Consider the following code:
class A
{
B* b; // an A object owns a B object
A() : b(NULL) { } // we don't know what b will be when constructing A
void calledVeryOften(…)
{
if (b)
delete b;
b = new B(param1, param2, param3, param4);
}
};
My goal: I need to maximize performance, which, in this case, means minimizing the amount of memory allocations.
The obvious thing to do here is to change B* b; to B b;. I see two problems with this approach:
I need to initialize b in the constructor. Since I don't know what b will be, this means I need to pass dummy values to B's constructor. Which, IMO, is ugly.
In calledVeryOften(), I'll have to do something like this: b = B(…), which is wrong for two reasons:
The destructor of b won't be called.
A temporary instance of B will be constructed, then copied into b, then the destructor of the temporary instance will be called. The copy and the destructor call could be avoided. Worse, calling the destructor could very well result in undesired behavior.
So what solutions do I have to avoid using new? Please keep in mind that:
I only have control over A. I don't have control over B, and I don't have control over the users of A.
I want to keep the code as clean and readable as possible.
I liked Klaim's answer, so I wrote this up real fast. I don't claim perfect correctness but it looks pretty good to me. (i.e., the only testing it has is the sample main below)
It's a generic lazy-initializer. The space for the object is allocated once, and the object starts at null. You can then create, over-writing previous objects, with no new memory allocations.
It implements all the necessary constructors, destructor, copy/assignment, swap, yadda-yadda. Here you go:
#include <cassert>
#include <new>
template <typename T>
class lazy_object
{
public:
// types
typedef T value_type;
typedef const T const_value_type;
typedef value_type& reference;
typedef const_value_type& const_reference;
typedef value_type* pointer;
typedef const_value_type* const_pointer;
// creation
lazy_object(void) :
mObject(0),
mBuffer(::operator new(sizeof(T)))
{
}
lazy_object(const lazy_object& pRhs) :
mObject(0),
mBuffer(::operator new(sizeof(T)))
{
if (pRhs.exists())
{
mObject = new (buffer()) T(pRhs.get());
}
}
lazy_object& operator=(lazy_object pRhs)
{
pRhs.swap(*this);
return *this;
}
~lazy_object(void)
{
destroy();
::operator delete(mBuffer);
}
// need to make multiple versions of this.
// variadic templates/Boost.PreProccesor
// would help immensely. For now, I give
// two, but it's easy to make more.
void create(void)
{
destroy();
mObject = new (buffer()) T();
}
template <typename A1>
void create(const A1 pA1)
{
destroy();
mObject = new (buffer()) T(pA1);
}
void destroy(void)
{
if (exists())
{
mObject->~T();
mObject = 0;
}
}
void swap(lazy_object& pRhs)
{
std::swap(mObject, pRhs.mObject);
std::swap(mBuffer, pRhs.mBuffer);
}
// access
reference get(void)
{
return *get_ptr();
}
const_reference get(void) const
{
return *get_ptr();
}
pointer get_ptr(void)
{
assert(exists());
return mObject;
}
const_pointer get_ptr(void) const
{
assert(exists());
return mObject;
}
void* buffer(void)
{
return mBuffer;
}
// query
const bool exists(void) const
{
return mObject != 0;
}
private:
// members
pointer mObject;
void* mBuffer;
};
// explicit swaps for generality
template <typename T>
void swap(lazy_object<T>& pLhs, lazy_object<T>& pRhs)
{
pLhs.swap(pRhs);
}
// if the above code is in a namespace, don't put this in it!
// specializations in global namespace std are allowed.
namespace std
{
template <typename T>
void swap(lazy_object<T>& pLhs, lazy_object<T>& pRhs)
{
pLhs.swap(pRhs);
}
}
// test use
#include <iostream>
int main(void)
{
// basic usage
lazy_object<int> i;
i.create();
i.get() = 5;
std::cout << i.get() << std::endl;
// asserts (not created yet)
lazy_object<double> d;
std::cout << d.get() << std::endl;
}
In your case, just create a member in your class: lazy_object<B> and you're done. No manual releases or making copy-constructors, destructors, etc. Everything is taken care of in your nice, small re-usable class. :)
EDIT
Removed the need for vector, should save a bit of space and what-not.
EDIT2
This uses aligned_storage and alignment_of to use the stack instead of heap. I used boost, but this functionality exists in both TR1 and C++0x. We lose the ability to copy, and therefore swap.
#include <boost/type_traits/aligned_storage.hpp>
#include <cassert>
#include <new>
template <typename T>
class lazy_object_stack
{
public:
// types
typedef T value_type;
typedef const T const_value_type;
typedef value_type& reference;
typedef const_value_type& const_reference;
typedef value_type* pointer;
typedef const_value_type* const_pointer;
// creation
lazy_object_stack(void) :
mObject(0)
{
}
~lazy_object_stack(void)
{
destroy();
}
// need to make multiple versions of this.
// variadic templates/Boost.PreProccesor
// would help immensely. For now, I give
// two, but it's easy to make more.
void create(void)
{
destroy();
mObject = new (buffer()) T();
}
template <typename A1>
void create(const A1 pA1)
{
destroy();
mObject = new (buffer()) T(pA1);
}
void destroy(void)
{
if (exists())
{
mObject->~T();
mObject = 0;
}
}
// access
reference get(void)
{
return *get_ptr();
}
const_reference get(void) const
{
return *get_ptr();
}
pointer get_ptr(void)
{
assert(exists());
return mObject;
}
const_pointer get_ptr(void) const
{
assert(exists());
return mObject;
}
void* buffer(void)
{
return mBuffer.address();
}
// query
const bool exists(void) const
{
return mObject != 0;
}
private:
// types
typedef boost::aligned_storage<sizeof(T),
boost::alignment_of<T>::value> storage_type;
// members
pointer mObject;
storage_type mBuffer;
// non-copyable
lazy_object_stack(const lazy_object_stack& pRhs);
lazy_object_stack& operator=(lazy_object_stack pRhs);
};
// test use
#include <iostream>
int main(void)
{
// basic usage
lazy_object_stack<int> i;
i.create();
i.get() = 5;
std::cout << i.get() << std::endl;
// asserts (not created yet)
lazy_object_stack<double> d;
std::cout << d.get() << std::endl;
}
And there we go.
Simply reserve the memory required for b (via a pool or by hand) and reuse it each time you delete/new instead of reallocating each time.
Example :
class A
{
B* b; // an A object owns a B object
bool initialized;
public:
A() : b( malloc( sizeof(B) ) ), initialized(false) { } // We reserve memory for b
~A() { if(initialized) destroy(); free(b); } // release memory only once we don't use it anymore
void calledVeryOften(…)
{
if (initialized)
destroy();
create();
}
private:
void destroy() { b->~B(); initialized = false; } // hand call to the destructor
void create( param1, param2, param3, param4 )
{
b = new (b) B( param1, param2, param3, param4 ); // in place new : only construct, don't allocate but use the memory that the provided pointer point to
initialized = true;
}
};
In some cases a Pool or ObjectPool could be a better implementation of the same idea.
The construction/destruction cost will then only be dependante on the constructor and destructor of the B class.
How about allocating the memory for B once (or for it's biggest possible variant) and using placement new?
A would store char memB[sizeof(BiggestB)]; and a B*. Sure, you'd need to manually call the destructors, but no memory would be allocated/deallocated.
void* p = memB;
B* b = new(p) SomeB();
...
b->~B(); // explicit destructor call when needed.
If B correctly implements its copy assignment operator then b = B(...) should not call any destructor on b. It is the most obvious solution to your problem.
If, however, B cannot be appropriately 'default' initialized you could do something like this. I would only recommend this approach as a last resort as it is very hard to get safe. Untested, and very probably with corner case exception bugs:
// Used to clean up raw memory of construction of B fails
struct PlacementHelper
{
PlacementHelper() : placement(NULL)
{
}
~PlacementHelper()
{
operator delete(placement);
}
void* placement;
};
void calledVeryOften(....)
{
PlacementHelper hp;
if (b == NULL)
{
hp.placement = operator new(sizeof(B));
}
else
{
hp.placement = b;
b->~B();
b = NULL; // We can't let b be non-null but point at an invalid B
}
// If construction throws, hp will clean up the raw memory
b = new (placement) B(param1, param2, param3, param4);
// Stop hp from cleaning up; b points at a valid object
hp.placement = NULL;
}
A quick test of Martin York's assertion that this is a premature optimisation, and that new/delete are optimised well beyond the ability of mere programmers to improve. Obviously the questioner will have to time his own code to see whether avoiding new/delete helps him, but it seems to me that for certain classes and uses it will make a big difference:
#include <iostream>
#include <vector>
int g_construct = 0;
int g_destruct = 0;
struct A {
std::vector<int> vec;
A (int a, int b) : vec((a*b) % 2) { ++g_construct; }
~A() {
++g_destruct;
}
};
int main() {
const int times = 10*1000*1000;
#if DYNAMIC
std::cout << "dynamic\n";
A *x = new A(1,3);
for (int i = 0; i < times; ++i) {
delete x;
x = new A(i,3);
}
#else
std::cout << "automatic\n";
char x[sizeof(A)];
A* yzz = new (x) A(1,3);
for (int i = 0; i < times; ++i) {
yzz->~A();
new (x) A(i,3);
}
#endif
std::cout << g_construct << " constructors and " << g_destruct << " destructors\n";
}
$ g++ allocperf.cpp -oallocperf -O3 -DDYNAMIC=0 -g && time ./allocperf
automatic
10000001 constructors and 10000000 destructors
real 0m7.718s
user 0m7.671s
sys 0m0.030s
$ g++ allocperf.cpp -oallocperf -O3 -DDYNAMIC=1 -g && time ./allocperf
dynamic
10000001 constructors and 10000000 destructors
real 0m15.188s
user 0m15.077s
sys 0m0.047s
This is roughly what I expected: the GMan-style (destruct/placement new) code takes twice as long, and is presumably doing twice as much allocation. If the vector member of A is replaced with an int, then the GMan-style code takes a fraction of a second. That's GCC 3.
$ g++-4 allocperf.cpp -oallocperf -O3 -DDYNAMIC=1 -g && time ./allocperf
dynamic
10000001 constructors and 10000000 destructors
real 0m5.969s
user 0m5.905s
sys 0m0.030s
$ g++-4 allocperf.cpp -oallocperf -O3 -DDYNAMIC=0 -g && time ./allocperf
automatic
10000001 constructors and 10000000 destructors
real 0m2.047s
user 0m1.983s
sys 0m0.000s
This I'm not so sure about, though: now the delete/new takes three times as long as the destruct/placement new version.
[Edit: I think I've figured it out - GCC 4 is faster on the 0-sized vectors, in effect subtracting a constant time from both versions of the code. Changing (a*b)%2 to (a*b)%2+1 restores the 2:1 time ratio, with 3.7s vs 7.5]
Note that I've not taken any special steps to correctly align the stack array, but printing the address shows it's 16-aligned.
Also, -g doesn't affect the timings. I left it in accidentally after I was looking at the objdump to check that -O3 hadn't completely removed the loop. That pointers called yzz because searching for "y" didn't go quite as well as I'd hoped. But I've just re-run without it.
Are you sure that memory allocation is the bottleneck you think it is? Is B's constructor trivially fast?
If memory allocation is the real problem, then placement new or some of the other solutions here might well help.
If the types and ranges of the param[1..4] are reasonable, and the B constructor "heavy", you might also consider using a cached set of B. This presumes you are actually allowed to have more than one at a time, that it does not front a resource for example.
Like the others have already suggested: Try placement new..
Here is a complete example:
#include <new>
#include <stdio.h>
class B
{
public:
int dummy;
B (int arg)
{
dummy = arg;
printf ("C'Tor called\n");
}
~B ()
{
printf ("D'tor called\n");
}
};
void called_often (B * arg)
{
// call D'tor without freeing memory:
arg->~B();
// call C'tor without allocating memory:
arg = new(arg) B(10);
}
int main (int argc, char **args)
{
B test(1);
called_often (&test);
}
I'd go with boost::scoped_ptr here:
class A: boost::noncopyable
{
typedef boost::scoped_ptr<B> b_ptr;
b_ptr pb_;
public:
A() : pb_() {}
void calledVeryOften( /*…*/ )
{
pb_.reset( new B( params )); // old instance deallocated
// safely use *pb_ as reference to instance of B
}
};
No need for hand-crafted destructor, A is non-copyable, as it should be in your original code, not to leak memory on copy/assignment.
I'd suggest to re-think the design though if you need to re-allocate some inner state object very often. Look into Flyweight and State patterns.
Erm, is there some reason you can't do this?
A() : b(new B()) { }
void calledVeryOften(…)
{
b->setValues(param1, param2, param3, param4);
}
(or set them individually, since you don't have access to the B class - those values do have mutator-methods, right?)
Just have a pile of previously used Bs, and re-use them.
Related
In C++11/14, an object can be transfered by move or smark pointer.
(1) This is an example for move:
class MoveClass {
private:
int *tab_;
int alloc_;
void Reset() {
tab_ = nullptr;
alloc_ = 0;
}
void Release() {
if (tab_) delete[] tab_;
tab_ = nullptr;
alloc_ = 0;
}
public:
MoveClass() : tab_(nullptr), alloc_(0) {}
~MoveClass() {
Release();
}
MoveClass(MoveClass && other) : tab_( other.tab_ ), alloc_( other.alloc_ ) {
other.Reset();
}
MoveClass & operator=(MoveClass && other) {
if (this == &other) return *this;
std::swap(tab_, other.tab_);
std::swap(alloc_, other.alloc_);
return *this;
}
void DoSomething() { /*...*/ }
};
When we use this movable MoveClass, we can write code like this :
int main() {
MoveClass a;
a.DoSomething(); // now a has some memory resource
MoveClass b = std::move(a); // move a to b
return 0;
}
Always write move-constructor/move-operator= is boring, use shared_ptr/unique_ptr some times have the same effect, just like java, reference/pointer everywhere.
(2) Here is the example:
class NoMoveClass {
private:
int *tab_;
int alloc_;
void Release() {
if (tab_) delete[] tab_;
tab_ = nullptr;
alloc_ = 0;
}
public:
NoMoveClass() : tab_(nullptr), alloc_(0) {}
~NoMoveClass() {
Release();
}
MoveClass(MoveClass && other) = delete;
MoveClass & operator=(MoveClass && other) = delete;
void DoSomething() { /*...*/ }
};
We can use it like this:
int main() {
std::shared_ptr<NoMoveClass> a(new NoMoveClass());
a->DoSomething();
std::shared_ptr<NoMoveClass> b = a; // also move a to b by copy pointer.
return 0;
}
Is it a good habit to always use the 2nd one?
Why many libraries, STL use the 1st one, not the 1st one ?
Always write move-constructor/move-operator= is boring
You almost never need to write your own move constructor/assignment, because (as you mentioned) C++ supplies you with a number of basic resource managers - smart pointers, containers, smart locks etc.
By relying on those in your class you enable default move operations and that results in minimal code size as well as proper semantics:
class MoveClass {
private:
std::vector<int> data;
public:
void DoSomething() { /*...*/ }
};
Now you can use your class as in (1) or as a member in other classes, you can be sure that it has move semantics and you did it in the minimal possible amount of code.
The point is one usually only needs to implement move operations for the most low-level classes which are probably covered already by STL, or if some weird specific behavior is needed - both cases should be really rare and not result in "Always writing move-constructor/move-operator=".
Also notice that while approach (1) is unnecessarily verbose, (2) is just unacceptable - you have a resource managing class that doesn't do its job and as a result you have to wrap it in smart pointers everywhere in your code, making it harder to understand and eventually resulting in even more code than (1)
I was trying to write a sample code for implementing shared pointer [just for practice].
In this following example,
why compiler is not complaining about modifying other_T
And why copy constructor SharedPtr(const T& other_T) is not getting called ?
Here is the code snippet.
#include <iostream>
using namespace std;
#define DBG cout<<"[DEBUG]"<<__PRETTY_FUNCTION__<<endl
class RefCount
{
protected:
int m_ref;
RefCount(){ DBG; m_ref = 1 ; }
void reference(){ DBG; ++m_ref; }
void dereference(){ DBG;--m_ref; }
};
template <class T>
class SharedPtr : public RefCount
{
T* m_T;
public:
SharedPtr() { DBG; m_T = new T; }
SharedPtr(const T& other_T){
DBG;
m_T = other_T.m_T;
other_T.dereference();
other_T.m_T = NULL;
}
~SharedPtr() {
DBG;
dereference();
cout<<m_ref<<endl;
if(m_ref <= 0 && m_T != NULL ){
cout<<"Destroying"<<endl;
delete m_T;
m_T = NULL;
}
}
};
class A{};
int main()
{
SharedPtr<A> obj;
cout<<"assigning "<<endl;
SharedPtr<A> obj2 = obj;
cout<<"END"<<endl;
return 0;
}
and the result is segfault.
Your primary problem is that the copy constructor is being called--but you haven't defined a copy constructor, so you're getting the copy constructor that's defined by the compiler by default.
That copy constructor just does a member-wise copy. That means you've allocated one A with new, then pointed two SharedPtr objects at that same A. The first one to get destroyed deletes the A object. Then the second one gets destroyed, attempts to delete the same object again, and havoc ensues.
In the end, it doesn't look to me like much (any?) of this is going to make any real difference though. I'm pretty sure your basic design is broken. To get a working shared pointer, you have one reference count and "raw" pointer to the final object. Then you have N SharedPtr objects referring to that one ref count/pointer structure that in turn refers to the final object.
You're trying to combine the raw pointer/ref count into the individual SharedPtr, and I don't see any way that can actually work.
It also seems to me that the basic concept of what you've called a RefCount is really part of the design of a SharedPtr. As such, I think its definition should be nested inside that of SharedPtr (and probably made private, since the outside world has no reason to know it exists, not to mention being able to access it directly).
With those taken into account, the code might end up something like this:
#include <iostream>
using namespace std;
#define DBG cout<<"[DEBUG]"<<__PRETTY_FUNCTION__<<endl
template <class T>
class SharedPtr {
template <class U>
struct Ref {
mutable int m_ref;
U *data;
Ref(T *data) : m_ref(1), data(data) { DBG; }
void add_ref() const { DBG; ++m_ref; std::cout << "m_ref=" << m_ref << "\n"; }
void sub_ref() const { DBG; --m_ref; std::cout << "m_ref=" << m_ref << "\n"; }
~Ref() { delete data; }
};
Ref<T> *r;
public:
SharedPtr(T *data) { DBG; r = new Ref<T>(data); }
SharedPtr(SharedPtr const &p) : r(p.r) { DBG; r->add_ref(); }
~SharedPtr() {
DBG;
r->sub_ref();
if (0 == r->m_ref) {
delete r;
std::cout << "deleted pointee\n";
}
}
};
class A{};
int main() {
SharedPtr<A> obj(new A);
cout<<"copying "<<endl;
SharedPtr<A> obj2 = obj;
cout<<"END"<<endl;
return 0;
}
Notes: though this fixes at least some of the basic design, it's still quite a ways short of usable. It's missing the dereference operator, so you can't use the pointer to get to the value it points at. It'll break completely in a multi-threaded environment. I haven't thought enough about it to be sure, but my immediate guess is that it's probably not exception safe either.
I have a map of addresses that allows me to store arbitrary data with objects. Basically, a library I'm writing has a templated function that winds up storing arbitrary data with objects.
std::map<void *, MyUserData>
This works, until the object passed in is destroyed, leaving its user data in the map. I want the associated user data to be removed as well, so I need to somehow listen for the destructor of the passed in object,
Some example code that illustrates the problem:
#include <map>
#include <memory>
struct MyUserData
{
int someNum;
};
std::map<void *, MyUserData> myMap;
template <typename T>
registerObject<T>(const std::shared_ptr<T> & _object)
{
static inc = 0;
myMap[(void *)&_object->get()].someNum = inc++;
}
struct MyObject
{
int asdf;
};
int main(int _argc, char ** _argv)
{
auto obj = std::make_shared<MyObject>();
obj->asdf = 5;
registerObject(obj);
obj = 0;
//The user data is still there. I want it to be removed at this point.
}
My current solution is to set a custom deleter on the shared_ptr. This signals me for when the object's destructor is called, and tells me when to remove the associated user data. Unfortunately, this requires my library to create the shared_ptr, as there is no "set_deleter" function. It must be initialized in the constructor.
mylib::make_shared<T>(); //Annoying!
I could also have the user manually remove their objects:
mylib::unregister<T>(); //Equally annoying!
My goal is to be able to lazily add objects without any prior-registration.
In a grand summary, I want to detect when the object is deleted, and know when to remove its counterpart from the std::map.
Any suggestions?
P.S. Should I even worry about leaving the user data in the map? What are the chances that an object is allocated with the same address as a previously deleted object? (It would end up receiving the same user data as far as my lib is concerned.)
EDIT: I don't think I expressed my problem very well initially. Rewritten.
From you code example, it looks like the external interface is
template <typename T>
registerObject<T>(const std::shared_ptr<T> & _object);
I assume there is a get-style API somewhere. Let's call this getRegisteredData. (It could be internal.)
Within the confines of the question, I'd use std::weak_ptr<void> instead of void*, as std::weak_ptr<T> can tell when there are no more "strong references" to the object around, but won't prevent the object from being deleted by maintaining a reference.
std::map<std::weak_ptr<void>, MyUserData> myMap;
template <typename T>
registerObject<T>(const std::shared_ptr<T> & _object)
{
static inc = 0;
Internal_RemoveDeadObjects();
myMap[std::weak_ptr<void>(_object)].someNum = inc++;
}
template <typename T>
MyUserData getRegisteredData(const std::shared_ptr<T> & _object)
{
Internal_RemoveDeadObjects();
return myMap[std::weak_ptr<void>(_object)];
}
void Internal_RemoveDeadObjects()
{
auto iter = myMap.cbegin();
while (iter != myMap.cend())
{
auto& weakPtr = (*iter).first;
const bool needsRemoval = !(weakPtr.expired());
if (needsRemoval)
{
auto itemToRemove = iter;
++iter;
myMap.erase(itemToRemove);
}
else
{
++iter;
}
}
}
Basically, std::weak_ptr and std::shared_ptr collaborate and std::weak_ptr can detect when there are no more std::shared_ptr references to the object in question. Once that is the case, we can remove the ancillary data from myMap. I'm using the two interfaces to myMap, your registerObject and my getRegisteredData as convenient places to call Internal_RemoveDeadObjects to perform the clean up.
Yes, this walks the entirety of myMap every time a new object is registered or the registered data is requested. Modify as you see fit or try a different design.
You ask "Should I even worry about leaving the user data in the map? What are the chances that an object is allocated with the same address as a previously deleted object?" In my experience, decidedly non-zero, so don't do this. :-)
I'd add a deregister method, and make the user deregister their objects. With the interface as given, where you're stripping the type away, I can't see a way to check for the ref-count, and C++ doesn't provide a way to check whether memory has been deleted or not.
I thought about it for a while and this is as far as I got:
#include <memory>
#include <map>
#include <iostream>
#include <cassert>
using namespace std;
struct MyUserData
{
int someNum;
};
map<void *, MyUserData> myMap;
template<class T>
class my_shared_ptr : public shared_ptr<T>
{
public:
my_shared_ptr() { }
my_shared_ptr(const shared_ptr<T>& s) : shared_ptr<T>(s) { }
my_shared_ptr(T* t) : shared_ptr<T>(t) { }
~my_shared_ptr()
{
if (unique())
{
myMap.erase(get());
}
}
};
template <typename T>
void registerObject(const my_shared_ptr<T> & _object)
{
static int inc = 0;
myMap[(void *)_object.get()].someNum = inc++;
}
struct MyObject
{
int asdf;
};
int main()
{
{
my_shared_ptr<MyObject> obj2;
{
my_shared_ptr<MyObject> obj = make_shared<MyObject>();
obj->asdf = 5;
registerObject(obj);
obj2 = obj;
assert(myMap.size() == 1);
}
/* obj is destroyed, but obj2 still points to the data */
assert(myMap.size() == 1);
}
/* obj2 is destroyed, nobody points to the data */
assert(myMap.size() == 0);
}
Note however that it wouldn't work if you wrote obj = nullptr; , or obj.reset(), since the object isn't destroyed in those cases (no destructor called). Also, you can't use auto with this solution.
Also, be careful not to call (void *)&_object.get() like you were doing. If I'm not terribly wrong, by that statement you're actually taking the address of the temporary that _object.get() returns, and casting it to void. That address, however, becomes invalid instantly after.
This sounds like a job for... boost::intrusive (http://www.boost.org/doc/libs/1_53_0/doc/html/intrusive.html)! I don't think the current interface will work exactly as it stands though. I'll try to work out a few more details a little later as I get a chance.
You can just do
map.erase(map.find(obj));
delete obj;
obj = 0;
this will call the destructor for your user data and remove it from the map.
Or you could make your own manager:
class Pointer;
extern std::map<Pointer,UserData> data;
class Pointer
{
private:
void * pointer;
public:
//operator ()
void * operator()()
{
return pointer;
}
//operator =
Pointer& operator= (void * ptr)
{
if(ptr == 0)
{
data.erase(data.find(pointer));
pointer = 0;
}
else
pointer = ptr;
return *this;
}
Pointer(void * ptr)
{
pointer = ptr;
}
Pointer()
{
pointer = 0;
}
~Pointer(){}
};
struct UserData
{
static int whatever;
UserData(){}
};
std::map<Pointer,UserData> data;
int main()
{
data[Pointer(new UserData())].whatever++;
data[Pointer(new UserData())].whatever++;
data[Pointer(new UserData())].whatever++;
data[Pointer(new UserData())].whatever++;
Pointer x(new UserData());
data[x].whatever;
x = 0;
return 0;
}
I need to pass a pointer to a class so some code I don't control. This code automatically free()s the pointer when it is done, but I need the class later. I hoped I could just make a 'wrapper' class that would keep the class from being deallocated without actually preventing the code from accessing it, but virtual calls don't work.
template <class T>
class PointerWrapper:public T
{
public:
T* p;
PointerWrapper(T *ptr)
{
p=ptr;
}
~PointerWrapper(void)
{
}
T* operator->() const
{
return p;
}
T& operator*() const
{
return *p;
}
};
void codeIDontControl(Example *ex)
{
ex->virtualfunction();
delete ex;
}
void myCode()
{
Example *ex=new Example();
codeIDontControl(ex);
do something with ex //doesn't work because ex has been freed
codeIDontControl(new PointerWrapper<Example>(ex));
do something with ex //ex hasn't been freed, but the changes made to it via
// Example::virtualfunction() in codeIDontControl() aren't there anymore
}
Basically, ex->virtualfunction() calls the virtual function in PointerWrapper itself instead of the virtual function in PointerWrapper->p. It seems that it's ignoring the -> operator?
Now, I don't need to use a PointerWrapper-esque class if there's a different way to do this, but it was all I could think of...
I can't modify Example either, but I can subclass it
You should provide Forwarder class - which redirects virtual calls to stored pointer. Freeing of forwarder class will not cause releasing of pointee. This approach does NOT need to do copy (which can be expensive/may be not implemented/or even not make sense):
struct Forwarder : Example
{
Example *impl;
Forwarder(Example *i) : impl(i) {}
void virtualfunction()
{
impl->virtualfunction();
}
};
Full code:
live demo:
#include <iostream>
#include <ostream>
using namespace std;
struct Example
{
virtual void virtualfunction()=0;
virtual ~Example() {}
};
struct Implmenetation : Example
{
bool alive;
Implmenetation() : alive(true) {}
void virtualfunction()
{
cout << "Implmenetation::virtualfunction alive=" << alive << endl;
}
~Implmenetation()
{
alive=false;
cout << "Implmenetation::~Implmenetation" << endl;
}
};
struct Forwarder : Example
{
Example *impl;
Forwarder(Example *i) : impl(i) {}
void virtualfunction()
{
impl->virtualfunction();
}
};
void codeIDontControl(Example *ex)
{
ex->virtualfunction();
delete ex;
}
void myCode()
{
Implmenetation impl;
codeIDontControl(new Forwarder(&impl));
//do something with ex //doesn't work because ex has been freed
impl.virtualfunction();
}
int main()
{
myCode();
}
Output is:
Implmenetation::virtualfunction alive=1
Implmenetation::virtualfunction alive=1
Implmenetation::~Implmenetation
It's bad design, really. Only the allocator should be allowed to free memory. Functions like this are dangerous, as they leave with with dangling pointers.
This is just off the top of my head, maybe you could try something like this? It's not a safe idea, but if someone implemented it I would be interested to know what happens.
class Foo
{
Foo(Foo* copy) : m_copy(copy) {}
~Foo() { if(m_copy) { *m_copy = *this; } } // Use copy constructor to create copy on destuction.
Foo* m_copy;
}
Foo copy(NULL);
Foo* original = new Foo(©);
MethodThatDeletes(original);
// Original should be destroyed, and made a copy in the process.
original = NULL;
// Copy should be a copy of the original at it's last know state.
copy;
You are providing a Example* to codeIDontControl. The overloaded operator-> on PointerWrapper is an for the PointerWrapper type not the Example* type or even the PointerWrapper* type (i.e. for a value or reference of that type not a pointer to that type).
Since the function you need to call isn't controlled by you, you will need to provide a complete wrapper of the type it expects as a wrapper over the instance you wish to control the lifetime of.
In C++, the T q = dynamic_cast<T>(p); construction performs a runtime cast of a pointer p to some other pointer type T that must appear in the inheritance hierarchy of the dynamic type of *p in order to succeed. That is all fine and well.
However, it is also possible to perform dynamic_cast<void*>(p), which will simply return a pointer to the "most derived object" (see 5.2.7::7 in C++11). I understand that this feature probably comes out for free in the implementation of the dynamic cast, but is it useful in practice? After all, its return type is at best void*, so what good is this?
The dynamic_cast<void*>() can indeed be used to check for identity, even if dealing with multiple inheritance.
Try this code:
#include <iostream>
class B {
public:
virtual ~B() {}
};
class D1 : public B {
};
class D2 : public B {
};
class DD : public D1, public D2 {
};
namespace {
bool eq(B* b1, B* b2) {
return b1 == b2;
}
bool eqdc(B* b1, B *b2) {
return dynamic_cast<void*>(b1) == dynamic_cast<void*>(b2);
}
};
int
main() {
DD *dd = new DD();
D1 *d1 = dynamic_cast<D1*>(dd);
D2 *d2 = dynamic_cast<D2*>(dd);
std::cout << "eq: " << eq(d1, d2) << ", eqdc: " << eqdc(d1, d2) << "\n";
return 0;
}
Output:
eq: 0, eqdc: 1
Bear in mind that C++ lets you do things the old C way.
Suppose I have some API in which I'm forced to smuggle an object pointer through the type void*, but where the callback it's eventually passed to will know its dynamic type:
struct BaseClass {
typedef void(*callback_type)(void*);
virtual callback_type get_callback(void) = 0;
virtual ~BaseClass() {}
};
struct ActualType: BaseClass {
callback_type get_callback(void) { return my_callback; }
static void my_callback(void *p) {
ActualType *self = static_cast<ActualType*>(p);
...
}
};
void register_callback(BaseClass *p) {
// service.register_listener(p->get_callback(), p); // WRONG!
service.register_listener(p->get_callback(), dynamic_cast<void*>(p));
}
The WRONG! code is wrong because it fails in the presence of multiple inheritance (and isn't guaranteed to work in the absence, either).
Of course, the API isn't very C++-style, and even the "right" code can go wrong if I inherit from ActualType. So I wouldn't claim that this is a brilliant use of dynamic_cast<void*>, but it's a use.
Casting pointers to void* has its importance since way back in C days.
Most suitable place is inside the memory manager of Operating System. It has to store all the pointer and the object of what you create. By storing it in void* they generalize it to store any object on to the memory manager data structure which could be heap/B+Tree or simple arraylist.
For simplicity take example of creating a list of generic items(List contains items of completely different classes). That would be possible only using void*.
standard says that dynamic_cast should return null for illegal type casting and standard also guarantees that any pointer should be able to type cast it to void* and back from it with only exception of function pointers.
Normal application level practical usage is very less for void* typecasting but it is used extensively in low level/embedded systems.
Normally you would want to use reinterpret_cast for low level stuff, like in 8086 it is used to offset pointer of same base to get the address but not restricted to this.
Edit:
Standard says that you can convert any pointer to void* even with dynamic_cast<> but it no where states that you can not convert the void* back to the object.
For most usage, its a one way street but there are some unavoidable usage.
It just says that dynamic_cast<> needs type information for converting it back to the requested type.
There are many API's that require you to pass void* to some object eg. java/Jni Code passes the object as void*.
Without type info you cannot do the casting.If you are confident enough that type requested is correct you can ask compiler to do the dynmaic_cast<> with a trick.
Look at this code:
class Base_Class {public : virtual void dummy() { cout<<"Base\n";} };
class Derived_Class: public Base_Class { int a; public: void dummy() { cout<<"Derived\n";} };
class MostDerivedObject : public Derived_Class {int b; public: void dummy() { cout<<"Most\n";} };
class AnotherMostDerivedObject : public Derived_Class {int c; public: void dummy() { cout<<"AnotherMost\n";} };
int main () {
try {
Base_Class * ptr_a = new Derived_Class;
Base_Class * ptr_b = new MostDerivedObject;
Derived_Class * ptr_c,*ptr_d;
ptr_c = dynamic_cast< Derived_Class *>(ptr_a);
ptr_d = dynamic_cast< Derived_Class *>(ptr_b);
void* testDerived = dynamic_cast<void*>(ptr_c);
void* testMost = dynamic_cast<void*>(ptr_d);
Base_Class* tptrDerived = dynamic_cast<Derived_Class*>(static_cast<Base_Class*>(testDerived));
tptrDerived->dummy();
Base_Class* tptrMost = dynamic_cast<Derived_Class*>(static_cast<Base_Class*>(testMost));
tptrMost->dummy();
//tptrMost = dynamic_cast<AnotherMostDerivedObject*>(static_cast<Base_Class*>(testMost));
//tptrMost->dummy(); //fails
} catch (exception& my_ex) {cout << "Exception: " << my_ex.what();}
system("pause");
return 0;
}
Please correct me if this is not correct in any way.
it is usefull when we put the storage back to memory pool but we only keep a pointer to the base class. This case we should figure out the original address.
Expanding on #BruceAdi's answer and inspired by this discussion, here's a polymorphic situation which may require pointer adjustment. Suppose we have this factory-type setup:
struct Base { virtual ~Base() = default; /* ... */ };
struct Derived : Base { /* ... */ };
template <typename ...Args>
Base * Factory(Args &&... args)
{
return ::new Derived(std::forward<Args>(args)...);
}
template <typename ...Args>
Base * InplaceFactory(void * location, Args &&... args)
{
return ::new (location) Derived(std::forward<Args>(args)...);
}
Now I could say:
Base * p = Factory();
But how would I clean this up manually? I need the actual memory address to call ::operator delete:
void * addr = dynamic_cast<void*>(p);
p->~Base(); // OK thanks to virtual destructor
// ::operator delete(p); // Error, wrong address!
::operator delete(addr); // OK
Or I could re-use the memory:
void * addr = dynamic_cast<void*>(p);
p->~Base();
p = InplaceFactory(addr, "some", "arguments");
delete p; // OK now
Don't do that at home
struct Base {
virtual ~Base ();
};
struct D : Base {};
Base *create () {
D *p = new D;
return p;
}
void *destroy1 (Base *b) {
void *p = dynamic_cast<void*> (b);
b->~Base ();
return p;
}
void destroy2 (void *p) {
operator delete (p);
}
int i = (destroy2 (destroy1 (create ())), i);
Warning: This will not work if D is defined as:
struct D : Base {
void* operator new (size_t);
void operator delete (void*);
};
and there is no way to make it work.
This might be one way to provide an Opaque Pointer through an ABI. Opaque Pointers -- and, more generally, Opaque Data Types -- are used to pass objects and other resources around between library code and client code in such a way that the client code can be isolated from the implementation details of the library. There are other ways to accomplish this, to be sure, and maybe some of them would be better for a particular use case.
Windows makes a lot of use of Opaque Pointers in its API. HANDLE is, I believe, generally an opaque pointer to the actual resource you have a HANDLE to, for example. HANDLEs can be Kernel Objects like files, GDI objects, and all sorts of User Objects of various kinds -- all of which must be vastly different in implementation, but all are returned as a HANDLE to the user.
#include <iostream>
#include <string>
#include <iomanip>
using namespace std;
/*** LIBRARY.H ***/
namespace lib
{
typedef void* MYHANDLE;
void ShowObject(MYHANDLE h);
MYHANDLE CreateObject();
void DestroyObject(MYHANDLE);
};
/*** CLIENT CODE ***/
int main()
{
for( int i = 0; i < 25; ++i )
{
cout << "[" << setw(2) << i << "] :";
lib::MYHANDLE h = lib::CreateObject();
lib::ShowObject(h);
lib::DestroyObject(h);
cout << "\n";
}
}
/*** LIBRARY.CPP ***/
namespace impl
{
class Base { public: virtual ~Base() { cout << "[~Base]"; } };
class Foo : public Base { public: virtual ~Foo() { cout << "[~Foo]"; } };
class Bar : public Base { public: virtual ~Bar() { cout << "[~Bar]"; } };
};
lib::MYHANDLE lib::CreateObject()
{
static bool init = false;
if( !init )
{
srand((unsigned)time(0));
init = true;
}
if( rand() % 2 )
return static_cast<impl::Base*>(new impl::Foo);
else
return static_cast<impl::Base*>(new impl::Bar);
}
void lib::DestroyObject(lib::MYHANDLE h)
{
delete static_cast<impl::Base*>(h);
}
void lib::ShowObject(lib::MYHANDLE h)
{
impl::Foo* foo = dynamic_cast<impl::Foo*>(static_cast<impl::Base*>(h));
impl::Bar* bar = dynamic_cast<impl::Bar*>(static_cast<impl::Base*>(h));
if( foo )
cout << "FOO";
if( bar )
cout << "BAR";
}