This is what i have so far but I do not think it is right.
for (int i = 0 ; i < 5; i++)
{
for (int j = 0; j < 5; j++)
{
matrix[i][j] += matrix[i][j] * matrix[i][j];
}
}
Suggestion: if it's not a homework don't write your own linear algebra routines, use any of the many peer reviewed libraries that are out there.
Now, about your code, if you want to do a term by term product, then you're doing it wrong, what you're doing is assigning to each value it's square plus the original value (n*n+n or (1+n)*n, whatever you like best)
But if you want to do an authentic matrix multiplication in the algebraic sense, remember that you had to do the scalar product of the first matrix rows by the second matrix columns (or the other way, I'm not very sure now)... something like:
for i in rows:
for j in cols:
result(i,j)=m(i,:)·m(:,j)
and the scalar product "·"
v·w = sum(v(i)*w(i)) for all i in the range of the indices.
Of course, with this method you cannot do the product in place, because you'll need the values that you're overwriting in the next steps.
Also, explaining a little bit further Tyler McHenry's comment, as a consecuence of having to multiply rows by columns, the "inner dimensions" (I'm not sure if that's the correct terminology) of the matrices must match (if A is m x n, B is n x o and A*C is m x o), so in your case, a matrix can be squared only if it's square (he he he).
And if you just want to play a little bit with matrices, then you can try Octave, for example; squaring a matrix is as easy as M*M or M**2.
I don't think you can multiply a matrix by itself in-place.
for (i = 0; i < 5; i++) {
for (j = 0; j < 5; j++) {
product[i][j] = 0;
for (k = 0; k < 5; k++) {
product[i][j] += matrix[i][k] * matrix[k][j];
}
}
}
Even if you use a less naïve matrix multiplication (i.e. something other than this O(n3) algorithm), you still need extra storage.
That's not any matrix multiplication definition I've ever seen. The standard definition is
for (i = 1 to m)
for (j = 1 to n)
result(i, j) = 0
for (k = 1 to s)
result(i, j) += a(i, k) * b(k, j)
to give the algorithm in a sort of pseudocode. In this case, a is a m x s matrix and b is an s x n, the result is a m x n, and subscripts begin with 1..
Note that multiplying a matrix in place is going to get the wrong answer, since you're going to be overwriting values before using them.
It's been too long since I've done matrix math (and I only did a little bit of it, on top), but the += operator takes the value of matrix[i][j] and adds to it the value of matrix[i][j] * matrix[i][j], which I don't think is what you want to do.
Well it looks like what it's doing is squaring the row/column, then adding it to the row/column. Is that what you want it to do? If not, then change it.
Related
In my program I have a function that performs the fast Fourier transform. I know there are very good implementations freely available, but this is a learning thing so I don't want to use those. I ended up finding this comment with the following implementation (it originated from the Italian entry for the FFT):
void transform(complex<double>* f, int N) //
{
ordina(f, N); //first: reverse order
complex<double> *W;
W = (complex<double> *)malloc(N / 2 * sizeof(complex<double>));
W[1] = polar(1., -2. * M_PI / N);
W[0] = 1;
for(int i = 2; i < N / 2; i++)
W[i] = pow(W[1], i);
int n = 1;
int a = N / 2;
for(int j = 0; j < log2(N); j++) {
for(int k = 0; k < N; k++) {
if(!(k & n)) {
complex<double> temp = f[k];
complex<double> Temp = W[(k * a) % (n * a)] * f[k + n];
f[k] = temp + Temp;
f[k + n] = temp - Temp;
}
}
n *= 2;
a = a / 2;
}
free(W);
}
I've made a lot of changes by now but this was my starting point. One of the changes I made was to not cache the twiddle factors, because I decided to see if it's needed first. Now I've decided I do want to cache them. The way this implementation seems to do it is it has this array W of length N/2, where every index k has the value . What I don't understand is this expression:
W[(k * a) % (n * a)]
Note that n * a is always equal to N/2. I get that this is supposed to be equal to , and I can see that , which this relies on. I also get that modulo can be used here because the twiddle factors are cyclic. But there's one thing I don't get: this is a length-N DFT, and yet only N/2 twiddle factors are ever calculated. Shouldn't the array be of length N, and the modulo should be by N?
But there's one thing I don't get: this is a length-N DFT, and yet only N/2 twiddle factors are ever calculated. Shouldn't the array be of length N, and the modulo should be by N?
The twiddle factors are equally spaced points on the unit circle, and there is an even number of points because N is a power-of-two. After going around half of the circle (starting at 1, going counter clockwise above the X-axis), the second half is a repeat of the first half but this time it's below the X-axis (the points can be reflected through the origin). That is why Temp is subtracted the second time. That subtraction is the negation of the twiddle factor.
How to find sum of evenly spaced Binomial coefficients modulo M?
ie. (nCa + nCa+r + nCa+2r + nCa+3r + ... + nCa+kr) % M = ?
given: 0 <= a < r, a + kr <= n < a + (k+1)r, n < 105, r < 100
My first attempt was:
int res = 0;
int mod=1000000009;
for (int k = 0; a + r*k <= n; k++) {
res = (res + mod_nCr(n, a+r*k, mod)) % mod;
}
but this is not efficient. So after reading here
and this paper I found out the above sum is equivalent to:
summation[ω-ja * (1 + ωj)n / r], for 0 <= j < r; and ω = ei2π/r is a primitive rth root of unity.
What can be the code to find this sum in Order(r)?
Edit:
n can go upto 105 and r can go upto 100.
Original problem source: https://www.codechef.com/APRIL14/problems/ANUCBC
Editorial for the problem from the contest: https://discuss.codechef.com/t/anucbc-editorial/5113
After revisiting this post 6 years later, I'm unable to recall how I transformed the original problem statement into mine version, nonetheless, I shared the link to the original solution incase anyone wants to have a look at the correct solution approach.
Binomial coefficients are coefficients of the polynomial (1+x)^n. The sum of the coefficients of x^a, x^(a+r), etc. is the coefficient of x^a in (1+x)^n in the ring of polynomials mod x^r-1. Polynomials mod x^r-1 can be specified by an array of coefficients of length r. You can compute (1+x)^n mod (x^r-1, M) by repeated squaring, reducing mod x^r-1 and mod M at each step. This takes about log_2(n)r^2 steps and O(r) space with naive multiplication. It is faster if you use the Fast Fourier Transform to multiply or exponentiate the polynomials.
For example, suppose n=20 and r=5.
(1+x) = {1,1,0,0,0}
(1+x)^2 = {1,2,1,0,0}
(1+x)^4 = {1,4,6,4,1}
(1+x)^8 = {1,8,28,56,70,56,28,8,1}
{1+56,8+28,28+8,56+1,70}
{57,36,36,57,70}
(1+x)^16 = {3249,4104,5400,9090,13380,9144,8289,7980,4900}
{3249+9144,4104+8289,5400+7980,9090+4900,13380}
{12393,12393,13380,13990,13380}
(1+x)^20 = (1+x)^16 (1+x)^4
= {12393,12393,13380,13990,13380}*{1,4,6,4,1}
{12393,61965,137310,191440,211585,203373,149620,67510,13380}
{215766,211585,204820,204820,211585}
This tells you the sums for the 5 possible values of a. For example, for a=1, 211585 = 20c1+20c6+20c11+20c16 = 20+38760+167960+4845.
Something like that, but you have to check a, n and r because I just put anything without regarding about the condition:
#include <complex>
#include <cmath>
#include <iostream>
using namespace std;
int main( void )
{
const int r = 10;
const int a = 2;
const int n = 4;
complex<double> i(0.,1.), res(0., 0.), w;
for( int j(0); j<r; ++j )
{
w = exp( i * 2. * M_PI / (double)r );
res += pow( w, -j * a ) * pow( 1. + pow( w, j ), n ) / (double)r;
}
return 0;
}
the mod operation is expensive, try avoiding it as much as possible
uint64_t res = 0;
int mod=1000000009;
for (int k = 0; a + r*k <= n; k++) {
res += mod_nCr(n, a+r*k, mod);
if(res > mod)
res %= mod;
}
I did not test this code
I don't know if you reached something or not in this question, but the key to implementing this formula is to actually figure out that w^i are independent and therefore can form a ring. In simpler terms you should think of implement
(1+x)^n%(x^r-1) or finding out (1+x)^n in the ring Z[x]/(x^r-1)
If confused I will give you an easy implementation right now.
make a vector of size r . O(r) space + O(r) time
initialization this vector with zeros every where O(r) space +O(r) time
make the first two elements of that vector 1 O(1)
calculate (x+1)^n using the fast exponentiation method. each multiplication takes O(r^2) and there are log n multiplications therefore O(r^2 log(n) )
return first element of the vector.O(1)
Complexity
O(r^2 log(n) ) time and O(r) space.
this r^2 can be reduced to r log(r) using fourier transform.
How is the multiplication done, this is regular polynomial multiplication with mod in the power
vector p1(r,0);
vector p2(r,0);
p1[0]=p1[1]=1;
p2[0]=p2[1]=1;
now we want to do the multiplication
vector res(r,0);
for(int i=0;i<r;i++)
{
for(int j=0;j<r;j++)
{
res[(i+j)%r]+=(p1[i]*p2[j]);
}
}
return res[0];
I have implemented this part before, if you are still cofused about something let me know. I would prefer that you implement the code yourself, but if you need the code let me know.
I am doing this assignment for fun.
http://groups.csail.mit.edu/graphics/classes/6.837/F04/assignments/assignment0/
There are sample outputs at site if you want to see how it is supposed to look. It involves iterated function systems, whose algorithm according the the assignment is:
for "lots" of random points (x0, y0)
for k=0 to num_iters
pick a random transform fi
(xk+1, yk+1) = fi(xk, yk)
display a dot at (xk, yk)
I am running into trouble with my implementation, which is:
void IFS::render(Image& img, int numPoints, int numIterations){
Vec3f color(0,1,0);
float x,y;
float u,v;
Vec2f myVector;
for(int i = 0; i < numPoints; i++){
x = (float)(rand()%img.Width())/img.Width();
y = (float)(rand()%img.Height())/img.Height();
myVector.Set(x,y);
for(int j = 0; j < numIterations;j++){
float randomPercent = (float)(rand()%100)/100;
for(int k = 0; k < num_transforms; k++){
if(randomPercent < range[k]){
matrices[k].Transform(myVector);
}
}
}
u = myVector.x()*img.Width();
v = myVector.y()*img.Height();
img.SetPixel(u,v,color);
}
}
This is how my pick a random transform from the input matrices:
fscanf(input,"%d",&num_transforms);
matrices = new Matrix[num_transforms];
probablility = new float[num_transforms];
range = new float[num_transforms+1];
for (int i = 0; i < num_transforms; i++) {
fscanf (input,"%f",&probablility[i]);
matrices[i].Read3x3(input);
if(i == 0) range[i] = probablility[i];
else range[i] = probablility[i] + range[i-1];
}
My output shows only the beginnings of a Sierpinski triangle (1000 points, 1000 iterations):
My dragon is better, but still needs some work (1000 points, 1000 iterations):
If you have RAND_MAX=4 and picture width 3, an evenly distributed sequence like [0,1,2,3,4] from rand() will be mapped to [0,1,2,0,1] by your modulo code, i.e. some numbers will occur more often. You need to cut off those numbers that are above the highest multiple of the target range that is below RAND_MAX, i.e. above ((RAND_MAX / 3) * 3). Just check for this limit and call rand() again.
Since you have to fix that error in several places, consider writing a utility function. Then, reduce the scope of your variables. The u,v declaration makes it hard to see that these two are just used in three lines of code. Declare them as "unsigned const u = ..." to make this clear and additionally get the compiler to check that you don't accidentally modify them afterwards.
Let p be a matrix of first set of locations where each row gives the coordinates of a particular point. Similarly, let q be a matrix of second set of locations where each row gives the coordinates of a particular point.
Then formula for pairwise squared Euclidean distance is:
k(i,j) = (p(i,:) - q(j,:))*(p(i,:) - q(j,:))',
where p(i,:) denotes i-th row of matrix p, and p' denotes the transpose of p.
I would like to compute matrix k on CUDA-enabled GPU (NVidia Tesla) in C++. I have OpenCV v.2.4.1 with GPU support but I'm open to other alternatives, like Thrust library. However, I'm not too familiar with GPU programming. Can you suggest an efficient way to accomplish this task? What C++ libraries should I use?
The problem looks simple enough to make a library overkill.
Without knowing the range of i and j, I'd suggest you partition k into blocks of a multiple of 32 threads each and in each block, compute
float sum, myp[d];
int i = blockIdx.x*blockDim.x + threadIdx.x;
for ( int kk = 0 ; kk < d ; kk++ )
myp[kk] = p(i,kk);
for ( j = blockIdx.y*blockDim.y ; j < (blockIdx.y+1)*blockDim ; j++ ) {
sum = 0.0f;
#pragma unroll
for ( int kk = 0 ; kk < d ; kk++ ) {
temp = myp[kk] - q(j,kk);
sum += temp*temp;
}
k(i,j) = sum;
}
where I am assuming that your data has d dimensions and writing p(i,k), q(j,k) and k(i,j) to mean an access to a two-dimensional array. I also took the liberty in assuming that your data is of type float.
Note that depending on how k is stored, e.g. row-major or column-major, you may want to loop over i per thread instead to get coalesced writes to k.
I am looking for an elegant way to implement this. Basically i have a m x n matrix. Where each cell represents the pixel value, and the rows and columns represent the pixel rows and pixel columns of the image.
Since i basically mapped points from a HDF file, along with their corresponding pixel values. We basically have alot of empty pixels. Which are filled with 0.
Now what i need to do is take the average of the surrounding cell's, to average out of a pixel value for the missing cell.
Now i can brute force this but it becomes ugly fast. Is there any sort of elegant solution for this?
There's a well-known optimization to this filtering problem.
Integrate the cells in one direction (say horizontally)
Integrate the cells in the other direction (say vertically)
Take the difference between each cell and it's N'th neighbor to the left.
Take the difference between each cell and it's N'th lower neighbor
Like this:
for (i = 0; i < h; ++i)
for (j = 0; j < w-1; ++j)
A[i][j+1] += A[i][j];
for (i = 0; i < h-1; ++i)
for (j = 0; j < w; ++j)
A[i+1][j] += A[i][j]
for (i = 0; i < h; ++i)
for (j = 0; j < w-N; ++j)
A[i][j] -= A[i][j+N];
for (i = 0; i < h-N; ++i)
for (j = 0; j < w; ++j)
A[i][j] -= A[i-N][j];
What this does is:
The first pass makes each cell the sum of all of the cells on that row to it's left, including itself.
After the 2nd pass , each cell is the sum of all of the cells in a rectangle above and left of itselt (including it's own row and column)
After the 3rd pass, each cell is the sum of a rectangle above and to the right of itself, N columns wide.
After the 4th pass each cell is the sum of an NxN rectangle below and to the right of itself.
This takes 4 operations per cell to compute the sum, as opposed to 8 for brute force (assuming you're doing a 3x3 averaging filter).
The cool thing is that if you use ordinary two's-complement arithmetic, you don't have to worry about any overflows in the first two passes; they cancel out in the last two passes.
The main issues here are utilizing all available cores and cache effeciency.
You might be interested in checking fast implementation of convolution.
However, since you do it with Boost, you can check how this is done in this Boost example
I beleive you have to change only the convolution kernel for your specialized task.