I'm looking for a better way to this. I have a chunk of code that needs to handle several different objects that contain different types. The structure that I have looks like this:
class Base
{
// some generic methods
}
template <typename T> class TypedBase : public Base
{
// common code with template specialization
private:
std::map<int,T> mapContainingSomeDataOfTypeT;
}
template <> class TypedBase<std::string> : public Base
{
// common code with template specialization
public:
void set( std::string ); // functions not needed for other types
std::string get();
private:
std::map<int,std::string> mapContainingSomeDataOfTypeT;
// some data not needed for other types
}
Now I need to add some additional functionality that only applies to one of the derivative classes. Specifically the std::string derivation, but the type doesn't actually matter. The class is big enough that I would prefer not copy the whole thing simply to specialize a small part of it. I need to add a couple of functions (and accessor and modifier) and modify the body of several of the other functions. Is there a better way to accomplish this?
Impose another level of indirection in the template definitions:
class Base
{
// Generic, non-type-specific code
};
template <typename T> class TypedRealBase : public Base
{
// common code for template
};
template <typename T> class TypedBase : public TypedRealBase<T>
{
// Inherit all the template functionality from TypedRealBase
// nothing more needed here
};
template <> class TypedBase<std::string> : public TypedRealBase<T>
{
// Inherit all the template functionality from TypedRealBase
// string-specific stuff here
}
You don't have to specialize the whole class, only what you want. Works with GCC & MSVC:
#include <string>
#include <iostream>
class Base {};
template <typename T>
class TypedBase : public Base
{
public:
T get();
void set(T t);
};
// Non-specialized member function #1
template <typename T>
T TypedBase<T>::get()
{
return T();
}
// Non-specialized member function #2
template <typename T>
void TypedBase<T>::set(T t)
{
// Do whatever here
}
// Specialized member function
template <>
std::string TypedBase<std::string>::get()
{
return "Hello, world!";
}
int main(int argc, char** argv)
{
TypedBase<std::string> obj1;
TypedBase<double> obj2;
std::cout << obj1.get() << std::endl;
std::cout << obj2.get() << std::endl;
}
Related
I have some class like
enum Type {ONE, TWO};
template <enum Type T>
class A {
void foo() {}
};
I want to specify the function foo() according to the template argument T of the class. Is it possible to be done inside the class ? Or, how to do it outside the class?
Edit:
what if my class is
template <class U, enum Type T>
class A {
void foo() {}
};
This class cannot be simply specialized by giving two version of foo
I found a solution at What is wrong with partial template specialization?
which may turn out to make the code very long.
Is there any other solution to this, or should some other design be used ?
You can explicitly specialize members functions of class templates. You simply do:
template <>
void A<ONE>::foo()
{
//ONE stuff
}
Alternatively, you can use tag-dispatching. In this particular instance, they don't make much sense, but they might if your requirements are slightly different.
template <enum Type T>
class A
{
public:
void foo() {fooImpl(std::conditional_t<T==ONE, std::true_type, std::false_type>());}
void fooImpl(std::true_type)
{
cout << "ONE" << endl;
}
void fooImpl(std::false_type)
{
cout << "TWO" << endl;
}
};
With the above definition,
int main()
{
A<ONE>().foo();
A<TWO>().foo();
return 0;
}
prints
ONE
TWO
I have a templatized class like so :
template<typename T>
class A
{
protected:
std::vector<T> myVector;
public:
/*
constructors + a bunch of member functions here
*/
}
I would like to add just ONE member function that would work only for 1 given type of T. Is it possible to do that at all without having to specialize the class and reimplement all the other already existing methods?
Thanks
The simplest and cleanest solution is to use a static_assert() in the body of a method, rejecting other types than the selected one (in the below example only integers are accepted):
#include <type_traits>
#include <vector>
template <typename T>
class A
{
public:
void onlyForInts(T t)
{
static_assert(std::is_same<T, int>::value, "Works only with ints!");
}
protected:
std::vector<T> myVector;
};
int main()
{
A<int> i;
i.onlyForInts(1); // works !
A<float> f;
//f.onlyForInts(3.14f); // does not compile !
}
OK CASE DEMO
NOK CASE DEMO
This utilizes the fact that a compiler instantiates a member function of a class template only when one is actually used (not when the class template is instantiated itself). And with the above solution, when a compiler tries to do so, it fails due to the execution of a static_assert.
C++ Standard Reference:
§ 14.7.1 Implicit instantiation [temp.inst]
Unless a function template specialization has been explicitly instantiated or explicitly specialized, the function template specialization is implicitly instantiated when the specialization is referenced in a context that requires a function definition to exist. Unless a call is to a function template explicit specialization or to a member function of an explicitly specialized class template, a default argument for a function template or a member function of a class template is implicitly instantiated when the function is called in a context that requires the value of the default argument.
[ Example:
template<class T> struct Z {
void f();
void g();
};
void h() {
Z<int> a; // instantiation of class Z<int> required
Z<char>* p; // instantiation of class Z<char> not required
Z<double>* q; // instantiation of class Z<double> not required
a.f(); // instantiation of Z<int>::f() required
p->g(); // instantiation of class Z<char> required, and
// instantiation of Z<char>::g() required
}
Nothing in this example requires class Z<double>, Z<int>::g(), or Z<char>::f() to be implicitly
instantiated. — end example ]
Yes, it's possible in C++03 with CRTP (Curiously recurring template pattern):
#include <numeric>
#include <vector>
template<typename Derived, typename T>
struct Base
{
};
template<typename Derived>
struct Base<Derived, int>
{
int Sum() const
{
return std::accumulate(static_cast<Derived const*>(this)->myVector.begin(), static_cast<Derived const*>(this)->myVector.end(), int());
}
};
template<typename T>
class A : public Base<A<T>, T>
{
friend class Base<A<T>, T>;
protected:
std::vector<T> myVector;
public:
/*
constructors + a bunch of member functions here
*/
};
int main()
{
A<int> Foo;
Foo.Sum();
}
As an alternative solution, which works also in plain C++03 (as opposed to static_assert or enable_if solutions), you may add extra defaulted template argument which will let you have both
specialized and unspecialized version of class. Then you can inherit your specialized version from the unspecialized one.
Here is a sample snippet:
#include <vector>
template<typename T, bool unspecialized = false>
class A
{
protected:
std::vector<T> myVector;
public:
void setVec(const std::vector<T>& vec) { myVector = vec; }
/*
constructors + a bunch of member functions here
*/
};
template<>
class A<int, false> : public A<int, true>
{
public:
int onlyForInt() {
return 25;
}
};
int main() {
// your code goes here
std::vector<int> vec;
A<int> a;
a.setVec(vec);
a.onlyForInt();
return 0;
}
The drawbacks of this solution is the need to add constructor forwarders, if class
has non-trivial constructors.
The static_assert technique by #PiotrS. works nicely. But it's also nice to know that you can specialize a single member function without code duplication. Just give the generic onlyForInts() an empty no-op implementation, and specialize it out-of-class for int
#include <vector>
template <typename T>
class A
{
public:
void onlyForInts(T t)
{
// no-op
}
protected:
std::vector<T> myVector;
};
template<>
void A<int>::onlyForInts(int t)
{
// works
}
int main()
{
A<int> i;
i.onlyForInts(1); // works !
A<float> f;
f.onlyForInts(3.14f); // compiles, but does nothing !
}
Live Example.
This technique comes in handy if you want to have int specific behavior without completely disabling the generic behavior.
One approach not given yet in the answers is using the standard library std::enable_if to perform SFINAE on a base class that you inherit to the main class that defines appropriate member functions.
Example code:
template<typename T, class Enable = void>
class A_base;
template<typename T>
class A_base<T, typename std::enable_if<std::is_integral<T>::value>::type>{
public:
void only_for_ints(){/* integer-based function */}
};
template<typename T>
class A_base<T, typename std::enable_if<!std::is_integral<T>::value>::type>{
public:
// maybe specialize for non-int
};
template<typename T>
class A: public A_base<T>{
protected:
std::vector<T> my_vector;
};
This approach would be better than an empty function because you are being more strict about your API and better than a static_cast because it simply won't make it to the inside of the function (it won't exist) and will give you a nice error message at compile time (GCC shows "has no member named ‘only_for_ints’" on my machine).
The downside to this method would be compile time and code bloat, but I don't think it's too hefty.
(don't you dare say that C++11 requirement is a down-side, we're in 2014 god-damnit and the next standard has even be finalized already!)
Also, I noticed, you will probably have to define my_vector in the base class instead of the final because you probably want to handle that data within the member function.
A nice way to do that without duplicating a bunch of code is to create a base base class (good god) and inherit that class in the base class.
Example:
template<typename T>
class base_data{
protected:
std::vector<T> my_vector;
};
template<typename T>
class A_base<T, typename std::enable_if<std::is_integral<T>::value>::type>: public base_bata<T>{
public:
void only_for_ints(){/* phew, finally. fiddle around with my_vector! */}
};
// non-integer A-base
template<typename T>
class A: public A_base<T>{
protected:
// helper functions not available in base
};
That does leave a horrible looking multiple-inheritance scheme, but it is very workable and makes it easy to define members based on template parameters (for future proofing).
People often don't like multiple-inheritance or how complicated/messy SFINAE looks, but I couldn't live without it now that I know of it: the speed of static code with the polymorphism of dynamic code!
Not sure where I found this, but you can use = delete; as the function definition inside the class, thereby deleting the function for the general case, and then explicitly specialize outside the class:
template <typename T>
struct A
{
auto int_only(T) -> void = delete;
};
template <> auto A<int>::int_only(int) -> void {}
int main()
{
auto a_int = A<int>{};
auto a_dbl = A<double>{};
a_int.int_only(0);
// a_dbl.int_only(3.14); error: call to deleted member function
}
https://en.cppreference.com/w/cpp/language/function#Deleted_functions
There are 2 different specialization template forms in c++
One is:
#include <iostream>
using namespace std;
template<class T>
class mytest
{
public:
void method(T input){}
};
template<>
void mytest<int>::method(int input)
{
cout << "ok" << endl;
}
int main()
{
mytest<bool> mt;
mt.method(1);
system("pause");
return 0;
}
The other is:
#include <iostream>
using namespace std;
template<class T>
class mytest
{
public:
void method(T input){}
};
void mytest<int>::method(int input)
{
cout << "ok" << endl;
}
int main()
{
mytest<bool> mt;
mt.method(1);
system("pause");
return 0;
}
They can also be compiled in VS2013. I notice that the second implementation of specialization template situation is just lack of template<>
I want to know what the difference is between the 2 forms above.
Visual C++ is wrong.
The standard is very clear about this.
First,
Members of an explicitly specialized class template are defined in the
same manner as members of normal classes, and not using the template<>
syntax.
Meaning that, for explicit specialization of a class template, the member definition strictly do not require template<>.
Example:
template<class T>
struct A {
};
template<>
struct A<int> {
void f(int);
};
// template<> not used for a member of an
// explicitly specialized class template
void A<int>::f(int) { / ... / }
And,
A member or a member template of a class template may be explicitly
specialized for a given implicit instantiation of the class template,
even if the member or member template is defined in the class template
definition. An explicit specialization of a member or member template
is specified using the syntax for explicit specialization.
Meaning that, for a template that is not "explicit specialized", you can specialize its member, with the template<> (syntax for explicit specialization)
Example,
template<class T>
struct A {
void f(T);
};
// specialization
template<>
void A<int>::f(int);
The above examples are directly copied out from standard. To summarize, if the class is already explicitly specialized, do not use template<>, else if the class relies on implicit instantiation, use template<>.
Your first example compiles fine in Clang, and your second example fails to compile in Clang, you will get an error:
error: template specialization requires 'template<>'
template <class T> class mycontainer { ... };
template <> class mycontainer <char> { ... };
The first line is the generic template, and the second one is the specialization.
When we declare specializations for a template class, we must also define all its members, even those identical to the generic template class, because there is no "inheritance" of members from the generic template to the specialization.
http://www.cplusplus.com/doc/tutorial/templates/
In the CRTP pattern, we run into problems if we want to keep the implementation function in the derived class as protected. We must either declare the base class as a friend of the derived class or use something like this (I have not tried the method on the linked article). Is there some other (simple) way that allows keeping the implementation function in the derived class as protected?
Edit: Here is a simple code example:
template<class D>
class C {
public:
void base_foo()
{
static_cast<D*>(this)->foo();
}
};
class D: public C<D> {
protected: //ERROR!
void foo() {
}
};
int main() {
D d;
d.base_foo();
return 0;
}
The above code gives error: ‘void D::foo()’ is protected with g++ 4.5.1 but compiles if protected is replaced by public.
It's not a problem at all and is solved with one line in derived class:
friend class Base< Derived >;
#include <iostream>
template< typename PDerived >
class TBase
{
public:
void Foo( void )
{
static_cast< PDerived* > ( this )->Bar();
}
};
class TDerived : public TBase< TDerived >
{
friend class TBase< TDerived > ;
protected:
void Bar( void )
{
std::cout << "in Bar" << std::endl;
}
};
int main( void )
{
TDerived lD;
lD.Foo();
return ( 0 );
}
As lapk recommended, problem can be solved with simple friend class declaration:
class D: public C<D> {
friend class C<D>; // friend class declaration
protected:
void foo() {
}
};
However, that exposes all protected/private members of derived class and requires custom code for each derived class declaration.
The following solution is based on the linked article:
template<class D>
class C {
public:
void base_foo() { Accessor::base_foo(derived()); }
int base_bar() { return Accessor::base_bar(derived()); }
private:
D& derived() { return *(D*)this; }
// accessor functions for protected functions in derived class
struct Accessor : D
{
static void base_foo(D& derived) {
void (D::*fn)() = &Accessor::foo;
(derived.*fn)();
}
static int base_bar(D& derived) {
int (D::*fn)() = &Accessor::bar;
return (derived.*fn)();
}
};
};
class D : public C<D> {
protected: // Success!
void foo() {}
int bar() { return 42; }
};
int main(int argc, char *argv[])
{
D d;
d.base_foo();
int n = d.base_bar();
return 0;
}
PS: If you don't trust your compiler to optimize away the references, you can replace the derived() function with the following #define (resulted in 20% fewer lines of disassembly code using MSVC 2013):
int base_bar() { return Accessor::base_bar(_instance_ref); }
private:
#define _instance_ref *static_cast<D*>(this) //D& derived() { return *(D*)this; }
After some I came with a solution that works event for private members of templated derived classes. It does not solves the problem of not exposing all the members of the derived class to the base, since it uses a friend declaration on the whole class. On the other hand, for the simple case, this does not requires repeating the base name, nor it's template parameters and will always work.
First the simple case when the derived is non-template. The base takes an additional void template parameter just to show that everything still works in the case of extra template parameters of the base. The only needed one, as per the CRTP, is the typename Derived.
//Templated variadic base
template <typename Derived, typename...>
struct Interface
{
using CRTP = Interface; //Magic!
void f() { static_cast<Derived*>(this)->f(); }
};
//Simple usage of the base with extra types
//This can only be used when the derived is NON templated
class A : public Interface<A, void>
{
friend CRTP;
void f() {}
};
The only thing needed for this to work is the using CRTP = Interface; declaration in the base and the friend CRTP; declaration in the derived.
For the case when the derived is itself templated the situation is trickier. It took me some time to come to the solution, and I'm sure it's still not perfect.
Most of the magic happens inside these templates:
namespace CRTP
{
template <template <typename, typename...> class _Base, typename _Derived, typename... _BaseArgs>
struct Friend { using Base = _Base<_Derived, _BaseArgs...>; };
template <template <typename, typename...> class _Base, typename ..._BaseArgs>
struct Base
{
template <template <typename...> class _Derived, typename... _DerivedArgs>
struct Derived : public _Base<_Derived<_DerivedArgs...>, _BaseArgs...> {};
};
}
Their usage is more or less straightforward. Two use the above templates several steps are needed.
First, when inheriting in the derived class the inherited-from base class, and it's optional parameters, needs to be given. This is done using CRTP::Base<MyBase, BaseOptional....>, where MyBase is the name of the class used for CRTP, and the BaseOptional... are template parameters that are passed to the base class as-is, directly after passing our derived class that is supplied in the next step. When the base class does not accepts any additional template parameters they can be omitted completely: CRTP::Base<MyBase>.
The next step is to introduce the derived class (the whole point of CRTP). This is done by following the above CRTP::Base<...> with a ::Derived<ThisDerived, DerivedOptional...>. Where ThisDerived is the class this is defined in, and DerivedOptional... are all the template parameters declared in this class'es template declaration. The optional parameters much be specified exactly as they appear in the class template declaration.
The last step is declaring the base class as a friend. This is done by declaring friend typename CRTP::Friend<MyBase, ThisDerived, BaseOptional...>::Base somewhere in the class. The BaseOptional... template perameters must be repeated exactly as they appear in the CRTP::Base<MyBase, BaseOptional...> that is inherited from.
Follows is an example of using a templated derived when the base does not depends on the templated types (but it still can take other template parameters, void in this example).
//Templated derived with extra, non-dependant types, passed to the base
//The arguments passed to CRTP::Base::Derived<, ARGS> must exactly match
// the template
template <typename T, typename... Args>
class B : public CRTP::Base<Interface, void>::Derived<B, T, Args...>
{
friend typename CRTP::Friend<Interface, B, void>::Base;
void f() {}
};
Next is an example for when the base depends on template parameters of the derived. The only difference from the previous example is the template keyword. An experiment shows that if the keyword is specified for the previous, non dependant, case the code also complies cleanly.
//Templated derived with extra dependant types passed to the base
//Notice the addition of the "template" keyword
template <typename... Args>
class C : public CRTP::Base<Interface, Args...>::template Derived<C, Args...>
{
friend typename CRTP::Friend<Interface, C, Args...>::Base;
void f() {}
};
Please note that these templates do not work for non-templated derived classes. I will update this answer when I find the solution, so a unified syntax could be used for all cases. The closest thing that can be done is just using some fake template parameter. Note that it still must be named and passed to the CRTP machinery. For example:
template <typename Fake = void>
class D : public CRTP::Base<Interface>::Derived<D, Fake>
{
friend typename CRTP::Friend<Interface, D>::Base;
void f() {}
};
Note that A, B, C & D are declared as class. That is, all their members are private.
Follows is some code that uses the above classes.
template <typename... Args>
void invoke(Interface<Args...> & base)
{
base.f();
}
int main(int, char *[])
{
{
A derived;
//Direct invocation through cast to base (derived.f() is private)
static_cast<A::CRTP &>(derived).f();
//Invocation through template function accepting the base
invoke(derived);
}
{
B<int> derived;
static_cast<B<int>::CRTP &>(derived).f();
invoke(derived);
}
{
C<void> derived;
static_cast<C<void>::CRTP &>(derived).f();
invoke(derived);
}
{
D<void> derived;
static_cast<D<>::CRTP &>(derived).f();
invoke(derived);
}
return 0;
}
The invoke free-standing templated function works for any class derived from the base.
Also shown is how to cast the derived to the base without the need to actually specify the name of the base.
Surprisingly, this does not depend on any system headers.
The full code is available here: https://gist.github.com/equilibr/b27524468a0519aad37abc060cb8bc2b
Comments and corrections are welcome.
I want to do:
template <class Derived=BattleData>
class BattleData : public BattleCommandManager<Derived> {
};
But obviously BattleData isn't declared, so I tried a forward declaration:
template <class T> class BattleData;
template <class Derived=BattleData>
class BattleData : public BattleCommandManager<Derived> {
};
But then I get
error: "wrong number of template parameter on the second line, with
BattleData.
I really fail to see a solution to this!
Edit:
The reason I'm doing this is because I want to be able to use BattleData directly as a class, but I also want to be able to subclass it in which case I have to specify the derived class as the second template parameter.
For example let's say the corpus of my BattleData class is :
template <class Derived> class BattleData: public BaseClass<Derived> {
void foo1(){};
void foo2(){};
void foo3(){};
}
And I have a subclass
template class SubBattleData: public BattleData<SubBattleData> {
void foo1(){};
}
I would still want, in some cases, to be able to write code like this:
BattleData *x = new BattleData(...);
I can't even do the following without being able to use default arguments:
BattleData<BattleData> *x = new BattleData<BattleData>(...);
On one side, the reason functions aren't virtualized in the BattleData class is the benefit of having no virtual function. The other reason it doesn't work for me is that one of the parent CRTP classes invokes functions only if they're present in the derived type (using decltype(Derived::function) and enable-if like structures), and fall back to default behavior otherwise. Since there can be a great deal of those functions with a particular design pattern (like a CRTP that reads a protocol with many different cases and processes a case a particular way only if the derived class specify the corresponding function, otherwise just transfer it without processing).
So those functions can be present in SubBattleData and not BattleData, but both classes would work fine if instantiated, yet it's impossible to instantiate BattleData.
You should be able to accomplish your original design goals more naturally than the above. You can't use the actual Derived typename as the default clearly because what you're really trying to write is the following:
template <class Derived=BattleData <BattleData <BattleData <...>>>
class BattleData : public BattleCommandManager<Derived> {
};
You get the idea. Instead, just use a placeholder like void:
template <typename T = void>
class BattleData : public BattleCommandManager <
typename std::conditional <
std::is_same <T, void>::value,
BattleData <void>,
T
>::type>
{
};
Disclaimer: I did not compile the above.
Can't you use an Empty class for the second template parameter?
template <class T=DataContainer, class Derived=BattleData<T, Empty> >
class BattleData : public BattleCommandManager<Derived> {
};
I don't see what you are trying to do. What is wrong with
template <class T=DataContainer>
class BattleData : public BattleCommandManager< BattleData<T> > {
};
If you specify Derived to be something else than the actual derived class static polymorphism is not going to work and CRTP becomes somewhat useless anyway.
Edit: From what I have gathered this is what you want to in abstract terms:
template <class Derived>
struct Base {
void interface() {
static_cast<Derived*>(this)->implementation();
}
};
template<typename T>
struct Derived : Base<Derived> {
// dummy so we get you example
T t;
void implementation() {
std::cout << "derived" << std::endl;
}
};
struct Derived2 : public Derived<int> {
// hide implementation in Derived
// but still have Base::interface make the right call statically
void implementation() {
std::cout << "derived2" << std::endl;
}
};
There is no way I know of that you can make this work. Another
approach would be to use policy classes instead of CRTP. They are
compatible with inheritance and you can achieve similar behaviour.
template<typename Policy>
struct BattleCmdManager : public Policy {
using Policy::foo;
};
template<typename T>
struct BattleData {
// ...
protected:
void foo();
};
struct BattleData2 : public BattleData<int {
// ...
protected:
void foo();
};
Here is how I solved it:
template <class Derived> class BattleDataInh: public BaseClass<Derived> {
void foo1(){};
void foo2(){};
void foo3(){};
};
template class SubBattleData: public BattleDataInh<SubBattleData> {
void foo1(){};
};
class BattleData : public BattleDataInh<BattleData> {
};
And that way, I can add any other template parameters too. The solution was in front of my eyes the whole time but I didn't see it...