Efficient switch statement - c++

In the following two versions of switch case, I am wondering which version is efficient.
1:
string* convertToString(int i)
{
switch(i)
{
case 1:
return new string("one");
case 2:
return new string("two");
case 3:
return new string("three");
.
.
default:
return new string("error");
}
}
2:
string* convertToString(int i)
{
string *intAsString;
switch(i)
{
case 1:
intAsString = new string("one");
break;
case 2:
intAsString = new string("two");
break;
case 3:
intAsString = new string("three");
break;
.
.
default:
intAsString = new string("error");
break;
}
return intAsString;
}
1: has multiple return statements will it cause compiler to generate extra code?

This is a premature optimization worry.
The former form is clearer and has fewer source lines, that is a compelling reason to chose it (in my opinion), of course.
You should (as usual) profile your program to determine if this function is even on the "hot list" for optimization. This will tell you if there is a performance penalty for using break.
As was pointed out in the comments, it's very possible that the main performance culprit of this code is the dynamically allocated strings. Generally, when implementing this kind of "integer to string" mapping function, you should return string constants.

Both are.
What you should really be concerned about is your use of pointers here. Is it necessary? Who will delete these strings? Isn't there a simpler alternative?

There should be no difference in the compiled code.
However:
You'll probably find returning the strings by value to be more efficient.
If there are a lot of strings consider prepopulating a vector with them (or declare a static array) and use i as the index in.

A switch statement is basically a series of if statements as generated machine instructions. One simple optimization strategy is to place the most frequent case first in the switch statement.
I also recommend the same solution as Sebastian but without the assert.
static const char *numberAsString[] = {
"Zero",
"One",
"Two",
"Three",
"Four",
"Five",
"Six",
};
const char *ConvertToString(int num) {
if (num < 1 || num >= (sizeof(numberAsString)/sizeof(char*)))
return "error";
return numberAsString[num];
}

You can never know how optimization will influence the code produced unless you compile with a specific compiler version, a specific set of settings and a specific code base.
C++ optimizing compilers may decide to turn your source code upside down to gain a specific optimization only available for compiler architecture so-and-so without you ever knowing it. A powerful optimizing compiler may e.g. find out that only 2 out of 10 cases are ever needed and will optimize away the whole switch-case-statement.
So my answer to your question is: Mu.

If you turn optimizing on, both functions will very likely generate equivalent code.

The compiler most probably will optimize both versions to the same code.

They will almost certainly both be compiled to an identical, highly-efficient branch table. Use whichever one you feel is clearer.

I would suggest something of the form:
void CScope::ToStr( int i, std::string& strOutput )
{
switch( i )
{
case 1:
strOutput = "Some text involving the number 1";
... etc etc
}
By returning a pointer to a string created on the heap, you risk memory leaks. Specifically regarding your question, I would suggest that the least number of return paths is more advisable than premature optimisation.

Consider keeping the strings as static constants:
static char const g_aaczNUMBER[][] =
{
{"Zero"}, { "One" }, ...
};
static char const g_aczERROR[] = { "Error" };
char* convertIntToString(int i) const {
return i<0 || 9<i ? g_aczERROR : g_aaczNUMBER[i];
}

You optimise[*] switch statements by doing as little work as possible in the switch (because it's uncertain whether the compiler will common up the duplication). If you insist on returning a string by pointer, and using a switch statement, I'd write this:
string *convertToString(int i) {
const char *str;
switch(i) {
case 1 : str = "one"; break;
// etc
default : str = "error"; break;
}
return new string(str);
}
But of course for this example I'd probably just use a lookup table:
const char *values[] = {"error", "one", ... };
string convertToString(unsigned int i) {
if (i >= sizeof(values)/sizeof(*values)) i = 0;
return values[i];
}
That said, I just answered a question about the static initialization order fiasco, so you don't in general want rules of thumb which demand globals. What you do has to depend on the context of the function.
[*] Where I mean the kind of rule-of-thumb optimisation that you do when writing portable code, or in your first version, in the hope of creating code that is clear to read and won't need too much real optimisation. Real optimisation involves real measurements.

There won't be any difference in efficiency here. Certainly none that will matter. The only benefit of going with option #2 is if you'll need to do some post-processing of the string that applies to all cases.

There should not be any measurable difference, return statements should not generate any machinery. They should put a pointer to the string object (allocated on the heap) on the stack of the callsite.

The funny part is you worry about efficieny of break then return but make a new string every time.
The answer is it's up to the compiler, but it should not matter either way. Avoiding the new string will if you call this all the time.
The switch can often be optimized so that it performs a jump instead of a bunch of if else, but if you look in the assembly source you'll generally be underwhelmed by how little the optimizer does.

Related

Short and elegant way to do typecasting in C++?

Say I want to store the size of a std::vector in an int I have the following options, to my knowledge:
int size = vector.size(); // Throws an implicit conversion warning
int size = (int)vector.size(); // C like typecasting is discouraged and forbidden in many code standards
int size = static_cast<int>(vector.size()); // This makes me want to gouge my eyes out (it's ugly)
Is there any other option that avoids all of the above issues?
I'm going to frame challenge this question. You shouldn't want a short and elegant solution to this problem.
Casting in any language, including C++, is basically the programmer's equivalent to swearing: you'll do it sometimes because it's easy and effortless, but you shouldn't. It means that somewhere, somehow, your design got screwed up. Maybe you need to pass the size of an array to an old API, but the old API didn't use size_t. Maybe you designed a piece of code to use float's, but in the actual implementation, you treat them like int's.
Regardless, casting is being used to patch over mistakes made elsewhere in the code. You shouldn't want a short and simple solution to resolve that. You should prefer something explicit and tedious, for two reasons:
It signals to other programmers that the cast isn't a mistake: that it's something intentional and necessary
To make you less likely to do it; and to instead focus on making sure your types are what you intended, rather than what the target API is expecting.
So embrace the static_cast, dynamic_cast, const_cast, and reinterpret_cast style of writing your code. Instead of trying to find ways to make the casts easier, find ways to refactor your code so they're less necessary.
If you're prepared to disregard all of that instead, then write something like this:
template<typename T, typename U>
T as(U && u) {
return static_cast<T>(u);
}
int size = as<int>(values.size());
bool poly_type::operator==(base_type const& o) {
if(this == &o)
return true;
if(typeid(*this) == typeid(o)) {
return as<poly_type const&>(o).value == value;
} else {
return false;
}
}
That'll at least reduce the amount of typing you end up using.
I'm going to answer your question just like you've asked. The other answers say why you shouldn't do it. But if you still want to have this, use this function:
#include <assert.h>
#include <limits.h>
inline int toInt(std::size_t value) {
assert(value<=MAX_INT);
return static_cast<int>(value);
}
Usage:
int size = toInt(vector.size());
toInt asserts if the input value is out of range. Feel free to modify it to your needs.
Storing a vector size , which might exceed the maximum value of int, in an int is an ugly operation in the first place. This is reflected in your compiler warning or the fact that you have to write ugly code to suppress the warning.
The presence of the static_cast informs other people reading the code that there is a potential bug here, the program might malfunction in various ways if the vector size does exceed INT_MAX.
Obviously (I hope?) the best solution is to use the right type for the value being stored, auto size = vector.size();.
If you really are determined to use int for whatever reason then I would recommend adding code to handle the case of the vector begin too large (e.g. throw before the int declaration if it is), or add a code comment explaining why that was never possible.
With no comments, the reader can't tell if your cast was just because you wanted to shut the compiler up and didn't care about the potential bug; or if you knew what you were doing.

Template parameter as function specifier and compiler optimization

I have found this very useful post and I`d like to clarify something about the compiler optimizations. Lets say we have this function (same like in the original post):
template<int action>
__global__ void kernel()
{
switch(action) {
case 1:
// First code
break;
case 2:
// Second code
break;
}
}
Would the compiler do the optimization in the sense of eliminating an unreachable code even in the case I called the function with template variable unknown in the time of compiling - something like creating two separete functions? E.g.:
kernel<argv[1][0]>();
Short answer: no.
Templates are instantiated and generated purely at compiletime, so you can't use the values in argv, since they are not known at compile time.
Makes me wonder why you did not just give it a try and threw that code at a compiler - it would have told you that template arguments must be compile time constants.
Update:
Since you told us in the comments that it's not primarily about performance, but about readability, i'd recommend using switch/case:
template <char c> void kernel() {
//...
switch(c) { /* ... */ }
}
switch (argv[1][0]) {
case 'a':
kernel<'a'>();
break;
case 'b':
kernel<'b'>();
break;
//...
}
Since the value you have to make the descision on (i.e. argv[1][0]), is only known at runtime, you have to use runtime descision mechanisms. Of those, switch/case is among the fastest, especially if there are not too many different cases (but more than two) and especially if there are no gaps between the cases (i.e. 'a', 'b', 'c', instead of 1, 55, 2048). The compiler then can produce very fast jumptables.
Being new to templates I`d had to study some essential matters. Finally I came up with the solution to my problem. If I want to call functions with template parameters depending on command line arguments I should do it like this:
if(argv[1][0] == '1')
kernel<1><<< ... >>>();
if(argv[1][0] == '2')
kernel<2><<< ... >>>();
I also checked ptx file of such program and found out that compiler makes in this case optimization producing two different kernel functions without switch statement.

In which case is if(a=b) a good idea? [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Inadvertent use of = instead of ==
C++ compilers let you know via warnings that you wrote,
if( a = b ) { //...
And that it might be a mistake that you certainly wanted to write:
if( a == b ) { //...
But is there a case where the warning should be ignored, because it's a good way to use this "feature"?
I don't see any code clarity reason possible, so is there a case where it’s useful?
Two possible reasons:
Assign & Check
The = operator (when not overriden) normally returns the value that it assigned. This is to allow statements such as a=b=c=3. In the context of your question, it also allows you to do something like this:
bool global;//a global variable
//a function
int foo(bool x){
//assign the value of x to global
//if x is equal to true, return 4
if (global=x)
return 4;
//otherwise return 3
return 3;
}
...which is equivalent to but shorter than:
bool global;//a global variable
//a function
int foo(bool x){
//assign the value of x to global
global=x;
//if x is equal to true, return 4
if (global==true)
return 4;
//otherwise return 3
return 3;
}
Also, it should be noted (as stated by Billy ONeal in a comment below) that this can also work when the left-hand argument of the = operator is actually a class with a conversion operator specified for a type which can be coerced (implicitly converted) to a bool. In other words, (a=b) will evaulate to true or false if a is of a type which can be coerced to a boolean value.
So the following is a similar situation to the above, except the left-hand argument to = is an object and not a bool:
#include <iostream>
using namespace std;
class Foo {
public:
operator bool (){ return true; }
Foo(){}
};
int main(){
Foo a;
Foo b;
if (a=b)
cout<<"true";
else
cout<<"false";
}
//output: true
Note: At the time of this writing, the code formatting above is bugged. My code (check the source) actually features proper indenting, shift operators and line spacing. The <'s are supposed to be <'s, and there aren't supposed to be enourmous gaps between each line.
Overridden = operator
Since C++ allows the overriding of operators, sometimes = will be overriden to do something other than what it does with primitive types. In these cases, the performing the = operation on an object could return a boolean (if that's how the = operator was overridden for that object type).
So the following code would perform the = operation on a with b as an argument. Then it would conditionally execute some code depending on the return value of that operation:
if (a=b){
//execute some code
}
Here, a would have to be an object and b would be of the correct type as defined by the overriding of the = operator for objects of a's type. To learn more about operator overriding, see this wikipedia article which includes C++ examples: Wikipedia article on operator overriding
while ( (line = readNextLine()) != EOF) {
processLine();
}
You could use to test if a function returned any error:
if (error_no = some_function(...)) {
// Handle error
}
Assuming that some_function returns the error code in case of an error. Or zero otherwise.
This is a consequence of basic feature of the C language:
The value of an assignment operation is the assigned value itself.
The fact that you can use that "return value" as the condition of an if() statement is incidental.
By the way, this is the same trick that allows this crazy conciseness:
void strcpy(char *s, char *t)
{
while( *s++ = *t++ );
}
Of course, the while exits when the nullchar in t is reached, but at the same time it is copied to the destination s string.
Whether it is a good idea, usually not, as it reduce code readability and is prone to errors.
Although the construct is perfectly legal syntax and your intent may truly be as shown below, don't leave the "!= 0" part out.
if( (a = b) != 0 ) {
...
}
The person looking at the code 6 months, 1 year, 5 years from now, at first glance, is simply going to believe the code contains a "classic bug" written by a junior programmer and will try to "fix" it. The construct above clearly indicates your intent and will be optimized out by the compiler. This would be especially embarrassing if you are that person.
Your other option is to heavily load it with comments. But the above is self-documenting code, which is better.
Lastly, my preference is to do this:
a = b;
if( a != 0 ) {
...
}
This is about a clear as the code can get. If there is a performance hit, it is virtually zero.
A common example where it is useful might be:
do {
...
} while (current = current->next);
I know that with this syntax you can avoid putting an extra line in your code, but I think it takes away some readability from the code.
This syntax is very useful for things like the one suggested by Steven Schlansker, but using it directly as a condition isn't a good idea.
This isn't actually a deliberate feature of C, but a consequence of two other features:
Assignment returns the assigned value
This is useful for performing multiple assignments, like a = b = 0, or loops like while ((n = getchar()) != EOF).
Numbers and pointers have truth values
C originally didn't have a bool type until the 1999 standard, so it used int to represent Boolean values. Backwards compatibility requires C and C++ to allow non-bool expressions in if, while, and for.
So, if a = b has a value and if is lenient about what values it accepts, then if (a = b) works. But I'd recommend using if ((a = b) != 0) instead to discourage anyone from "fixing" it.
You should explicitly write the checking statement in a better coding manner, avoiding the assign & check approach. Example:
if ((fp = fopen("filename.txt", "wt")) != NULL) {
// Do something with fp
}
void some( int b ) {
int a = 0;
if( a = b ) {
// or do something with a
// knowing that is not 0
}
// b remains the same
}
But is there a case where the warning
should be ignored because it's a good
way to use this "feature"? I don't see
any code clarity reason possible so is
there a case where its useful?
The warning can be suppressed by placing an extra parentheses around the assignment. That sort of clarifies the programmer's intent. Common cases I've seen that would match the (a = b) case directly would be something like:
if ( (a = expression_with_zero_for_failure) )
{
// do something with 'a' to avoid having to reevaluate
// 'expression_with_zero_for_failure' (might be a function call, e.g.)
}
else if ( (a = expression2_with_zero_for_failure) )
{
// do something with 'a' to avoid having to reevaluate
// 'expression2_with_zero_for_failure'
}
// etc.
As to whether writing this kind of code is useful enough to justify the common mistakes that beginners (and sometimes even professionals in their worst moments) encounter when using C++, it's difficult to say. It's a legacy inherited from C and Stroustrup and others contributing to the design of C++ might have gone a completely different, safer route had they not tried to make C++ backwards compatible with C as much as possible.
Personally I think it's not worth it. I work in a team and I've encountered this bug several times before. I would have been in favor of disallowing it (requiring parentheses or some other explicit syntax at least or else it's considered a build error) in exchange for lifting the burden of ever encountering these bugs.
while( (l = getline()) != EOF){
printf("%s\n", l);
}
This is of course the simplest example, and there are lots of times when this is useful. The primary thing to remember is that (a = true) returns true, just as (a = false) returns false.
Preamble
Note that this answer is about C++ (I started writing this answer before the tag "C" was added).
Still, after reading Jens Gustedt's comment, I realized it was not the first time I wrote this kind of answer. Truth is, this question is a duplicate of another, to which I gave the following answer:
Inadvertent use of = instead of ==
So, I'll shamelessly quote myself here to add an important information: if is not about comparison. It's about evaluation.
This difference is very important, because it means anything can be inside the parentheses of a if as long as it can be evaluated to a Boolean. And this is a good thing.
Now, limiting the language by forbidding =, where all other operators are authorized, is a dangerous exception for the language, an exception whose use would be far from certain, and whose drawbacks would be numerous indeed.
For those who are uneasy with the = typo, then there are solutions (see Alternatives below...).
About the valid uses of if(i = 0) [Quoted from myself]
The problem is that you're taking the problem upside down. The "if" notation is not about comparing two values like in some other languages.
The C/C++ if instruction waits for any expression that will evaluate to either a Boolean, or a null/non-null value. This expression can include two values comparison, and/or can be much more complex.
For example, you can have:
if(i >> 3)
{
std::cout << "i is less than 8" << std::endl
}
Which proves that, in C/C++, the if expression is not limited to == and =. Anything will do, as long as it can be evaluated as true or false (C++), or zero non-zero (C/C++).
About valid uses
Back to the non-quoted answer.
The following notation:
if(MyObject * p = findMyObject())
{
// uses p
}
enables the user to declare and then use p inside the if. It is a syntactic sugar... But an interesting one. For example, imagine the case of an XML DOM-like object whose type is unknown well until runtime, and you need to use RTTI:
void foo(Node * p_p)
{
if(BodyNode * p = dynamic_cast<BodyNode *>(p_p))
{
// this is a <body> node
}
else if(SpanNode * p = dynamic_cast<SpanNode *>(p_p))
{
// this is a <span> node
}
else if(DivNode * p = dynamic_cast<DivNode *>(p_p))
{
// this is a <div> node
}
// etc.
}
RTTI should not be abused, of course, but this is but one example of this syntactic sugar.
Another use would be to use what is called C++ variable injection. In Java, there is this cool keyword:
synchronized(p)
{
// Now, the Java code is synchronized using p as a mutex
}
In C++, you can do it, too. I don't have the exact code in mind (nor the exact Dr. Dobb's Journal's article where I discovered it), but this simple define should be enough for demonstration purposes:
#define synchronized(lock) \
if (auto_lock lock_##__LINE__(lock))
synchronized(p)
{
// Now, the C++ code is synchronized using p as a mutex
}
(Note that this macro is quite primitive, and should not be used as is in production code. The real macro uses a if and a for. See sources below for a more correct implementation).
This is the same way, mixing injection with if and for declaration, you can declare a primitive foreach macro (if you want an industrial-strength foreach, use Boost's).
About your typo problem
Your problem is a typo, and there are multiple ways to limit its frequency in your code. The most important one is to make sure the left-hand-side operand is constant.
For example, this code won't compile for multiple reasons:
if( NULL = b ) // won't compile because it is illegal
// to assign a value to r-values.
Or even better:
const T a ;
// etc.
if( a = b ) // Won't compile because it is illegal
// to modify a constant object
This is why in my code, const is one of the most used keyword you'll find. Unless I really want to modify a variable, it is declared const and thus, the compiler protects me from most errors, including the typo error that motivated you to write this question.
But is there a case where the warning should be ignored because it's a good way to use this "feature"? I don't see any code clarity reason possible so is there a case where its useful?
Conclusion
As shown in the examples above, there are multiple valid uses for the feature you used in your question.
My own code is a magnitude cleaner and clearer since I use the code injection enabled by this feature:
void foo()
{
// some code
LOCK(mutex)
{
// some code protected by a mutex
}
FOREACH(char c, MyVectorOfChar)
{
// using 'c'
}
}
... which makes the rare times I was confronted to this typo a negligible price to pay (and I can't remember the last time I wrote this type without being caught by the compiler).
Interesting sources
I finally found the articles I've had read on variable injection. Here we go!!!
FOR_EACH and LOCK (2003-11-01)
Exception Safety Analysis (2003-12-01)
Concurrent Access Control & C++ (2004-01-01)
Alternatives
If one fears being victim of the =/== typo, then perhaps using a macro could help:
#define EQUALS ==
#define ARE_EQUALS(lhs,rhs) (lhs == rhs)
int main(int argc, char* argv[])
{
int a = 25 ;
double b = 25 ;
if(a EQUALS b)
std::cout << "equals" << std::endl ;
else
std::cout << "NOT equals" << std::endl ;
if(ARE_EQUALS(a, b))
std::cout << "equals" << std::endl ;
else
std::cout << "NOT equals" << std::endl ;
return 0 ;
}
This way, one can protect oneself from the typo error, without needing a language limitation (that would cripple language), for a bug that happens rarely (i.e., almost never, as far as I remember it in my code).
There's an aspect of this that hasn't been mentioned: C doesn't prevent you from doing anything it doesn't have to. It doesn't prevent you from doing it because C's job is to give you enough rope to hang yourself by. To not think that it's smarter than you. And it's good at it.
Never!
The exceptions cited don't generate the compiler warning. In cases where the compiler generates the warning, it is never a good idea.
RegEx sample
RegEx r;
if(((r = new RegEx("\w*)).IsMatch()) {
// ... do something here
}
else if((r = new RegEx("\d*")).IsMatch()) {
// ... do something here
}
Assign a value test
int i = 0;
if((i = 1) == 1) {
// 1 is equal to i that was assigned to a int value 1
}
else {
// ?
}
My favourite is:
if (CComQIPtr<DerivedClassA> a = BaseClassPtr)
{
...
}
else if (CComQIPtr<DerivedClassB> b = BaseClassPtr)
{
...
}

Is it legal to switch on a constant in C++?

I was just made aware of a bug I introduced, the thing that surprised me is that it compiled, is it legal to switch on a constant?
Visual Studio 8 and Comeau both accept it (with no warnings).
switch(42) { // simplified version, this wasn't a literal in real life
case 1:
std::cout << "This is of course, imposible" << std::endl;
}
It's not impossible that switching on a constant makes sense. Consider:
void f( const int x ) {
switch( x ) {
...
}
}
Switching on a literal constant would rarely make sense, however. But it is legal.
Edit: Thinking about it, there is case where switching on a literal makes
perfect sense:
int main() {
switch( CONFIG ) {
...
}
}
where the program was compiled with:
g++ -DCONFIG=42 foo.cpp
Not everything that makes sense to the compiler makes sense!
The following will also compile but makes no sense:
if (false)
{
std::cout << "This is of course, imposible" << std::endl;
}
It's up to us as developers to spot these.
One good reason for this being legal is that the compiler might well be able to resolve the value at compile time, depending on what stage of development you're at.
E.g. you might use something like this for debugging stuff:
int glyphIndex;
...
#if CHECK_INVALID_GLYPH
glyphIndex = -1;
#endif
switch (glyphIndex)
...
The compiler knows for certain that glyphIndex is -1 here, so it's as good as a constant. Alternatively, you might code it like this:
#if CHECK_INVALID_GLYPH
const int glyphIndex = -1;
#else
int glyphIndex = GetGlyph();
#endif
You wouldn't really want to have to change the body of your switch statement just so you could make little changes like this, and the compiler is perfectly capable of rationalising the code to eliminate the parts that will never be executed anyway.
Yes, it's perfectly legal to switch on any integer expression. It's the same as switching on an integer value returned by a function - a construct used quite often.
Yes, but why you'd want to (unless debugging) is another matter.
It's similar to if (0) or while (true).
Yes, it's legal.
​​​​​​​​​​​​​​

Inadvertent use of = instead of ==

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
It seems that
if (x=y) { .... }
instead of
if (x==y) { ... }
is a root of many evils.
Why don't all compilers mark it as error instead of a configurable warning?
I'm interested in finding out cases where the construct if (x=y) is useful.
One useful construct is for example:
char *pBuffer;
if (pBuffer = malloc(100))
{
// Continue to work here
}
As mentioned before, and downvoted several times now, I might add this is not specially good style, but I have seen it often enough to say it's useful. I've also seen this with new, but it makes more pain in my chest.
Another example, and less controversial, might be:
while (pointer = getNextElement(context))
{
// Go for it. Use the pointer to the new segment of data.
}
which implies that the function getNextElement() returns NULL when there is no next element so that the loop is exited.
Most of the time, compilers try very hard to remain backward compatible.
Changing their behavior in this matter to throw errors will break existing legitimate code, and even starting to throw warnings about it will cause problems with automatic systems that keep track of code by automatically compiling it and checking for errors and warnings.
This is an evil we're pretty much stuck with at the moment, but there are ways to circumvent and reduce the dangers of it.
Example:
void *ptr = calloc(1, sizeof(array));
if (NULL = ptr) {
// Some error
}
This causes a compilation error.
Simple answer: An assignment operation, such as x=y, has a value, which is the same as the newly assigned value in x. You can use this directly in a comparison, so instead of
x = y; if (x) ...
you can write
if (x = y) ...
It is less code to write (and read), which is sometimes a good thing, but nowadays most people agree that it should be written in some other way to increase readability. For example, like this:
if ((x = y) != 0) ...
Here is a realistic example. Assume you want to allocate some memory with malloc, and see if it worked. It can be written step by step like this:
p = malloc(4711); if (p != NULL) printf("Ok!");
The comparison to NULL is redundant, so you can rewrite it like this:
p = malloc(4711); if (p) printf("Ok!");
But since the assignment operation has a value, which can be used, you could put the entire assignment in the if condition:
if (p = malloc(4711)) printf("Ok!");
This does the same thing, but it is more concise.
Because it's not illegal (in C or C++ anyway) and sometimes useful...
if ( (x = read(blah)) > 0)
{
// now you know how many bits/bytes/whatever were read
// and can use that info. Esp. if you know, say 30 bytes
// are coming but only got 10
}
Most compilers kick up a real stink if you don't put parenthesis around the assignment anyway, which I like.
About the valid uses of if(i = 0)
The problem is that you're taking the problem upside down. The "if" notation is not about comparing two values like in some other languages.
The C/C++ "if" instruction waits for any expression that will evaluate to either a boolean, or a null/non-null value. This expression can include two values comparison, and/or can be much more complex.
For example, you can have:
if(i >> 3)
{
std::cout << "i is less than 8" << std::endl
}
Which proves that, in C/C++, the if expression is not limited to == and =. Anything will do, as long as it can be evaluated as true or false (C++), or zero non-zero (C/C++).
Another C++ valid use:
if(MyObject * pObject = dynamic_cast<MyInterface *>(pInterface))
{
pObject->doSomething();
}
And these are simple uses of the if expression (note that this can be used, too, in the for loop declaration line). More complex uses do exist.
About advanced uses of if(i = 0) in C++ (Quoted from myself)
After discovering a duplicate of this question at In which case is if(a=b) a good idea?, I decided to complete this answer with an additional bonus, that is, variable injection into a scope, which is possible in C++, because if will evaluate its expression, including a variable declaration, instead of limiting itself to compare two operands like it is done in other languages:
So, quoting from myself:
Another use would be to use what is called C++ variable injection. In Java, there is this cool keyword:
synchronized(p)
{
// Now, the Java code is synchronized using p as a mutex
}
In C++, you can do it, too. I don't have the exact code in mind (nor the exact Dr. Dobb's Journal's article where I discovered it), but this simple define should be enough for demonstration purposes:
#define synchronized(lock) \
if (auto_lock lock_##__LINE__(lock))
synchronized(p)
{
// Now, the C++ code is synchronized using p as a mutex
}
This is the same way, mixing injection with an if and for declaration. You can declare a primitive foreach macro (if you want an industrial-strength foreach, use Boost's).
See the following articles for a less naive, more complete and more robust implementation:
FOR_EACH and LOCK
Exception Safety Analysis
Concurrent Access Control & C++
How many errors of this kind really happens?
Rarely. In fact, I have yet to remember one, and I have been a professional for the past 8 years.
I guess it happened, but then, in 8 years, I did produce a sizeable quantity of bugs. It's just that this kind of bugs did not happen enough to have me remember them in frustration.
In C, you'll have more bugs because of buffer overruns, like:
void doSomething(char * p)
{
strcpy(p, "Hello, World! How are you \?\n");
}
void doSomethingElse()
{
char buffer[16];
doSomething(buffer);
}
In fact, Microsoft was burned so hard because of that they added a warning in Visual C++ 2008 deprecating strcpy!
How can you avoid most errors?
The very first "protection" against this error is to "turn around" the expression: As you can't assign a value to a constant, this:
if(0 = p) // ERROR: It should have been if(0 == p). IT WON'T COMPILE!
It won't compile.
But I find this quite a poor solution, because it tries to hide behind a style what should be a general programming practice, that is: Any variable that is not supposed to change should be constant.
For example, instead of:
void doSomething(char * p)
{
if(p == NULL) // POSSIBLE TYPO ERROR
return;
size_t length = strlen(p);
if(length == 0) // POSSIBLE TYPO ERROR
printf("\"%s\" length is %i\n", p, length);
else
printf("the string is empty\n");
}
Trying to "const" as many variables as possible will make you avoid most typo errors, including those not inside "if" expressions:
void doSomething(const char * const p) // CONST ADDED HERE
{
if(p == NULL) // NO TYPO POSSIBLE
return;
const size_t length = strlen(p); // CONST ADDED HERE
if(length == 0) // NO TYPO POSSIBLE
printf("\"%s\" length is %i\n", p, length);
else
printf("the string is empty\n");
}
Of course, it is not always possible (as some variables do need to change), but I found than most of the variables I use are constants (I keep initializing them once, and then, only reading them).
Conclusion
Usually, I see code using the if(0 == p) notation, but without the const-notation.
To me, it's like having a trash can for recyclables, and another for non-recyclable, and then in the end, throw them together in the same container.
So, do not parrot an easy style habit hoping it will make your code a lot better. It won't. Use the language constructs as much as possible, which means, in this case, using both the if(0 == p) notation when available, and using of the const keyword as much as possible.
The 'if(0 = x)' idiom is next to useless because it doesn't help when both sides are variables ('if(x = y)') and most (all?) of the time you should be using constant variables rather than magic numbers.
Two other reasons I never use this idiom, IMHO it makes code less readable and to be honest I find the single '='to be the root of very little evil. If you test your code thouroughly (which we all do, obviously) this sort of syntax error turns up very quickly.
Standard C idiom for iterating:
list_elem* curr;
while ( (curr = next_item(list)) != null ) {
/* ... */
}
Many compilers will detect this and warn you, but only if you set the warning level high enough.
For example:
~> gcc -c -Wall foo.c
foo.c: In function ‘foo’:
foo.c:5: warning: suggest parentheses around assignment used as truth value
Is this really such a common error? I learned about it when I learned C myself, and as a teacher I have occasionally warned my students and told them that it is a common error, but I have rarely seen it in real code, even from beginners. Certainly not more often than other operator mistakes, such as for example writing "&&" instead of "||".
So the reason that compilers don't mark it as an error (except for it being perfectly valid code) is perhaps that it isn't the root of very many evils.
The assignment as conditional is legal C and C++, and any compiler that doesn't permit it isn't a real C or C++ compiler. I would hope that any modern language not designed to be explicitly compatible with C (as C++ was) would consider it an error.
There are cases where this allows concise expressions, such as the idiomatic while (*dest++ = *src++); to copy a string in C, but overall it's not very useful, and I consider it a mistake in language design. It is, in my experience, easy to make this mistake, and hard to spot when the compiler doesn't issue a warning.
I think the C and C++ language designers noticed there is no real use in forbidding it because
Compilers can warn about it if they want anyway
Disallowing it would add special cases to the language, and would remove a possible feature.
There isn't complexity involved in allowing it. C++ just says that an expression implicitly convertible to bool is required. In C, there are useful cases detailed by other answers. In C++, they go one step further and allowed this one in addition:
if(type * t = get_pointer()) {
// ....
}
Which actually limits the scope of t to only the if and its bodies.
It depends on the language. Java flags it as an error as only Boolean expressions can be used inside the if parenthesis (and unless the two variables are Boolean, in which case the assignment is also a Boolean).
In C, it is a quite common idiom for testing pointers returned by malloc or if after a fork we are in the parent or child process:
if ( x = (X*) malloc( sizeof(X) ) {
// 'malloc' worked, pointer != 0
if ( pid = fork() ) {
// Parent process as pid != 0
C/C++ compilers will warn with a high enough warning level if you ask for it, but it cannot be considered an error as the language allows it. Unless, then again, you ask the compiler to treat warnings as errors.
Whenever comparing with constants, some authors suggest using the test constant == variable so that the compiler will detect if the user forgets the second equality sign.
if ( 0 == variable ) {
// The compiler will complaint if you mistakenly
// write =, as you cannot assign to a constant
Anyway, you should try to compile with the highest possible warning settings.
Try viewing
if( life_is_good() )
enjoy_yourself();
as
if( tmp = life_is_good() )
enjoy_yourself();
Part of it has to do with personal style and habits. I am agnostic to reading either if (kConst == x) or if (x == kConst). I don't use the constant on the left because historically I don't make that error and I write code as I would say it or would like to read it. I see this as a personal decision as part of a personal responsibility to being a self-aware, improving engineer. For example, I started analyzing the types of bugs that I was creating and started to re-engineer my habits so as not to make them - similar to constant on the left, just with other things.
That said, compiler warnings, historically, are pretty crappy and even though this problem has been well known for years, I didn't see it in a production compiler until the late 80's. I also found that working on projects that were portable helped clean up my C a great deal, as different compilers and different tastes (ie, warnings) and different subtle semantic differences.
I, personally, consider this the most useful example.
Say that you have a function read() that returns the number of bytes read, and you need to use this in a loop. It's a lot simpler to use
while((count = read(foo)) > 0) {
//Do stuff
}
than to try and get the assignment out of the loop head, which would result in things like
while(1) {
count = read(foo);
if(!(count > 0))
break;
//...
}
or
count = read(foo);
while(count > 0) {
//...
count = read(foo);
}
The first construct feels awkward, and the second repeats code in an unpleasant way.
Unless, of course, I've missed some brilliant idiom for this...
There are a lot of great uses of the assignment operator in a conditional statement, and it'd be a royal pain in the ass to see warnings about each one all the time. What would be nice would be a function in your IDE that let you highlight all the places where assignment has been used instead of an equality check - or - after you write something like this:
if (x = y) {
then that line blinks a couple of times. Enough to let you know that you've done something not exactly standard, but not so much that it's annoying.
if ((k==1) || (k==2)) is a conditional
if ((k=1) || (k=2) ) is BOTH a conditional AND an assignment statement
Here's the explanation
Like most languages, C works inner-most to outermost in order by operator precedence.
First, it tries to set k to 1, and succeeds.
Result: k = 1 and Boolean = 'true'
Next: it sets k to 2, and succeeds.
Result: k = 2 and Boolean = 'true'
Next: it evaluates (true || true)
Result: k still = 2, and Boolean = true
Finally, it then resolves the conditional: If (true)
Result: k = 2 and the program takes the first branch.
In nearly 30 years of programming I have not seen a valid reason for using this construct, though if one exists it probably has to do with a need to deliberately obfuscate your code.
When one of our new people has a problem, this is one of the things I look for, right along with not sticking a terminator on a string, and copying a debug statement from one place to another and not changing the '%i to '%s' to match the new field they are dumping.
This is fairly common in our shop because we constantly switch between C and Oracle PL/SQL; if( k = 1) is the correct syntax in PL/SQL.
It is very common with "low level" loop constructs in C/C++, such as with copies:
void my_strcpy(char *dst, const char *src)
{
while((*dst++ = *src++) != '\0') { // Note the use of extra parentheses, and the explicit compare.
/* DO NOTHING */
}
}
Of course, assignments are very common with for loops:
int i;
for(i = 0; i < 42; ++i) {
printf("%d\n", i);
}
I do believe it is easier to read assignments when they are outside of if statements:
char *newstring = malloc(strlen(src) * sizeof(char));
if(newstring == NULL) {
fprintf(stderr, "Out of memory, d00d! Bailing!\n");
exit(2);
}
// Versus:
if((newstring = malloc(strlen(src) * sizeof(char))) == NULL) // ew...
Make sure the assignment is obvious, thuogh (as with the first two examples). Don't hide it.
As for accidental uses ... that doesn't happen to me much. A common safeguard is to put your variable (lvalues) on the right hand side of the comparison, but that doesn't work well with things like:
if(*src == *dst)
because both oprands to == are lvalues!
As for compilers ... who can blame 'em? Writing compilers is difficult, and you should be writing perfect programs for the compiler anyway (remember GIGO?). Some compilers (the most well-known for sure) provide built-in lint-style checking, but that certainly isn't required. Some browsers don't validate every byte of HTML and Javascript it's thrown, so why would compilers?
There are several tactics to help spot this .. one is ugly, the other is typically a macro. It really depends on how you read your spoken language (left to right, right to left).
For instance:
if ((fp = fopen("foo.txt", "r") == NULL))
Vs:
if (NULL == (fp = fopen(...)))
Sometimes it can be easier to read/write (first) what your testing for, which makes it easier to spot an assignment vs a test. Then bring in most comp.lang.c folks that hate this style with a passion.
So, we bring in assert():
#include <assert.h>
...
fp = fopen("foo.txt", "r");
assert(fp != NULL);
...
when your at the midst, or end of a convoluted set of conditionals, assert() is your friend. In this case, if FP == NULL, an abort() is raised and the line/file of the offending code is conveyed.
So if you oops:
if (i = foo)
insted of
if (i == foo)
followed by
assert (i > foo + 1)
... you'll quickly spot such mistakes.
Hope this helps :)
In short, reversing arguments sometimes helps when debugging .. assert() is your long life friend and can be turned off in compiler flags in production releases.
As pointed out in other answers, there are cases where using assignment within a condition offers a brief-but-readable piece of code that does what you want. Also, a lot of up-to-date compilers will warn you if they see an assignment where they expect a condition. (If you're a fan of the zero-warnings approach to development, you'll have seen these.)
One habit I've developed that keeps me from getting bitten by this (at least in C-ish languages) is that if one of the two values I'm comparing is a constant (or otherwise not a legal lvalue), I put it on the left-hand side of the comparator: if (5 == x) { whatever(); } Then, if I should accidentally type if (5 = x), the code won't compile.
You asked why it was useful, but keep questioning examples people are providing. It's useful because it's concise.
Yes, all the examples which use it can be rewritten - as longer pieces of code.
I have only had this typo once in my 15 years of development. I would not say it is on the top of my list of things to look out for. I also avoid that construct anyway.
Note also that some compilers (the one I use) issue a warning on that code. Warnings can be treated as errors for any compiler worth its salt. They can also be ignored.
Placing the constant on the left side of a comparison is defensive programming. Sure you would never make the silly mistake of forgetting that extra '=', but who knows about the other guy.
The D programming language does flag this as an error. To avoid the problem with wanting to use the value later, it allows declarations sort of like C++ allows with for loops.
if(int i = some_fn())
{
another_fn(i);
}
The compiler won't flag it as an error because it is valid C/C++. But what you can do (at least with Visual C++) is turn up the warning level so that it flags it as a warning and then tell the compiler to treat warnings as errors. This is a good practice anyway so that developers don't ignore warnings.
If you had actually meant = instead of == then you need to be more explicit about it. E.g.,
if ((x = y) != 0)
Theoretically, you're supposed to be able to do this:
if ((x = y))
to override the warning, but that doesn't seem to always work.
In practice I don't do it, but a good tip is to do:
if ( true == $x )
In the case that you leave out an equals, assigning $x to true will obviously return an error.
RegEx sample
RegEx r;
if(((r = new RegEx("\w*)).IsMatch()) {
// ... do something here
}
else if((r = new RegEx("\d*")).IsMatch()) {
// ... do something here
}
Assign a value test
int i = 0;
if((i = 1) == 1) {
// 1 is equal to i that was assigned to a int value 1
}
else {
// ?
}
That's why it's better to write:
0 == CurrentItem
Instead of:
CurrentItem == 0
so that the compiler warns you if you type = instead of ==.