Testing for required behaviour vs. TDD - unit-testing

In the article Test for Required Behavior, not Incidental Behavior, Kevlin Henney advises us that:
"[...] a common pitfall in testing is to hardwire tests to the specifics of an implementation, where those specifics are incidental and have no bearing on the desired functionality."
However, when using TDD, I often end up writing tests for incidental behaviour. What do I do with these tests? Throwing them away seems wrong, but the advice in the article is that these tests can reduce agility.
What about separating them into a separate test suite? That sounds like a start, but seems impractical intuitively. Does anyone do this?

In my experience implementation-dependent tests are brittle and will fail massively at the very first refactoring. What I try to do is focus on deriving a proper interface for a class while writing the tests, effectively avoiding such implementation details in the interface. This not only solves the brittle tests, but it also promotes cleaner design.
This still allows for extra tests that check for the risky parts of my selected implementation, but only as extra protection to a good coverage of the "normal" interface of my class.
For me the big paradigma shift came when I started writing tests before even thinking about the implementation. My initial surprise was that it became much easier to generate "extreme" test cases. Then I recognized the improved interface in turn helped shape the implementation behind it. The result is that my code nowadays doesn't do much more than the interface exposes, effectively reducing the need for most "implementation" tests.
During refactoring of the internals of a class, all tests will hold. Only in cases where the exposed interface changes, the test set may need to be extended or modified.

The problem you describe is very real and very easy to encounter when TDD'ing. In general you can say that it isn't testing incidental behavior itself which is a problem, but rather if tons of tests depend on that incidental behavior.
The DRY principle applies to test code as well as to production code. That can often be a good guideline when writing test code. The goal should be that all the 'incidental' behavior you specify along the way is isolated so that only a few tests out of the entire test suite use them. In that way, if you need to refactor that behavior, you only need to modify a few tests instead of a large fraction of the entire test suite.
This is best achieved by copious use of interfaces or abstract classes as collaborators, because this means that you get low class coupling.
Here's an example of what I mean. Assume that you have some kind of MVC implementation where a Controller should return a View. Assume that we have a method like this on a BookController:
public View DisplayBookDetails(int bookId)
The implementation should use an injected IBookRepository to get the book from the database and then convert that to a View of that book. You could write a lot of tests to cover all aspects of the DisplayBookDetails method, but you could also do something else:
Define an additional IBookMapper interface and inject that into the BookController in addition to the IBookRepository. The implementation of the method could then be something like this:
public View DisplayBookDetails(int bookId)
{
return this.mapper.Map(this.repository.GetBook(bookId);
}
Obviously this is a too simplistic example, but the point is that now you can write one set of tests for your real IBookMapper implementation, which means that when you test the DisplayBookDetails method, you can just use a Stub (best generated by a dynamic mock framework) to implement the mapping, instead of trying to define a brittle and complex relationship between a Book Domain object and how it is mapped.
The use of an IBookMaper is definitely an incidental implementation detail, but if you use a SUT Factory or better yet an auto-mocking container, the definition of that incidental behavior is isolated which means that you if later on you decide to refactor the implementation, you can do that by only changing the test code in a few places.

"What about separating them into a separate test suite?"
What would you do with that separate suite?
Here's the typical use case.
You wrote some tests which test implementation details they shouldn't have tested.
You factor those tests out of the main suite into a separate suite.
Someone changes the implementation.
Your implementation suite now fails (as it should).
What now?
Fix the implementation tests? I think not. The point was to not test an implementation because it leads to way to much maintenance work.
Have tests that can fail, but the overall unittest run is still considered good? If the tests fail, but the failure doesn't matter, what does that even mean? [Read this question for an example: Non-critical unittest failures An ignored or irrelevant test is just costly.
You have to discard them.
Save yourself some time and aggravation by discarding them now, not when they fail.

I you really do TDD the problem is not so big as it may seem at once because you are writing tests before code. You should not even think about any possible implementation before writing test.
Such problems of testing incidental behavior is much more common when you write tests after implementation code. Then the easy way is just checking that the function output is OK and does what you want, then writing test using that output. Really that's cheating, not TDD, and the cost of cheating is tests that will break if implementation change.
The good thing is that such tests will break yet more easily than good tests (good test meaning here tests depending only of the wanted feature, not implementation dependent). Having tests so generic they never break is quite worse.
Where I work what we do is simply fix such tests when we stumble upon them. How we fix them depends on the kind of incidental test performed.
the most common such test is probably the case where testing results occurs in some definite order overlooking this order is really not guaranteed. The easy fix is simple enough: sort both result and expected result. For more complex structures use some comparator that ignore that kind of differences.
every so often we test innermost function, while it's some outer most function that perform the feature. That's bad because refactoring away the innermost function becomes difficult. The solution is to write another test covering the same feature range at outermost function level, then remove the old test, and only then we can refactor the code.
when such test break and we see an easy way to make them implementation independant we do it. Yet, if it's not easy we may choose to fix them to still be implementation dependant but depending on the new implementation. Tests will break again at the next implementation change, but it's not necessarily a big deal. If it's a big deal then definitely throw away that test and find another one to cover that feature, or change the code to make it easier to test.
another bad case is when we have written tests using some Mocked object (used as stub) and then the mocked object behavior change (API Change). This one is bad because it does not break code when it should because changing the mocked object behavior won't change the Mock mimicking it. The fix here is to use the real object instead of the mock if possible, or fix the Mock for new behavior. In that case both the Mock behavior and the real object behavior are both incidental, but we believe tests that does not fail when they should are a bigger problem than tests breaking when they shouldn't. (Admitedly such cases can also be taken care of at integration tests level).

Related

Black Box Unit Testing

In my last project, we had Unit Testing with almost 100% cc, and as a result we almost didn’t have any bugs.
However, since Unit Testing must be White Box (you have to mock inner functions to get the result you want, so your tests need to know about the inner structure of your code) any time we changed the implementation of a function, we had to change the tests as well.
Note that we didn't change the logic of the functions, just the implementation.
It was very time-consuming and it felt as if we are working the wrong way.
Since we used all proper OOP guidelines (specifically Encapsulation), every time we changed the implementation we didn't have to change the rest of our code, but had to change the unit tests.
It felt as if we are serving the tests, instead of them serving us.
To prevent this, some of us argued that unit tests should be Black Box Testing.
That would be possible if we create one big mock of our entire Domain and create a stub for every function in every class in one place, and use it in every unit test.
Of course that if a specific test needs specific inner function to be called (Like making sure we write to the DB), we can override our stub.
So, every time we change the implementation of a function (like adding or replacing a call to a help function) we will only need to change our main big mock. Even if we do need to change some unit tests, it will still be much less than before.
Others argue that unit tests must be White Box, since not only do you want to make sure your app writes to the DB in a specific place, you want to make sure your app does not write to the DB anywhere else unless you specifically expect it to. While this is a valid point, I don't think it worth the time of writing White Box tests instead of Black Box tests.
So in conclusion, two questions:
What do you think about the concept of Black Box Unit Testing?
What do you think about the way we want to implement that concept? Do you have better ideas?
You need different types of tests.
Unit-tests which should be white-box testing, as you did
Integration tests (or system tests) which test the ability to use the actual implementations of your system and its communication with external layers (external systems, database, etc.) which should be black-box styled, but each one for a specific feature (CRUD tests for example)
Acceptance tests which should be completely black-box and are driven by functional requirements (as your users would phrase them). End-to-end as much as possible, and not knowing the internal of your chosen implementations. The textbook definition of black-box tests.
And remember code coverage is meaningless in most of the cases. You need a high lines coverage (or methods coverage, whatever your counting method is), but that's usually not sufficient. The concept you need to think about is functional coverage: making sure all your requirements and logical paths are covered.
and as a result we almost didn’t have any bugs
If you were really able to achieve this, then I don't think you should change anything.
Black box testing might sound appealing on paper, but truth is you almost always need to know parts of inner workings of a tested class. The provide input, verify output in reality works only for simple cases. Most of the times your tests need to have at least some knowledge of tested method - how it interacts with external collaborators, what methods it calls, in what order and so forth.
Whole idea behind mocking and SOLID design is to avoid situation where dependency implementation change causes other class test changes/failures. On contrary, if you change implementation details of tested method, so should change implementation details of it tests. That's nothing too uncommon.
Overall, if you were really able to achieve almost no bugs, then I would stick to that approach.
tl;dr version:
Black Box unit testing is exactly how unit testing should be done.
Black Box unit testing is exactly how unit testing should be done. Proper TDD practice does exactly this.
Full version.
There is absolutely no need in testing private methods of the objects. It'll have no impact on code coverage, also.
When you TDD a class, you write tests that check the behavior of that class. Behavior is expressed through the public methods of that class. You should never bother with how that methods are really implemented. Google people described that a lot better than I will ever be able to: http://googletesting.blogspot.ru/2013/08/testing-on-toilet-test-behavior-not.html
If you do the usual mistake and statically depend on other entity classes or worse, on classes from the different layer of application, it's inevitable that you will find yourself in a situation when you need to check a lot of things in your test and prepare a lot of stuff for it. For solving this the Dependency Injection principle and the Law of Demeter exist.
I think you should continue writing unit tests - just make them less fragile.
Unit tests should be low level but should test the result and not how things done. When implementation change cause a lot of test change it means that instead of testing requirements you're actually testing implementation.
There are several rules of the thumb - such as "don't test private methods" and use mock objects.
Mocking/simulating the entire domain usually result in the opposite of what you're trying to accomplish - when the code behavior change you need to update the tests to make sure that your "simulated objects" behaves the same - it becomes really hard really fast as the complexity of the project increase.
I suggest that you continue writing unit tests - just learn how to make them more robust and less fragile.
"as a result we almost didn’t have any bugs" -- so keep it that way.
Sole cause of frustration is necessity to maintain unit tests, which actually is not such a bad thing (alternative is much worse). Just make them more maintainable. "The art of Unit Testing" by Roy Osherove gave me a good start in this way.
So
1) Not an option. (The idea itself contradicts principles of TDD, for instance)
2) You'll have much more maintenance troubles with such approach. Unit testing philosophy is to chop out SUT from other system and test it using stubs as input and mocks as output (signals?) simulating real life situations (or mb I just dont catch the "one big mock of our entire Domain" idea).
For detailed information about black, white and grey box and decision tables refer to the following article, which explains everything.
Testing Web-based applications: The state of the art and future trends (PDF)

Unit Testing : what to test / what not to test?

Since a few days ago I've started to feel interested in Unit Testing and TDD in C# and VS2010. I've read blog posts, watched youtube tutorials, and plenty more stuff that explains why TDD and Unit Testing are so good for your code, and how to do it.
But the biggest problem I find is, that I don't know what to check in my tests and what not to check.
I understand that I should check all the logical operations, problems with references and dependencies, but for example, should I create an unit test for a string formatting that's supossed to be user-input? Or is it just wasting my time while I just can check it in the actual code?
Is there any guide to clarify this problem?
In TDD every line of code must be justified by a failing test-case written before the code.
This means that you cannot develop any code without a test-case. If you have a line of code (condition, branch, assignment, expression, constant, etc.) that can be modified or deleted without causing any test to fail, it means this line of code is useless and should be deleted (or you have a missing test to support its existence).
That is a bit extreme, but this is how TDD works. That being said if you have a piece of code and you are wondering whether it should be tested or not, you are not doing TDD correctly. But if you have a string formatting routine or variable incrementation or whatever small piece of code out there, there must be a test case supporting it.
UPDATE (use-case suggested by Ed.):
Like for example, adding an object to a list and creating a test to see if it is really inside or there is a duplicate when the list shouldn't allow them.
Here is a counterexample, you would be surprised how hard it is to spot copy-paste errors and how common they are:
private Set<String> inclusions = new HashSet<String>();
private Set<String> exclusions = new HashSet<String>();
public void include(String item) {
inclusions.add(item);
}
public void exclude(String item) {
inclusions.add(item);
}
On the other hand testing include() and exclude() methods alone is an overkill because they do not represent any use-cases by themselves. However, they are probably part of some business use-case, you should test instead.
Obviously you shouldn't test whether x in x = 7 is really 7 after assignment. Also testing generated getters/setters is an overkill. But it is the easiest code that often breaks. All too often due to copy&paste errors or typos (especially in dynamic languages).
See also:
Mutation testing
Your first few TDD projects are going to probably result in worse design/redesign and take longer to complete as you are learning (at least in my experience). This is why you shouldn't jump into using TDD on a large critical project.
My advice is to use "pure" TDD (acceptance/unit test everything test-first) on a few small projects (100-10,000 LOC). Either do the side projects on your own or if you don't code in your free time, use TDD on small internal utility programs for your job.
After you do "pure" TDD on about 6-12 projects, you will start to understand how TDD affects design and learn how to design for testability. Once you know how to design for testability, you will need to TDD less and maximize the ROI of unit, regression, acceptance, etc. tests rather than test everything up front.
For me, TDD is more of teaching method for good code design than a practical methodology. However, I still TDD logic code and unit test instead of debug.
There is no simple answer to this question. There is the law of diminishing returns in action, so achieving perfect coverage is seldom worth it. Knowing what to test is a thing of experience, not rules. It’s best to consciously evaluate the process as you go. Did something break? Was it feasible to test? If not, is it possible to rewrite the code to make it more testable? Is it worth it to always test for such cases in the future?
If you split your code into models, views and controllers, you’ll find that most of the critical code is in the models, and those should be fairly testable. (That’s one of the main points of MVC.) If a piece of code is critical, I test it, even if it means that I would have to rewrite it to make it more testable. If a piece of code is easy to get wrong or get broken by future updates, it gets a test. I seldom test controllers and views, as it’s not proving worth the trouble for me.
The way I see it all of your code falls into one of three buckets:
Code that is easy to test: This includes your own deterministic public methods.
Code that is difficult to test: This includes GUI, non-deterministic methods, private methods, and methods with complex setup.
Code that you don't want to test: This includes 3rd party code, and code that is difficult to test and not worth the effort.
Of the three, you should focus on testing the easy code. The difficult to test code should be refactored so that into two parts: code that you don't want to test and easy code. And of course, you should test the refactored easy code.
I think you should only unit test entry points to behavior of the system. This include public methods, public accessors and public fields, but not constants (constant fields, enums, methods, etc.). It also includes any code which directly deals with IO, I explain why further below.
My reasoning is as follows:
Everything that's public is basically an entry point to a behavior of the system. A unit test should therefore be written that guarantees that the expected behavior of that entry point works as required. You shouldn't test all possible ways of calling the entry point, only the ones that you explicitly require. Your unit tests are therefore also the specs of what behavior your system supports and your documentation of how to use it.
Things that are not public can basically be deleted/re-factored at will with no impact to the behavior of the system. If you were to test those, you'd create a hard dependency from your unit test to that code, which would prevent you from doing refactoring on it. That's why you should not test anything else but public methods, fields and accessors.
Constants by design are not behavior, but axioms. A unit test that verifies a constant is itself a constant, so it would only be duplicated code and useless effort to write a test for constants.
So to answer your specific example:
should I create an unit test for a string formatting that's supossed
to be user-input?
Yes, absolutely. All methods which receive or send external input/output (which can be summed up as receiving IO), should be unit tested. This is probably the only case where I'd say non-public things that receive IO should also be unit tested. That's because I consider IO to be a public entry. Anything that's an entry point to an external actor I consider public.
So unit test public methods, public fields, public accessors, even when those are static constructs and also unit test anything which receives or sends data from an external actor, be it a user, a database, a protocol, etc.
NOTE: You can write temporary unit tests on non public things as a way for you to help make sure your implementation works. This is more of a way to help you figure out how to implement it properly, and to make sure your implementation works as you intend. After you've tested that it works though, you should delete the unit test or disable it from your test suite.
Kent Beck, in Extreme Programming Explained, said you only need to test the things that need to work in production.
That's a brusque way of encapsulating both test-driven development, where every change in production code is supported by a test that fails when the change is not present; and You Ain't Gonna Need It, which says there's no value in creating general-purpose classes for applications that only deal with a couple of specific cases.
I think you have to change your point of view.
In a pure form TDD requires the red-green-refactor workflow:
write test (it must fail) RED
write code to satisfy test GREEN
refactor your code
So the question "What I have to test?" has a response like: "You have to write a test that correspond to a feature or a particular requirements".
In this way you get must code coverage and also a better code design (remember that TDD stands also for Test Driven "Design").
Generally speaking you have to test ALL public method/interfaces.
should I create an unit test for a string formatting that's supossed
to be user-input? Or is it just wasting my time while I just can check
it in the actual code?
Not sure I understand what you mean, but the tests you write in TDD are supposed to test your production code. They aren't tests that check user input.
To put it another way, there can be TDD unit tests that test the user input validation code, but there can't be TDD unit tests that validate the user input itself.

Does isolation frameworks (Moq, RhinoMock, etc) lead to test overspecification?

In Osherove's great book "The Art of Unit Testing" one of the test anti-patterns is over-specification which is basically the same as testing the internal state of the object instead of some expected output. To my experience, using Isolation frameworks can cause the same unwanted side effects as testing internal behavior because one tends to only implement the behavior necessary to make your stub interact with the object under test. Now if your implementation changes later on (but the contract remains the same), your test will suddenly break because you are expecting some data from the stub which was not implemented.
So what do you think is the best approach to counter this?
1) Implement your stubs/mocks fully, this has the negative side-effect of potentially making your test less readable and also specifying more than necessary to make your test pass.
2) Favor manual, fully implemented fakes.
3) Implement your stubs/fakes so that they make your test just pass, and then deal with the brittleness that this might introduce.
I do not think you should favor manual testing - unless you prefer to test instead of code.
Instead you have another option - if you test the functionality and not the implementation, try to avoid testing private methods (that can be refactored) and in general write less-fragile tests you'll see that using a mocking/isolation framework does not require you to over specify the system nor does it cause your tests to become more fragile.
In a nutshell - writing fragile tests can be done with or without fakes/mocks and vise-versa.
I tend to use mocks instead of stubbed/fake objects. I find them a lot less trouble and they are way better at keeping test code under control because it's not cluttered with all sorts of half baked implementations. They also help to clarify what is being tested.
Another advantage is that I only have to address where the class under test needs something specific from the mock. So I don't have to code where it's not important. As for verification, again I only have to very the calls from the class under test to the mock that I care about and consider important aspects of the test.
I think, the problem is always the same, although it comes in different flavours: If you have tests that somehow cover the internals of a class, then you will break the tests that cover this internal code.
IMHO there are two ways to deal with that:
Your tests only cover the public contract of a class - a test strategy which is widely adopted for that exact reason: You don't have to change your tests as long as the public contract remains constant. Unfortunately, this is not, what you will have when doing Test-driven development.
If your tests come from a TDD process, then they will regularly cover non-public code. This means that they will break if you change the code. The only way to keep things in sync here is to 'fix' the tests together with the code. This means more maintenance during development. There's no recipe to easily deal with that (other than throw away the test, of course...).
My personal 'way out' is think in terms of 'code elements' rather than just code. A code element consists of three parts: Documentation, test, code. So if you change one part of the element, you have to also adjust the other two - otherwise you leave a broken code element behind.

TDD - When introducing a class when refactoring - should that class be unit tested?

Presume you have a class which passes all its current unit tests.
If you were to add or pull out some methods/introduce a new class and then use composition to incorporate the same functionality would the new class require testing?
I'm torn between whether or not you should so any advice would be great.
Edit:
Suppose I should have added I use DI (Dependency Injection) therefore should I inject the new class as well?
Not in the context of TDD, no, IMHO. The existing tests justify everything about the existence of the class. If you need to add behavior to the class, that would be the time to introduce a test.
That being said, it may make your code and tests clearer to move the tests into a class that relates to the new class you made. That depends very much on the specific case.
EDIT: After your edit, I would say that that makes a good case for moving some existing tests (or a portion of the existing tests). If the class is so decoupled that it requires injection, then it sounds like the existing tests may not be obviously covering it if they stay where they are.
Initially, no, they're not necessary. If you had perfect coverage, extracted the class and did nothing more, you would still have perfect coverage (and those tests would confirm that the extraction was indeed a pure refactoring).
But eventually - and probably soon - yes. The extracted class is likely to be used outside its original context, and you want to constrain its behavior with tests that are specific to the new class, so that changes for a new context don't inadvertently affect behavior for the original caller. Of course the original tests would still reveal this, but good unit tests point directly to the problematic unit, and the original tests are now a step removed.
It's also good to have the new tests as executable documentation for the newly-extracted class.
Well, yes and no.
If I understand correctly, you have written tests, and wrote production code that makes the tests pass - i.e. the simplest thing that works.
Now you are in the refactoring phase. You want to extract code from one class and put it in a class of its own, probably to keep up with the Single Responsibility Principle (or SRP).
You may make the refactoring without adding tests, since your tests are there precisely to allow you to refactor without fear. Remember - refactor means changing the code, without modifying the functionality.
However, it is quite likely that refactoring the code will break your tests. This is most likely caused by fragile tests that test behavior, rather than state - i.e. you mocked the the methods you ported out.
On the other hand, if your tests are primarily state-driven (i.e. you assert results, and ignore implementation), then your new service component (the block of code you extracted to a new class) will not be tested. If you use some form of code coverage testing tool, you'll find out. If that is the case, you may wish to test that it works. Might, because 100% Code Coverage is neither desirable nor feasible. If possible, I'd try to add the tests for that service.
In the end, it may very well boil down to a judgment call.
I would say no. It is already being tested by the tests run on the old class.
As others have said, it's probably not entirely needed right away, since all the same stuff is still under test. But once you start making changes to either of those two classes individually, you should separate the tests.
Of course, the tests shouldn't be too hard to write; since you have the stuff being tested already, it should be fairly trivial to break out the various bits of the tests.

Mocks or real classes? [duplicate]

This question already has answers here:
When should I mock?
(4 answers)
Closed 9 years ago.
Classes that use other classes (as members, or as arguments to methods) need instances that behave properly for unit test. If you have these classes available and they introduce no additional dependencies, isn't it better to use the real thing instead of a mock?
I say use real classes whenever you can.
I'm a big believer in expanding the boundaries of "unit" tests as much as possible. At this point they aren't really unit tests in the traditional sense, but rather just an automated regression suite for your application. I still practice TDD and write all my tests first, but my tests are a little bigger than most people's and my green-red-green cycles take a little longer. But now that I've been doing this for a little while I'm completely convinced that unit tests in the traditional sense aren't all they're cracked up to be.
In my experience writing a bunch of tiny unit tests ends up being an impediment to refactoring in the future. If I have a class A that uses B and I unit test it by mocking out B, when I decide to move some functionality from A to B or vice versa all of my tests and mocks have to change. Now if I have tests that verify that the end to end flow through the system works as expected then my tests actually help me to identify places where my refactorings might have caused a change in the external behavior of the system.
The bottom line is that mocks codify the contract of a particular class and often end up actually specifying some of the implementation details too. If you use mocks extensively throughout your test suite your code base ends up with a lot of extra inertia that will resist any future refactoring efforts.
It is fine to use the "real thing" as long as you have absolute control over the object. For example if you have an object that just has properties and accessors you're probably fine. If there is logic in the object you want to use, you could run into problems.
If a unit test for class a uses an instance of class b and an change introduced to b breaks b, then the tests for class a are also broken. This is where you can run into problems where as with a mock object you could always return the correct value. Using "the real thing" Can kind of convolute tests and hide the real problem.
Mocks can have downsides too, I think there is a balance with some mocks and some real objects you will have to find for yourself.
There is one really good reason why you want to use stubs/mocks instead of real classes. I.e. to make your unit test's (pure unit test) class under test isolated from everything else. This property is extremely useful and the benefits for keeping tests isolated are plentiful:
Tests run faster because they don't need to call the real class implementation. If the implementation is to run against file system or relational database then the tests will become sluggish. Slow tests make developers not run unit tests as often. If you're doing Test Driven Development then time hogging tests are together a devastating waste of developers time.
It will be easier to track down problems if the test is isolated to the class under test. In contrast to a system test it will be much more difficult to track down nasty bugs that are not apparently visible in stack traces or what not.
Tests are less fragile on changes done on external classes/interfaces because you're purely testing the class that is under test. Low fragility is also an indication of low coupling, which is a good software engineering.
You're testing against external behaviour of a class rather than the internal implementation which is more useful when deciding code design.
Now if you want to use real class in your test, that's fine but then it is NOT a unit test. You're doing a integration test instead, which is useful for the purpose of validating requirements and overall sanity check. Integration tests are not run as often as unit tests, in practice it is mostly done before committing to favorite code repository, but is equally important.
The only thing you need to have in mind is the following:
Mocks and stubs are for unit tests.
Real classes are for integration/system tests.
Extracted and extended from an answer of mine How do I unit-test inheriting objects?">here:
You should always use real objects where possible.
You should only use mock objects if the real objects do something you dont want to set up (like use sockets, serial ports, get user input, retrieve bulky data etc). Essentially, mock objects are for when the estimated effort to implement and maintain a test using a real object is greater than that to implement and maintain a test using a mock object.
I dont buy into the "dependant test failure" argument. If a test fails because a depended-on class broke, the test did exactly what it should have done. This is not a smell! If a depended-on interface changes, I want to know!
Highly mocked testing environments are very high-maintenance, particularly early in a project when interfaces are in flux. Ive always found it better to start integration testing ASAP.
I always use a mock version of a dependency if the dependency accesses an external system like a database or web service.
If that isn't the case, then it depends on the complexity of the two objects. Testing the object under test with the real dependency is essentially multiplying the two sets of complexities. Mocking out the dependency lets me isolate the object under test. If either object is reasonably simple, then the combined complexity is still workable and I don't need a mock version.
As others have said, defining an interface on the dependency and injecting it into the object under test makes it much easier to mock out.
Personally, I'm undecided about whether it's worth it to use strict mocks and validate every call to the dependency. I usually do, but it's mostly habit.
You may also find these related questions helpful:
What is object mocking and when do I need it?
When should I mock?
How are mocks meant to be used?
And perhaps even, Is it just me, or are interfaces overused?
Use the real thing only if it has been unit tested itself first. If it introduces dependencies that prevent that (circular dependencies or if it requires certain other measures to be in place first) then use a 'mock' class (typically referred to as a "stub" object).
If your 'real things' are simply value objects like JavaBeans then thats fine.
For anything more complex I would worry as mocks generated from mocking frameworks can be given precise expectations about how they will be used e.g. the number of methods called, the precise sequence and the parameters expected each time. Your real objects cannot do this for you so you risk losing depth in your tests.
I've been very leery of mocked objects since I've been bitten by them a number of times. They're great when you want isolated unit tests, but they have a couple of issues. The major issue is that if the Order class needs a a collection of OrderItem objects and you mock them, it's almost impossible to verify that the behavior of of the mocked OrderItem class matches the real-world example (duplicating the methods with appropriate signatures is generally not enough). More than once I've seen systems fail because the mocked classes don't match the real ones and there weren't enough integration tests in place to catch the edge cases.
I generally program in dynamic languages and I prefer merely overriding the specific methods which are problematic. Unfortunately, this is sometimes hard to do in static languages. The downside of this approach is that you're using integration tests rather than unit tests and bugs are sometimes harder to track down. The upside is that you're using the actual code that is written, rather than a mocked version of that code.
If you don't care for verifying expectations on how your UnitUnderTest should interact with the Thing, and interactions with the RealThing have no other side-effects (or you can mock these away) then it is in my opinion perfectly fine to just let your UnitUnderTest use the RealThing.
That the test then covers more of your code base is a bonus.
I generally find it is easy to tell when I should use a ThingMock instead of a RealThing:
When I want to verify expectations in the interaction with the Thing.
When using the RealThing would bring unwanted side-effects.
Or when the RealThing is simply too hard/troublesome to use in a test setting.
If you write your code in terms of interfaces, then unit testing becomes a joy because you can simply inject a fake version of any class into the class you are testing.
For example, if your database server is down for whatever reason, you can still conduct unit testing by writing a fake data access class that contains some cooked data stored in memory in a hash map or something.
It depends on your coding style, what you are doing, your experience and other things.
Given all that, there's nothing stopping you from using both.
I know I use the term unit test way too often. Much of what I do might be better called integration test, but better still is to just think of it as testing.
So I suggest using all the testing techniques where they fit. The overall aim being to test well, take little time doing it and personally have a solid feeling that it's right.
Having said that, depending on how you program, you might want to consider using techniques (like interfaces) that make mocking less intrusive a bit more often. But don't use Interfaces and injection where it's wrong. Also if the mock needs to be fairly complex there is probably less reason to use it. (You can see a lot of good guidance, in the answers here, to what fits when.)
Put another way: No answer works always. Keep your wits about you, observe what works what doesn't and why.