A method of creating simple game GUI - c++

I have been able to find a lot of information on actual logic development for games. I would really like to make a card game, but I just dont understand how, based on the mouse position, an object can be selected (or atleast the proper way) First I thought of bounding box checking but not all my bitmaps are rectangles. Then I thought f making a hidden buffer wih each object having a different color, but it seems ridiculous to have to do it this way. I'm wondering how it is really done. For example, how does Adobe Flash know the object under the mouse?
Thanks

Your question is how to tell if the mouse is above a non-rectangular bitmap. I am assuming all your bitmaps are really rectangular, but they have transparent regions. You must already somehow be able to tell which part of your (rectangular) bitmap is transparent, depending on the scheme you use (e.g. if you designate a color as transparent or if you use a bit mask). You will also know the z-order (layering) of bitmaps on your canvas. Then when you detect a click at position (x,y), you need to find the list of rectangular bitmaps that span over that pixel. Sort them by z-order and for each one check whether the pixel is transparent or not. If yes, move on to the next bitmap. If no, then this is the selected bitmap.

Or you may use geometric solution. You should store / manage the geometry of the card / item. For example a list of shapes like circles, rectangles.
Maybe triangles or ellipses if you have lots of time. Telling that a triangle has a point or not is a mathematical question and can be numerically unstable if the triangle is very thin (algorithm has a dividing).. Fix: How to determine if a point is in a 2D triangle?
I voted for abc.

Related

How to handle mouse hovering for object [Allegro5/C++]

I want to be able to register/de-register Objects to a list and check if the mouse is hovering over them to display tool-tips. However I'm stumbling at the beginning.
I'm going to use: al_get_pixel & al_unmap_rgba to retrieve the alpha of each pixel and decide if it's visible enough to count as a hit when hovering over it with the mouse.
The major problem I'm having is working out how best to store this individual "hitmap" & the reference to the object that generated it; As many different types objects (as struct's) of different sizes may need hitmaps generated. I was hoping I could do something similar to checking if the complex object 'extends' the base object but I don't see how I can achieve this in c++.
Ps; I know I could create an array the size of the screen for each object, but I'm doing this mainly with the purpose of maximizing efficiency. I'd make dynamic sized arrays but...
al_get_pixel will work, but it will be terribly slow, even if you lock all your bitmaps, unless you use something like a picking buffer. The basic idea is to render every interactive area on each object with a different color id. This means you need to draw your scene twice, once normally, and once with picking colors. Then when you need to read back a mouse position, you can use the picking buffer to read a single pixel and get its color id.
You might also want to try different methods of collision detection, such as bounding boxes, bounding circles, or other easily collision detectable shapes.
There is a third option, which is pixel perfect collision. It involves making 1bpp masks out of all your objects and then checking for collision between those.

Best way to detect the window coordinates of a drawn line in c++ Builder

Using moveto and lineto to draw various lines on a window canvas...
What is the simplest way to determine at run-time if an object, like a bit map or a picture control is in "contact" (same x,y coordinates) with a line(s) that had been drawn with lineto on a window canvas?
A simple example would be a ball (bitmap or picture) "contacting" a drawn border and rebounding... What is the easiest way to know if "contact" occurs between the object, picture or bitmap and any line that exists on the window?
If I get it right you want collision detection/avoidance between circular object and line(s) while moving. There are more option to do this I know of...
Vector approach
you need to remember all the rendered stuff in vector form too so you need list of all rendered lines, objects etc ... Then for particular object loop through all the other ones and check for collision algebraically with vector math. Like detecting intersection between bounding boxes and then with particular line/polyline/polygon or what ever.
Raster approach
This is simpler to mplement and sometimes even faster but less acurate (only pixel precision). The idea is to clear object last position with background color. Then check all the pixels that would be rendered at new position and if no other than background color present then no colision occurs so you can render the pixels. If any non background color present then render the object on the original position again as collision occur.
You can also check between old and new position and place the object on first non collision position so you are closer to the edge...
This approach need fast pixel access otherwise it woul dbe too slow. Standard Canvas does not allow this without using BitBlt from GDI. Luckily VCL GRaphics::TBitmap has ScanLine[] property allowing direct pixel access without any performance hit if used right. See example of it in your other question I answered:
bitmap rotate using direct pixel access
accessing ScanLine[y][x] is as slow as Pixels[x][y] but you can store all the pointers to each line of bitmap once and then just use that instead which is the same as accessing your own 2D array. So you really need just bitmap->Height calls of ScanLine[y] for entire image rendering after any resize or assigment of bitmap...
If you got tile based scene you can use this approach on tiles instead of pixels something like this:
What is the best way to move an object on the screen? but it is in asm ...
Field approach
This one is also considered to be a vector approach but does not require collision checks. Instead each object creates repulsive force the bigger the closer you are to it which is added to the Newton/D'Alembert physics driving force. When coefficients set properly it will avoid collisions on its own. This is used also for automatic placement of items etc... for more info see:
How to implement a constraint solver for 2-D geometry?
Hybrid approach
You can combine any of the above approaches together to better suite your needs. For example see:
Path generation for non-intersecting disc movement on a plane

Data structures: alternatives to logic bitmap/pixmap

I have decided to rewrite an old Zatacka clone of mine. The old thing, running under Allegro 4, utilizes logic bitmap, that is a bitmap used for non-display purposes, reflecting directly the visible "what's on the screen and doesn't move" bitmap, but the integers stored in it represent logical meaning of things on screen, because the game got quite colorful. So the things that players see may be of any color possible, but game just remembers what kind of object each pixels represents.
The new clone is not supposed to use Allegro, so I could write the logic bitmap code myself. That said, I would appreciate if someone suggested some more efficient and precise alternatives.
Structure must be able to be kept up with bitmap/texture visible to players. Think about Worms game, but utilizing player invisible ground type variations, or something. In addition, following methods must be implemented:
Checking if all pixels in a circle belong to a small (~6) set of "colors" given as a parameter.
Painting all pixels in a circle with a single "color".
Painting all pixels in a circle, (except/only) ones in small set of "colors" provided as a parameter, with a single "color".
Painting a silhouette of rotated, preprocessed if you wish so, bitmap with a single "color". (That's the tricky one: would interpreting the bitmap as a stupid polygon with loads of right angles do the job?)
This is the minimum. If your structure supports shapes other than circles, that's great.

Creating foreground background array in QT

I'm having a problem with creating an array that gives me the information about 2 images that are drawn upon each other.
What I have is 1 image as background (the sea) and 1 image as foreground (landscape) the landscape is not so big as the sea, so when drawn upon each other you can see the sea as well as the landscape on it.
Now I want to make an array that sets me an 0 if it is the sea and a 1 if it is the landscape. So I could use
this array to do some collision detection later. The problem is I don't find how to make a bytearray from it.
off length * width of the images.
I have both images in an QImage, but I don't find how to create the array with a for loop or something.
Both images are drawn upon each other with the QPainter function.
Can someone help me?
Kind regards,
If you draw the two images upon each other with the QPainter class, you loose any information about them, they are just drawings now. you must create methods and objects to implement your school project. I know that you can't use the QGraphicsView, but what you need is to look how qgraphicsview works so you will have a bit of information on how to implement your own collision system.
1 - you need to keep the Retangle of your drawings ( all of them ) saved somewhere. a QList will do.
2 - you need the Positions of your Drawings too, so y ou know where they are, besides the retangles.
with the positions, and the rectangles, all you need to do is check if one rectangle intersects another.
I did it with 2 forloops and used black and blue to determine the fore and background. So I can only use black and blue.

OpenGL GL_SELECT or manual collision detection?

As seen in the image
I draw set of contours (polygons) as GL_LINE_STRIP.
Now I want to select curve(polygon) under the mouse to delete,move..etc in 3D .
I am wondering which method to use:
1.use OpenGL picking and selection. ( glRenderMode(GL_SELECT) )
2.use manual collision detection , by using a pick-ray and check whether the ray is inside each polygon.
I strongly recommend against GL_SELECT. This method is very old and absent in new GL versions, and you're likely to get problems with modern graphics cards. Don't expect it to be supported by hardware - probably you'd encounter a software (driver) fallback for this mode on many GPUs, provided it would work at all. Use at your own risk :)
Let me provide you with an alternative.
For solid, big objects, there's an old, good approach of selection by:
enabling and setting the scissor test to a 1x1 window at the cursor position
drawing the screen with no lighting, texturing and multisampling, assigning an unique solid colour for every "important" entity - this colour will become the object ID for picking
calling glReadPixels and retrieving the colour, which would then serve to identify the picked object
clearing the buffers, resetting the scissor to the normal size and drawing the scene normally.
This gives you a very reliable "per-object" picking method. Also, drawing and clearing only 1 pixel with minimal per-pixel operation won't really hurt your performance, unless you are short on vertex processing power (unlikely, I think) or have really a lot of objects and are likely to get CPU-bound on the number of draw calls (but then again, I believe it's possible to optimize this away to a single draw call if you could pass the colour as per-pixel data).
The colour in RGB is 3 unsigned bytes, but it should be possible to additionally use the alpha channel of the framebuffer for the last byte, so you'd get 4 bytes in total - enough to store any 32-bit pointer to the object as the colour.
Alternatively, you can create a dedicated framebuffer object with a specific pixel format (like GL_R32UI, or even GL_RG32UI if you need 64 bits) for that.
The above is a nice and quick alternative (both in terms of reliability and in implementation time) for the strict geometric approach.
I found that on new GPUs, the GL_SELECT mode is extremely slow. I played with a few different ways of fixing the problem.
The first was to do a CPU collision test, which worked, but wasn't as fast as I would have liked. It definitely slows down when you are casting rays into the screen (using gluUnproject) and then trying to find which object the mouse is colliding with. The only way I got satisfactory speeds was to use an octree to reduce the number of collision tests down and then do a bounding box collision test - however, this resulted in a method that was not pixel perfect.
The method I settled on was to first find all the objects under the mouse (using gluUnproject and bounding box collision tests) which is usually very fast. I then rendered each of the objects that have potentially collided with the mouse in the backbuffer as a different color. I then used glReadPixel to get the color under the mouse, and map that back to the object. glReadPixel is a slow call, since it has to read from the frame buffer. However, it is done once per frame, which ends up taking a negligible amount of time. You can speed it up by rendering to a PBO if you'd like.
Giawa
umanga, Cant see how to reply inline... maybe I should sign up :)
First of all I must apologize for giving you the wrong algo - i did the back face culling one. But the one you need is very similar which is why I got confused... d'oh.
Get the camera position to mouse vector as said before.
For each contour, loop through all the coords in pairs (0-1, 1-2, 2-3, ... n-0) in it and make a vec out of them as before. I.e. walk the contour.
Now do the cross prod of those two (contour edge to mouse vec) instead of between pairs like I said before, do that for all the pairs and vector add them all up.
At the end find the magnitude of the resulting vector. If the result is zero (taking into account rounding errors) then your outside the shape - regardless of facing. If your interested in facing then instead of the mag you can do that dot prod with the mouse vector to find the facing and test the sign +/-.
It works because the algo finds the amount of distance from the vector line to each point in turn. As you sum them up and you are outside then they all cancel out because the contour is closed. If your inside then they all sum up. Its actually Gauss's Law of electromagnetic fields in physics...
See:http://en.wikipedia.org/wiki/Gauss%27s_law and note "the right-hand side of the equation is the total charge enclosed by S divided by the electric constant" noting the word "enclosed" - i.e. zero means not enclosed.
You can still do that optimization with the bounding boxes for speed.
In the past I've used GL_SELECT to determine which object(s) contributed the pixel(s) of interest and then used computational geometry to get an accurate intersection with the object(s) if required.
Do you expect to select by clicking the contour (on the edge) or the interior of the polygon? Your second approach sounds like you want clicks in the interior to select the tightest containing polygon. I don't think that GL_SELECT after rendering GL_LINE_STRIP is going to make the interior responsive to clicks.
If this was a true contour plot (from the image I don't think it is, edges appear to intersect) then a much simpler algorithm would be available.
You cant use select if you stay with the lines because you would have to click on the line pixels rendered not the space inside the lines bounding them which I read as what you wish to do.
You can use Kos's answer but in order to render the space you need to solid fill it which would involve converting all of your contours to convex types which is painful. So I think that would work sometimes and give the wrong answer in some cases unless you did that.
What you need to do is use the CPU. You have the view extents from the viewport and the perspective matrix. With the mouse coord, generate the view to mouse pointer vector. You also have all the coords of the contours.
Take the first coord of the first contour and make a vector to the second coord. Make a vector out of them. Take 3rd coord and make a vector from 2 to 3 and repeat all the way around your contour and finally make the last one from coord n back to 0 again. For each pair in sequence find the cross product and sum up all the results. When you have that final summation vector keep hold of that and do a dot product with the mouse pointer direction vector. If its +ve then the mouse is inside the contour, if its -ve then its not and if 0 then I guess the plane of the contour and the mouse direction are parallel.
Do that for each contour and then you will know which of them are spiked by your mouse. Its up to you which one you want to pick from that set. Highest Z ?
It sounds like a lot of work but its not too bad and will give the right answer. You might like to additionally keep bounding boxes of all your contours then you can early out the ones off of the mouse vector by doing the same math as for the full vector but only on the 4 sides and if its not inside then the contour cannot be either.
The first is easy to implement and widely used.