c++ container for checking whether ordered data is in a collection - c++

I have data that is a set of ordered ints
[0] = 12345
[1] = 12346
[2] = 12454
etc.
I need to check whether a value is in the collection in C++, what container will have the lowest complexity upon retrieval? In this case, the data does not grow after initiailization. In C# I would use a dictionary, in c++, I could either use a hash_map or set. If the data were unordered, I would use boost's unordered collections. However, do I have better options since the data is ordered? Thanks
EDIT: The size of the collection is a couple of hundred items

Just to detail a bit over what have already been said.
Sorted Containers
The immutability is extremely important here: std::map and std::set are usually implemented in terms of binary trees (red-black trees for my few versions of the STL) because of the requirements on insertion, retrieval and deletion operation (and notably because of the invalidation of iterators requirements).
However, because of immutability, as you suspected there are other candidates, not the least of them being array-like containers. They have here a few advantages:
minimal overhead (in term of memory)
contiguity of memory, and thus cache locality
Several "Random Access Containers" are available here:
Boost.Array
std::vector
std::deque
So the only thing you actually need to do can be broken done in 2 steps:
push all your values in the container of your choice, then (after all have been inserted) use std::sort on it.
search for the value using std::binary_search, which has O(log(n)) complexity
Because of cache locality, the search will in fact be faster even though the asymptotic behavior is similar.
If you don't want to reinvent the wheel, you can also check Alexandrescu's [AssocVector][1]. Alexandrescu basically ported the std::set and std::map interfaces over a std::vector:
because it's faster for small datasets
because it can be faster for frozen datasets
Unsorted Containers
Actually, if you really don't care about order and your collection is kind of big, then a unordered_set will be faster, especially because integers are so trivial to hash size_t hash_method(int i) { return i; }.
This could work very well... unless you're faced with a collection that somehow causes a lot of collisions, because then unsorted containers will search over the "collisions" list of a given hash in linear time.
Conclusion
Just try the sorted std::vector approach and the boost::unordered_set approach with a "real" dataset (and all optimizations on) and pick whichever gives you the best result.
Unfortunately we can't really help more there, because it heavily depends on the size of the dataset and the repartition of its elements

If the data is in an ordered random-access container (e.g. std::vector, std::deque, or a plain array), then std::binary_search will find whether a value exists in logarithmic time. If you need to find where it is, use std::lower_bound (also logarithmic).

Use a sorted std::vector, and use a std::binary_search to search it.
Your other options would be a hash_map (not in the C++ standard yet but there are other options, e.g. SGI's hash_map and boost::unordered_map), or an std::map.
If you're never adding to your collection, a sorted vector with binary_search will most likely have better performance than a map.

I'd suggest using a std::vector<int> to store them and a std::binary_search or std::lower_bound to retrieve them.
Both std::unordered_set and std::set add significant memory overhead - and even though the unordered_set provides O(1) lookup, the O(logn) binary search will probably outperform it given that the data is stored contiguously (no pointer following, less chance of a page fault etc.) and you don't need to calculate a hash function.

If you already have an ordered array or std::vector<int> or similar container of the data, you can just use std::binary_search to probe each value. No setup time, but each probe will take O(log n) time, where n is the number of ordered ints you've got.
Alternately, you can use some sort of hash, such as boost::unordered_set<int>. This will require some time to set up, and probably more space, but each probe will take O(1) time on the average. (For small n, this O(1) could be more than the previous O(log n). Of course, for small n, the time is negligible anyway.)
There is no point in looking at anything like std::set or std::map, since those offer no advantage over binary search, given that the list of numbers to match will not change after being initialized.
So, the questions are the approximate value of n, and how many times you intend to probe the table. If you aren't going to check many values to see if they're in the ints provided, then setup time is very important, and std::binary_search on the sorted container is the way to go. If you're going to check a lot of values, it may be worth setting up a hash table. If n is large, the hash table will be faster for probing than binary search, and if there's a lot of probes this is the main cost.
So, if the number of ints to compare is reasonably small, or the number of probe values is small, go with the binary search. If the number of ints is large, and the number of probes is large, use the hash table.

Related

Is there a data structure like a C++ std set which also quickly returns the number of elements in a range?

In a C++ std::set (often implemented using red-black binary search trees), the elements are automatically sorted, and key lookups and deletions in arbitrary positions take time O(log n) [amortised, i.e. ignoring reallocations when the size gets too big for the current capacity].
In a sorted C++ std::vector, lookups are also fast (actually probably a bit faster than std::set), but insertions are slow (since maintaining sortedness takes time O(n)).
However, sorted C++ std::vectors have another property: they can find the number of elements in a range quickly (in time O(log n)).
i.e., a sorted C++ std::vector can quickly answer: how many elements lie between given x,y?
std::set can quickly find iterators to the start and end of the range, but gives no clue how many elements are within.
So, is there a data structure that allows all the speed of a C++ std::set (fast lookups and deletions), but also allows fast computation of the number of elements in a given range?
(By fast, I mean time O(log n), or maybe a polynomial in log n, or maybe even sqrt(n). Just as long as it's faster than O(n), since O(n) is almost the same as the trivial O(n log n) to search through everything).
(If not possible, even an estimate of the number to within a fixed factor would be useful. For integers a trivial upper bound is y-x+1, but how to get a lower bound? For arbitrary objects with an ordering there's no such estimate).
EDIT: I have just seen the
related question, which essentially asks whether one can compute the number of preceding elements. (Sorry, my fault for not seeing it before). This is clearly trivially equivalent to this question (to get the number in a range, just compute the start/end elements and subtract, etc.)
However, that question also allows the data to be computed once and then be fixed, unlike here, so that question (and the sorted vector answer) isn't actually a duplicate of this one.
The data structure you're looking for is an Order Statistic Tree
It's typically implemented as a binary search tree in which each node additionally stores the size of its subtree.
Unfortunately, I'm pretty sure the STL doesn't provide one.
All data structures have their pros and cons, the reason why the standard library offers a bunch of containers.
And the rule is that there is often a balance between quickness of modifications and quickness of data extraction. Here you would like to easily access the number of elements in a range. A possibility in a tree based structure would be to cache in each node the number of elements of its subtree. That would add an average log(N) operations (the height of the tree) on each insertion or deletion, but would highly speedup the computation of the number of elements in a range. Unfortunately, few classes from the C++ standard library are tailored for derivation (and AFAIK std::set is not) so you will have to implement your tree from scratch.
Maybe you are looking for LinkedHashSet alternate for C++ https://docs.oracle.com/javase/7/docs/api/java/util/LinkedHashSet.html.

questions about the searching and sorting algorithms

I'm doing a little research about searching and sorting algorithms in the Standard library. I couldn't find something about those questions. I hope someone can help me out. You can also send me links if you know some.
Does the searching behavior change if the data is not sorted compared to one which is sorted?
How can I know if it is better to use std::sort() on a vector instead of maybe to copy the vector to an already sorted set? That is just an example. I hoped to find some explanations on the web which ways are the best for searching or sorting, but I didn't.
How can I adapt the behavior of the searching and sorting algorithms to make it more efficient?
Does the searching behavior change if the data is not sorted compared
to one which is sorted?
Depends. If you access your data in a vector/array by position, there's no performance improvement, and there's no need for sorting neither.
Searching can be done linearly, binary, keys, and by hash function.
For small (I guess something below a few dozens of items) and contiguous containers (e.g. a vector) linear search can be the fastest, just because of cache-friendly memory layout.
Binary search has O(log N) complexity which is likely the best you can get... I'm thinking in Information theory. It requires that you sort previously the container. It's useful for frequetly searches in the same container.
A std::set (and its cousin std::map) uses internally a tree, which makes searching O(log N) complexity too. Useful if you search by keys, instead of some criteria of your items. The drawback is that it's a bit slower on building (always keep sorted) than fill a vector an later sort it.
A hashmap or hashtable uses a function for getting the bucket where the item lies. The complexity is something near to O(1), depending on number of items and the function used (collisions issue).
As you see, selecting a type of container depends on how are you going to handle your data. Choose the one that fits your requirements.
How can I know if it is better to use std::sort() on a vector instead
of maybe to copy the vector to an already sorted set?
std::sort changes the container so the result is, obviously, sorted. If you need the original, unordered, container, then make a copy and sort the copy. Sorting the whole of the container is better that "insert-item-so-container-is-always-sorted" for all items, specially with a vector (many memory reallocations); a set/map filling process may be not that slow.
How can I adapt the behavior of the searching and sorting algorithms
to make it more efficient?
It's not clear to me what you mean. But, "The end justifies the means". Again, choose the container that servers best for your data handling.
Does the searching behavior change if the data is not sorted compared to one which is sorted?
No. It depends on the algorithm you choose. General search std::find is O(n), binary search std::lower_bound is O(log n), but it works only on sorted ranges.
How can I know if it is better to use std::sort() on a vector instead of maybe to copy the vector to an already sorted set? That is just an example. I hoped to find some explanations on the web which ways are the best for searching or sorting, but I didn't.
You can write a benchmark and measure. You can sort an std::vector (without duplicated elements) by copying it into an std::set, which maintains sorted order internally. std::set is typically implemented as a red-black tree and has in general high memory fragmentation in contrast to contiguous std::vector. So it is easy to predict the result. Alexander Stepanov discusses (if I remember correctly) this particular example in his lectures available on YouTube.

iterate ordered versus unordered containers

I want to know which data-structures are more efficient for iterating through their elements between std::set, std::map and std::unordered_set, std::unordered_map.
I searched through SO and I found this question. The answers either propose to copy the elements in a std::vector or to use Boost.Container, which IMHO don't answer my question.
My purpose is to keep in a container a big number of unique elements, that most of the time I want to iterate through them. Insertions and extractions are more rare. I want to avoid std::vector in combination with std::unique.
Lets consider set vs unordered_set.
The main difference here is the 'nature' of the iteration, that is the traversal of the set will give you the elements in order while traversing a range in an unordered set will give you a bunch of values in no particular order.
Suppose you want to traverse a range [it1, it2]. If we exclude the lookup time that's needed to find elements it1 and it2 there can be no direct mapping from one case to another since the elements in between are not guarrandeed to be the same even if you've used the same elements to construct the container.
There are cases however where something like this has meaning when e.g. you want to traverse a fixed number of elements (regardless of what they are) or when you need to traverse the whole container. In such cases you need to consider implementation mechanics :
Sets are usually implemented like Red–black trees (a form of binary search trees). Like all binary search trees allow efficient in-order traversal (LRR: left root right) of their elements. That is to traverse you pay the cost of pointer chasing (just like traversing a list).
Unordered sets on the other hand are hash tables and to my knowledge the STL implementation uses hashing with chaining. That means (in a very very high level) that what's used for the structure is a (contiguous) buffer where each element is the head of a chain (list) that contains the elements. The way the elements are layed out across those chains (buckets) and across the buffer will affect the traversal time, however you'll be chasing pointers once again jumping through differents lists as well this time. I don't think it'll vary significantly from the tree case but won't be any better for sure.
In any case micro tuning and benchmarking will give you the answer for your particular application.
The difference does not lie between the ordering or lack of one but in the backing container. If it's a contiguous memory it should be fast to iterate over, due to simple implementation of iterator and cache friendliness.
Unordered containers are usually stored as a vector of vectors (or a similar thing), while ordered containers are implemented using trees, but it is left for implementation after all. This would suggest that iterating over unordered version should be waster. However this is left for implementation after all, and I saw implementations (which bent rules a little to be fair) with different behaviour.
Generally speaking, container performance is quite a complex topic and usually has to be tested in actual application to get reliable answer. There is plenty on implemention-defined stuff that might affect the performance. I'd go with hash_set if I had to go in blind. Copying into a vector might also turn out a good option.
EDIT: As #TonyD said in it's comment, there is a rule, that disallows invalidating iterators during addition of element when the max_load_factor() is not exceeded, this practically rules out backing containers which are contiguous in memory.
Thus, copying everything into a vector seems like even more reasonable option. If you need to remove duplicates, a feasible option might be to use http://en.cppreference.com/w/cpp/algorithm/sort and have dupes easily ignored. I have heard that using vector and sort to have a sorted array (or vector) is quite often a used option in case of need for a container that needs to be sorter and is being iterated over more often than modified.
iterate from fastest to slowest should be : set > map > unordered_set > unordered_map;
set is a little lighter than map, and they are ordered with binary tree rule, so should be faster than unordered_ containers.

map vs unordered_map for few elements

I am trying to choose between map and unordered_map for the following use case:
The key of the map is a pointer.
The most common use case is that there will be a single element in the map.
In general, the max number of elements in the map less than 10.
The map is accessed very often and speed is the most important factor. Changes to the map are infrequent.
While measuring the speed is obviously the correct approach here, this code will be used on several platforms so I'm trying to create a general rule of thumb for choosing between a map and unordered_map based on number of elements. I've seen some posts here that hint that std::map may be faster for a small number elements, but no definition of "small" was given.
Is there a rule of thumb for when to choose between a map and unordered_map based on number of elements? Is another data structure (such as linear search through a vector) even better?
Under the premise that you always need to measure in order to figure out what's more appropriate in terms of performance, if all these things are true:
Changes to the map are not frequent;
The map contains a maximum of 10 elements;
Lookups will be frequent;
You care a lot about performance;
Then I would say you would be better off putting your elements in an std::vector and performing a plain iteration over all your elements to find the one you're looking for.
An std::vector will allocate its elements in a contiguous region of memory, so cache locality is likely to grant you a greater performance - the time required to fetch a cache line from main memory after a cache miss is at least one order of magnitude higher than the time required to access the CPU cache.
Quite interestingly, it seems like Boost's flat_map is ideal for your use case (courtesy of Praetorian):
flat_map is similar to std::map but it's implemented like an ordered vector. (from the online documentation)
So if using Boost is an option for you, you may want to try this one.
I believe for your case of 10 elements or less and usually only one a linear search of an unsorted vector will work best. However, depending on the hash algorithm used the unordered_map may be faster instead.
It should be easy enough for you to benchmark.

C++: container replacement for vector/deque for huge sizes

so my applications has containers with 100 million and more elements.
I'm on the hunt for a container which behaves - time-wise - better than std::deque (let alone std::vector) with respect to frequent insertions and deletions all over the container ... including near the middle. Access time to the n-th element does not need to be as fast as vector, but should definetely be better than full traversal like in std::list (which has a huge memory overhead per element anyway).
Elements should be treated ordered by index (like vector, deque, list), so std::set or std::unordered_set also do not work well.
Before I sit down and code such a container myself: has anyone seen such a beast already? I'm pretty sure the STL hasn't anything like this, looking to BOOST I did not find something I could use but I may be wrong.
Any hints?
There's a whole STL replacement for big data, in case your app is centric to such data:
STXXL - http://stxxl.sourceforge.net/
edit: I was actually a bit fast to answer. 100 million is not really a large number. E.g., if each element is one byte, you could save it in a 96MiB array. So whether STXXL is any useful, the size of an element should be significantly bigger.
I think you can get the performance characteristics that you want with a skip list:
https://en.wikipedia.org/wiki/Skip_list#Indexable_skiplist
It's the "indexable" part that you're interested in, of course -- you don't actually want the items to be sorted. So some modification is needed that I leave as an exercise.
You might find that 100 million list nodes begins to strain a 32 bit address space, but probably not an issue in 64 bits.
1) If the data is highly sparse, i.e. has lots of zeroes or can be expressed as such, I would highly recommend a data structure that takes advantage of that:
sparselib++ for matrices
sparsehash for hash maps
2) Hash maps should do O(1) for all the operations you describe and the sparsehash implementation I mentioned earlier is particularly space-efficient; it also includes a sparsetable type which is a bit more low-level and can be used in place of an array.
3) If the strict ordering is not that important (it probably is, because you mentioned elements should be treated ordered by index), you can swap the elements you want to erase to the end of the vector and then resize to do removal in O(1). Insertion would just be push_back.
Try a hash map. The STL has several, all with the unordered naming prefix , such as unorderd_map, etc. It has constant time insertion and look up given a good hashing algorithm. With your 'huge' data set the hash map would most likely cover your needs. Making a slight change to the application to cover the differences in the interfaces is trivial.