Find a prime number? - c++

To find whether N is a prime number we only need to look for all numbers less or equal to sqrt(N). Why is that? I am writing a C code so trying to understand a reason behind it.

N is prime if it is a positive integer which is divisible by exactly two positive integers, 1 and N. Since a number's divisors cannot be larger than that number, this gives rise to a simple primality test:
If an integer N, greater than 1, is not divisible by any integer in the range [2, N-1], then N is prime. Otherwise, N is not prime.
However, it would be nice to modify this test to make it faster. So let us investigate.
Note that the divisors of N occur in pairs. If N is divisible by a number M, then it is also divisible by N/M. For instance, 12 is divisble by 6, and so also by 2. Furthermore, if M >= sqrt(N), then N/M <= sqrt(N).
This means that if no numbers less than or equal to sqrt(N) divide N, no numbers greater than sqrt(N) divide N either (excepting 1 and N themselves), otherwise a contradiction would arise.
So we have a better test:
If an integer N, greater than 1, is not divisible by any integer in the range [2, sqrt(N)], then N is prime. Otherwise, N is not prime.
if you consider the reasoning above, you should see that a number which passes this test also passes the first test, and a number which fails this test also fails the first test. The tests are therefore equivalent.

A composite number (one that is not prime, or 1) has at least 1 pair of factors, and it is guaranteed that one of the numbers from each pair is less than or equal to the square root of the number (which is what you are asking about).
If you square the square root of the number, you get the number itself (sqrt(n) * sqrt(n) = n), so if you made one of the numbers bigger (than sqrt(n)) you would have to make the other one smaller. If you then only check the numbers 2 through sqrt(n) you will have checked all of the possible factors, since each of those factors will be paired with a number that is greater than sqrt(n) (except of course if the number is in fact a square of some other number, like 4, 9, 16, etc...but that doesn't matter since you know they aren't prime; they are easily factored by sqrt(n) itself).

The reason is simple, any number bigger than the sqrt, will cause the other multiplier, to be smaller than the sqrt. In such case, you should have already check it.

Let n=a×b be composite.
Assume a>sqrt(n) and b>sqrt(n).
a×b > sqrt(n)×sqrt(n)
a×b > n
But we know a×b=n, therefore a<sqrt(n) or b<sqrt(n).
Since you only need to know a or b to show n is composite, you only need to check the numbers up to sqrt(n) to find such a number.

Because in the worst case, number n can be expresed as a2.
If the number can be expressed diferently, that men that one of divisors will be less than a = sqrt(n), but the other can be greater.

Related

Count Divisors of Product from L to R

I have been solving a problem but then got stuck upon its subpart which is as follows:
Given an array of N elements whose ith element is A[i] and we are given Q queries of the type [L,R].
For each query output the number of divisors of product from Lth element to Rth element.
More formally, for each query lets define P as P = A[L] * A[L+1] * A[L+2] * ...* A[R].
Output the number of divisors of P modulo 998244353.
Constraints : 1<= N,Q <= 100000, 1<= A[i] <= 1000000.
My Approach,
For each index i, I have defined a map< int, int > which stores the prime divisor and its count in the product up to [1, i].
I am extracting the prime divisors of a number in O(LogN) using Sieve.
Then for each query (lets say {L,R} ), I am iterating through the map of Lth element and subtracting the count of each each key from the map of Rth element.
And then I am answering the query using the result:
if N = a^p * b^q * c^r ...(a,b,c being primes)
the number of divisors = (p+1)(q+1)(r+1)..
The time complexity of above solution is O(ND + QD), where D = number of distinct prime numbers upto 1000000. In worst case D = 78498.
Is there more efficient solution than this?
There is a more efficient solution for this. But it is slightly complicated. Here are steps to get to the necessary data structure.
Define a data type prime_factor that is a struct that contains a prime and a count.
Define a data type prime_factorization that is a vector of the first data type in ascending size of the primes. This can store the factorization of a number.
Write a function that takes a number, and turns its prime factorization into a prime_factorization
Write a function that takes 2 prime_factorization vectors and merges them into the factorization of the product of the two.
For each number in your array, compute its prime factorization. That gets stored in an array.
For each pair in your array, compute the prime factorization of the product. We will only need half of them. So elements 0, 1 go into one factorization, 2, 3 into the next and so on.
Repeat step 6 O(log(N)) times. So you have a vector of the factorization of each number, pairs, fours, eights, and so on. This results in approximately 2N precomputed factorization vectors. Most vectors are small though a few can be up to O(D) in size (where D is the number of distinct primes). Most of the merges should be very, very fast.
And now you have all of your data prepared. It can't take more than O(log(N)) times the space that storing the prime factors required by itself. (Less than that normally, though, because repeats among the small primes get gathered together in one prime_factor.)
Any range is the union of at most O(log(N)) of these computed vectors. For example the range 10..25 can be broken up into 10..11, 12..15, 16..24, 25. Arrange these intervals from smallest to largest and merge them. Then compute your answer from the result.
An exact analysis is complicated. But I assure you that query time is bounded above by O(Q * D * log(N)) and normally is much less than that.
UPDATE:
How do you find those intervals?
The answer is that you need to identify the number divisible by the highest power of 2 in the range, and then fill out both sides from there. And you figure that out by dividing by 2 (rounding down) until the range is of length 1. Then multiply the top boundary by 2 to find that mid-point.
For example if your range was 35-53 you would start by dividing by 2 to get 35-53, 17-26, 8-13, 4-6, 2-3. That was 2^4 we divided by. our power of 2 mid-point is 3*2^4 = 48. Our intervals above that midpoint are then 48-52, 53-53. Our intervals below are 40-47, 36-39, 35-35. And each of them is of length a power of 2 and starts at a number divisible by that power of 2.

Total number of common factors for two numbers LARGE VALUES upto 10^12

Inputs are two values 1 <= m , n <= 10^12
i don't know why my code is taking soo long for large values . time limit is 1 sec. please suggest me some critical modifications.
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
unsigned long long m,n,count=0;
cin >> m >> n;
for (long long int i = 1; i <= ((min(m,n))/2)+1; i++) //i divided min(m,n) by 2 to make it efficient.
{
if ((m%i == 0) && (n%i == 0))
{
count++;
}
}
if (((n%m == 0) || (m%n == 0)) && (n!=m))
{
cout << count << endl;
}
printf("%lld",count); //cout<<count;
system("pause");
return 0;
}
Firstly
((min(m, n)) / 2) + 1
Is being calculated every iteration. But it's loop-invariant. In general loop invariant code can be calculated before the loop, and stored. It will add up, but there are obviously much better ways to improve things. I'll describe one below:
you can make this much faster by calculating how many common prime factors there are, and by dividing out any "found" primes as you go. e.g. if only one number is divisible by 5, and the other is not, you can divide that one by 5 and you still get the same answer for common factors. Divide m and n by any "found" numbers as you go through it. (but keep checking whether either is divisible by e.g. 2 and keep dividing before you go on).
e.g. if the two numbers are both divisible by 2, 3 and 5, then the number of ways those three primes can combine is 8 (2^3), treating the presence of each prime as a true/false thing. So each prime that occurs once multiplies the number of combos by 2.
If any of the primes occurs more than once, then it changes the equation slightly. e.g. if the two numbers are divisible by 4, 3, 5:
4 = 2^2, so you could have no "2s", 1 "2" or 2 "2s" in the combined factor, so the total combinations 3 x 2 x 2 = 12. So any prime that occurs "x" times, multiplies the total number of combos by "x+1".
So basically, you don't need to check for every actual factor, you just need to search for how many common prime factors there are, then work out how many combos that adds up to. Luckily you only need to store one value, "total_combos" and multiply it by the "x+1" value for each found number as you go.
And a handy thing is that you can divide out all primes as they're found, and you're guaranteed that the largest remaining prime to be found is no larger than the square root of the smallest remaining number out of m and n.
So to run you through how this would work, start with a copy of m and n, loop up to the sqrt of the min of those two (m and n will be reduced as the loop cycles through).
make a value "total_combos", which starts at 1.
Check for 2's first, find out how many common powers of 2 there are, add one to that number. Divide out ALL the 2's from m and n, even if they're not matched, because reducing down the number cuts the total amount you actually need to search. You count the 2's, add one, then multiply "total_combos" by that. Keep dividing m or n by two as long as either has a factor of 2 remaining.
Then check for 3's, find out how many common powers of 3 there are, add one, the multiply "total_combos" by that. Divide out any and all factors of 3 when you're doing this.
then check for 4's. Since 4 isn't prime and we got rid of all 2's already, there will be zero 4's. Add one to that = 1, then we times "total_combos" by 1, so it stays the same. We didn't need to check whether 4 was prime or not, the divisions we already did ensured it's ignored. Same for any power of 2.
then check for 5's. same deal as 2's and 3's. And so on. All the prime bases get divided out as you go, so whenever a value actually matches you can be sure it's a new prime.
stop the loop when it exceeds sqrt(max(m,n)) (EDITED: min is probably wrong there). But m and n here are the values that have had all the lower primes divided out, so it's much faster.
I hope this approach is helpful.
There is a better way to solve this problem.
All you have to do is take the GCD of two numbers. Now any number won't divide m & n if they are greater than their GCD. So all you to do is that run a loop till the i<=Math.sqrt(GCD(m,n)) and check if the m%i==0 and n%i==0 only. It will save a lot of nanosecs.

Most equivalent factors of a number

Given a number 'n', which is a power-of-2, how can I efficiently find the 2 factors which are most equivalent to eachother? In other words, if I have a linear array and want to map it to 2D, how can I find the 2D dimensions that are the most equal (image dimensions most close to a square)?
Gotta be some kind of bitwise operation to make this fast, rather than looping over factors.
n is representable as 2^k (since you say it's a power of 2). If k is even, then n == 2^(k/2) * 2^(k/2) (e.g. 16==4*4). If k is odd, then the closest you can get is n == 2^((k-1)/2) * 2^((k+1)/2) (e.g. 8==2*4)

Find {E1,..En} (E1+E2+..En=N, N is given) with the following property that E1* E2*..En is Maximum

Given the number N, write a program that computes the numbers E1, E2, ...En with the following properties:
1) N = E1 + E2 + ... + En;
2) E1 * E2 * ... En is maximum.
3) E1..En, are integers. No negative values :)
How would you do that ? I have a solution based on divide et impera but i want to check if is optimal.
Example: N=10
5,5 S=10,P=25
3,2,3,2 S=10,P=36
No need for an algorithm, mathematic intuition can do it on its own:
Step 1: prove that a result set with numbers higher than 3 is at most as good as a result set with only 3's and 2's
Given any number x in your result set, one might consider whether it would be better to divide it into two numbers.
The sum should still be x.
When x is even, The maximum for t (x - t) is reached when t = x/2 , and except for the special case x = 2, then it is greater than x, and for the special case x = 4, equal to x (see note 1).
When x is odd, The maximum for t (x - t) is reached when t = (x ± 1)/2.
What does this show? Only that you should only have 3's and 2's in your final set, because otherwise it is suboptimal (or equivalent to an optimal set).
Step 2: you should have as many 3's as possible
Now, as 3² > 2³, you should have as many 3's as possible as long as the remainder is not 1.
Conclusion: for every N >= 3:
If N = 0 mod 3, then the result set is only 3's
If N = 1 mod 3, then the result set has one pair of 2's (or a 4) and the rest is 3's
If N = 2 mod 3, then the result set has one 2 and the rest is 3's
Please correct this post. The times when I was writing well-structured mathematical proofs is far away...
Note 1: (2,4) is the only pair of distinct integers such that x^y = y^x. You can prove that with:
x^y = y^x
y ln(x) = x ln(y)
ln(x)/x = ln(y) / y
and the function ln(t)/t is strictly decreasing after its global maximum, reached between 2 and 3, so if you want two distinct integers such that ln(x)/x = ln(y)/y, one of them must be lower or equal to 2. From that you can infer that only (2,4) works
This is not a complete solution, but might help.
First off note that if you fix n, and two of the terms E_i and E_j differ by more than one (for example 3 and 8), then you can do better by "equalizing" them as much as possible, i.e., if the number p = E_i + E_j is even, you do better both terms by p/2. If p is odd, you do better by replacing them with p/2 and p/2+1 (where / is integer division).
That said, then if you knew what the optimal number of terms, n, was, you'd be done: let all E_i's equal N/n and N/n+1 (again integer division), so that their sum is still N (this is now a straightforward problem).
So the question now is what is the optimal n. Suppose for the moment that you are allowed to use real numbers. Then the solution would be N/n for each term and you could write the product as (N/n)^n. If you differentiate this with respect to n and find its root you find that n should be equal to N/e (where e is the Neper number, also known as Euler's number, e = 2.71828....). Therefore, I'd look for a solution where either n = floor(N/e) or n = floor(N/e)+1, and then choose all the E_i's equal to either N/n or N/n+1, as above.
Hope that helps.
The Online Encycolpedia of Integer Sequences gives a recurrence relation for the solution to this problem.
I'll leave it up to someone else to compare complexities. Not sure I can figure out the complexity of OP's method.

while (i<=sqrt(static_cast<double>(n))

In the "C++ Without Fear: A Beginner's Guide That Makes You Feel Smart" book, in Chapter (2): Decisions, Decisions, you can see this lin of code as part of the prime number program:
while (i<=sqrt(static_cast<double>(n))
Provided that "i" was initialized to "2", and "n" is the user's input.
Why are we comparing to the "sqrt" of "n" and not to "n" itself?
Thanks.
Because you won't get any factors for non-primes which are > sqrt(n) (you would have already found the other, smaller factor).
It's a really bad test though, it would be much better to write it as:
while (i*i <= n)
Because if a number has factors other than itself and 1, then at least one of those factors will be less than the number's sqrt.
while (i<=sqrt(static_cast<double>(n))
Is equivalent to
while(n >= i*i)
Why the author choose the first solution may depend on other parts of the code.
The code goes like this:
i = 2;
while (i <= sqrt(static_cast<double>(n)) {
if (n % i == 0) is_prime = false;
i++;
}
So the loop is checking if n is divisible by i without remainder. Obviously, only has to check this up to (and including) the square root of n (because if n / p = q then also n / q = p).
Algorithmically it is correct to check possible factors up to the square root of your target.
If N is a number that may or may not be prime, if there are no factors (not including 1) up to sqrt(N) then N must be prime. sqrt(N) itself may well be its only prime factor (eg 9 which is 3*3).
If we are going to test to see if 17 is prime, we know that sqrt(17) is just above 4. 2, 3 and 4 do not divide into 17 so it must be prime as 5 is greater.
This must be the case because 17/5 will be less than 5 and would have to be a factor too, but we know there are no factors less than 5.
Programmatically of course the code is not optimal, as you would not use doubles and square-roots but something like (i*i <= N)