reading, especially reading memory-mapped I/O registers.
It can be used to tell the compiler to not assume that once it has read from a memory location that the value won't change:
while (*p)
{
// ...
}
In the above code, if *p is not written to within the loop, the compiler might decide to move the read outside the loop, more like this:
cached_p=*p
while (cached_p)
{
// ...
}
If p is a pointer to a memory-mapped I/O port, you would want the first version where the port is checked before the loop is entered every time.
If p is a pointer to memory in a multi-threaded app, you're still not guaranteed that writes are atomic.
Without locking you may still get 'impossible' re-orderings done by the compiler or processor. And there's no guarantee that writes to ints are atomic.
It would be better to use proper locking.
Volatile will solve your problem, ie. it will guarantee consistency among all the caches of the system. However it will be inefficiency since it will update the variable in memory for each R or W access. You might concider using a memory barrier, only whenever it is needed, instead.
If you are working with or gcc/icc have look on sync built-ins : http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html
EDIT (mostly about pm100 comment):
I understand that my beliefs are not a reference so I found something to quote :)
The volatile keyword was devised to prevent compiler optimizations that might render code incorrect in the presence of certain asynchronous events. For example, if you declare a primitive variable as volatile, the compiler is not permitted to cache it in a register
From Dr Dobb's
More interesting :
Volatile fields are linearizable. Reading a volatile field is like acquiring a lock; the working memory is invalidated and the volatile field's current value is reread from memory. Writing a volatile field is like releasing a lock : the volatile field is immediately written back to memory.
(this is all about consistency, not about atomicity)
from The Art of multiprocessor programming, Maurice Herlihy & Nir Shavit
Lock contains memory synchronization code, if you don't lock, you must do something and using volatile keyword is probably the simplest thing you can do (even if it was designed for external devices with memory binded to the address space, it's not the point here)