I have a solution which contains several projects. My projects (but not all of them) use precompiled headers. I decided to use protobuf and I've met a problem. After generetaing *.pb.h from *.proto by protoc.exe I'm trying to include the header and get the error - precompiled header wasn't included into *.pb.h.
How I can solve this problem? I have an idea (but I don't like it at all) - after protoc generates *.pb.h I can run some script, which'll include my precompiled header into the *.pb.h. But I don't like it because some projects may not use PCH, and PCH file name can be different.
I understand that I can just remove PCH from my projects, but I don't like that idea too.
Dont add the generated myproto.pb.cc to your project. Instead, create a myproto.cpp with
#include "pch.h"
#include "myproto.pb.cc"
I resolved my problem by creating a static library called proto-objects (without PCH) and including all my *pb.h(cpp) files there. After it I link that library to every project where I need my protobuf objects. Profit!
You can disable the pre-compiled header option on a file-by-file basis.
Given that the pch option is intended to speed up compilation, you can turn it off for the whole project, and no further changes should be necessary.
The choice of name of the header file, and the pch file are also selectable per file in the project
Update
The idea behind Microsoft's Pre-compilation PCH system is to
Speed up compilation
Make it easy to use
The header file system in C/C++ is problematic, as it is really a textual replacement.
That means that
#include "localdefs.h"
#include <windows.h>
#include "project.h"
#include "support.h"
Is in no way similar to
#include <windows.h>
#include "project.h"
#include "support.h"
That is because localdefs.h can redefine the behavior of all of the other includes.
Further to this the costs of walking through the complexities of the windows.h header files, is time consuming.
The PCH system tries to solve this by the observation that most projects have a fixed set of include files which are included by most/all of the CPP files.
Defining this set in stdafx.h allows the textual result of that parsing to be pasted in the cpp file and save a lot of work.
If most of the includes in the project are different, then there is no need to use it.
So if you are including the same qt header files in lots of places - add them to a pre-compiled header file. The more of the common includes added to this file, the better the compile speed improvements will be.
Any non-standard cpp file can be excluded by being specifically disabled - examples are "generated files". Where the template generator does not understand the MSVC system.
If all the files are different, then only limited performance benefit will be gained - as each compile would probably also include a pch recompile.
First of all i want to say that I read about precompiled headers and I understand that this is an optimization that saves me the time of compiling headers over and over on every built.
I'm reading the documentation of boost and I see that in the instructions they say:
In Configuration Properties > C/C++ > Precompiled Headers, change Use Precompiled Header (/Yu) to Not Using Precompiled Headers
And then they explain it:
There's no problem using Boost with precompiled headers; these instructions merely avoid precompiled headers because it would require Visual Studio-specific changes to the source code used in the examples.
Can some explain me the sentence I marked in bold? which visual studio specific changes they are talking about ? (Here is the link to the documentation I'm reading: http://www.boost.org/doc/libs/1_55_0/more/getting_started/windows.html#pch)
Why and when I would want to turn off the precompiled headers?
what is the difference between "Create" and "Use" in the precompiled header options.
Originally a comment, but I may as well post it. Note: this is specific to VC++:
The bold sentence is their way of saying the samples don't follow the mantra of a unified use-this-lead-in-header-for-pch-generation model. IOW, their samples aren't PCH-friendly, but you can still use pch with boost in your projects if properly configured.
You would turn them off for a variety of reasons. Some source modules, particularly ones from 3rd-parties, don't follow the PCH model of including "the" pch-through-header at their outset. Their samples are such code (and thus the advise to turn them off for their samples). Sometimes source files require different preprocessor configurations only for this files and not all files int he project; another reason to disable PCH for those files.
You typically use a source/header pair to generate "the One"; the precompiled header image. This header file typically includes:
Any system standard lib headers used by your project
3rd-party SDK headers
Just about everything else that is NOT in active development for your project.
The single source file tagged as Create typically includes one line of code : #include "YourHeaderFile.h", where YourHeaderFile.h is the header you filled with stuff from the list above. Tagging it as "Create" through header YourHeaderFile.h tells VC it is the file needed for rebuilding the PCH through that header when compiling other source files. All other source files are tagged as Use (except the ones where PCH is turned off) and should include, as their first line of code, the same #include "TheHeaderFile.h".
In short (hard to believe), <boost> is telling you their samples aren't setup like described above, and as such you should turn PCH off when building them.
When you use pre-compiled headers, you need to do something like:
#include <foo>
#include <bar>
#include <baz>
#pragma hdrstop
// other code here
Everything before the #pragma goes into the precompiled header. Everything after it depends on the precompiled header. The VC++ specific "magic" to make pre-compiled header work is that #pragma.
There's a little more to the story than just that though. To make pre-compiled headers work well, you want to include exactly the same set of headers in exactly the same order in every source file.
That leads to (typically) creating one header that includes all the other common headers and has the #pragma hdrstop right at its end, then including that in all the other source files.
Then, when the compiler does its thing, there are two phases: first you need to create a pre-compiled header. This means running the compiler with one switch. The compiler only looks at what comes before the #pragma hdrstop, builds a symbol table (and such) and puts the data into a .pch file.
Then comes the phase when you do a build using the pre-compiled header. In this phase, the compiler simply ignores everything in the the file up to the #pragma hdrstop. When it gets to that, it reads the compiler's internal state from the .pch file, and then starts compiling that individual file.
This means each source file typically includes a lot of headers it doesn't actually need. That, in turn, means that if you don't use pre-compiled headers, you end up with compilation that's much slower than if you hadn't done anything to support pre-compiled headers at all.
In other words, although the only part that's absolutely required is the #pragma hdrstop, which is fairly innocuous, a great deal more file re-structuring is needed to get much benefit from them--and those changes are likely to actively harmful to compilation time if you're using anything that doesn't support pre-compiled headers (and in the same way VC++ does them at that).
When precompiled headers is on every cpp source file must start with #include "stdafx.h"
So you would turn it off if you do not want to edit all the boost source files.
When precompiled headers is on stdafx.cpp "creates" the precompiled header. All other files "use" the precompiled header.
I am looking for a straight forward way to use precompiled headers for a C++ project using Eclipse / CDT. The stuff does work when running from command line but I am looking for an easy way to integrate it into Eclipse.
Any suggestions ?!
Just to help others who may stumble upon this (since i spent some time figuring this out)
The first thing to do is create a PCH folder (if you want) with a pch.cpp and pch.h file.
pch.cpp: (this file is to compile the .gch)
#include "pch.h"
pch.h:
#include <iostream>
#include <string>
// more stuff that's not changing anytime soon...
The second thing to do is create a PCH build configuration.
exclude all your project source files from this build. (we only need to compile pch.cpp)
select the files/folders > Right Click > Resource Configurations > Exclude from Build > PCH
Now we need to make it compile as a .gch (precompiled header)
pch.cpp > Right Click > Properties > C/C++ Build > Settings > Tool Settings
Compiler > Pattern: ${COMMAND} ${FLAGS} ${INPUTS} (remove all the output stuff)
Misc > Flags: -c -x c++-header -o "../src/PCH/pch.h.gch"
Now when you build with this configuration, it'll produce the pch.h.gch where pch.h is.
(it'll also give a meaningless error trying to create an exe. just ignore that)
Back on the normal Release build, exclude pch.cpp since you don't need to compile that.
Now it's time to test the .gch is being used over the .h
at the top of pch.h put #error "not using precompiled header file"
The .ghc is only used if the header is included first, in the compiling file.
"Only one precompiled header can be used in a particular compilation."
you should precompile different selections of headers best fit for different compilation units
COMPILE TESTS
without precompiled headers
took 34s.189ms output src=2,143,078 bytes exe=1,346,864 bytes
with -include ../src/PCH/pch.h (included in every compilation unit) (only the pch.h not the .gch)
took 48s.364ms output src=2,159,431 bytes exe=1,355,298 bytes
(this is why we #include manually where needed so it should still take around 34s to compile without .gch)
with -include ../src/PCH/pch.h and pch.h.gch (fast compilation, but still inefficient with -include)
took 22s.535ms output src=2,159,431 bytes exe=1,355,298 bytes
if the pch's are organized/utilized properly (correct choice of headers and files to include them in) (not used in every file) it should be much faster than 22s. (this test was just done on a project which weren't built with pch's in mind)
additional speedup which can triple compile time
Project > Properties > C/C++ Build > Behavior > Enable parallel build
From what i've seen, currently Eclipse CDT doesn't support precompiled headers directly. I mean, you can't set an option like : "For this header, compile it". The same applies for headers of external libraries of your eclipse project.
As you know, you need to set the same compilers flag for the header compilation in order to get the compiler use it for the other compilation unit. (At least in the case of GCC).
So, you have several solutions :
You replace the default build command found in "Properties for -> C/C++ Build -> Builder Settings -> Build command" with a custom script that will modify the makefiles generated by eclipse and then call make. A ruby solution is proposed here. Note, that it doesn't allow the use of multiple precompiled headers.
You can use ccache instead of using GCC. It detects when the same compilation is done again, so it's a bit different from using precompiled headers.
EDIT :
To get the ruby script working, you need to have at least one .cpp file inside the same directory as your header file. Otherwise you'll get an error on a missing file "subdir.mk".
Another approach is to create a source file (e.g. pch.cpp) with build settings changed to create the precompiled header. It should be included in the build in order to create the precompiled header, and then excluded in order to build the final executable. It needs to be temporarily reincluded if the header file is changed.
This website provides more details, including a way of creating different precompiled headers for each build configuration.
Consider using cmake and cotire
Is there a way for the preprocessor to detect if the code in current
translation unit uses(or is creating) precompiled headers?
---
The actual problem I'm facing right now is that I'm on a project that is
abusing PCH by precompiling virtually all header files. That means there is none of
the clear dependency management you can get from #includes and the compile times is awful.
Practically every change will trigger a full rebuild.
The application is way to big to just fix it in one go, and some of the old guys refuses
to belive that precompiling everyting is bad in any way. I will have to prove it first.
So I must do it step by step and make sure my changes does not affect
code that is compiled the old PCH way.
My plan is to do ifdef out the PCH.h and work on the non PCH version whenever I have some time to spare.
#ifdef USES_PCH
#include "PCH.h"
#elif
// include only whats needed
#endif
I would like to avoid defining USES_PCH at command line and manually keep it in
sync with /Y that, besides from not being very elegant, would be a pain. There is a lot of configurations
and modules to juggle with and a lot of files that don't follow project defaults.
If Visual C++ defined a constant to indicate whether precompiled headers were in use, it would probably be listed in Predefined Macros. And it's not documented there, so it probably doesn't exist. (If it does exist, it's probably undocumented and may change in a future version.)
This will not work, when using precompiled headers in Visual C++, you cannot even have any code before including a precompiled header. I was trying to do something similar, when I came across your question. After a little trial and error, I have found that there can be no code prior to the #include directive for the precompiled header when using the /Yu compiler option.
#ifdef USES_PCH
#include "stdafx.h"
#endif
result: fatal error C1020: unexpected #endif
As far as I know, it can't, but there are some heuristics: VC++ uses StdAfx.h, Borland uses #pragma hdrstop, etc.
I am working on a large C++ project in Visual Studio 2008, and there are a lot of files with unnecessary #include directives. Sometimes the #includes are just artifacts and everything will compile fine with them removed, and in other cases classes could be forward declared and the #include could be moved to the .cpp file. Are there any good tools for detecting both of these cases?
While it won't reveal unneeded include files, Visual studio has a setting /showIncludes (right click on a .cpp file, Properties->C/C++->Advanced) that will output a tree of all included files at compile time. This can help in identifying files that shouldn't need to be included.
You can also take a look at the pimpl idiom to let you get away with fewer header file dependencies to make it easier to see the cruft that you can remove.
PC Lint works quite well for this, and it finds all sorts of other goofy problems for you too. It has command line options that can be used to create External Tools in Visual Studio, but I've found that the Visual Lint addin is easier to work with. Even the free version of Visual Lint helps. But give PC-Lint a shot. Configuring it so it doesn't give you too many warnings takes a bit of time, but you'll be amazed at what it turns up.
There's a new Clang-based tool, include-what-you-use, that aims to do this.
!!DISCLAIMER!! I work on a commercial static analysis tool (not PC Lint). !!DISCLAIMER!!
There are several issues with a simple non parsing approach:
1) Overload Sets:
It's possible that an overloaded function has declarations that come from different files. It might be that removing one header file results in a different overload being chosen rather than a compile error! The result will be a silent change in semantics that may be very difficult to track down afterwards.
2) Template specializations:
Similar to the overload example, if you have partial or explicit specializations for a template you want them all to be visible when the template is used. It might be that specializations for the primary template are in different header files. Removing the header with the specialization will not cause a compile error, but may result in undefined behaviour if that specialization would have been selected. (See: Visibility of template specialization of C++ function)
As pointed out by 'msalters', performing a full analysis of the code also allows for analysis of class usage. By checking how a class is used though a specific path of files, it is possible that the definition of the class (and therefore all of its dependnecies) can be removed completely or at least moved to a level closer to the main source in the include tree.
I don't know of any such tools, and I have thought about writing one in the past, but it turns out that this is a difficult problem to solve.
Say your source file includes a.h and b.h; a.h contains #define USE_FEATURE_X and b.h uses #ifdef USE_FEATURE_X. If #include "a.h" is commented out, your file may still compile, but may not do what you expect. Detecting this programatically is non-trivial.
Whatever tool does this would need to know your build environment as well. If a.h looks like:
#if defined( WINNT )
#define USE_FEATURE_X
#endif
Then USE_FEATURE_X is only defined if WINNT is defined, so the tool would need to know what directives are generated by the compiler itself as well as which ones are specified in the compile command rather than in a header file.
Like Timmermans, I'm not familiar with any tools for this. But I have known programmers who wrote a Perl (or Python) script to try commenting out each include line one at a time and then compile each file.
It appears that now Eric Raymond has a tool for this.
Google's cpplint.py has an "include what you use" rule (among many others), but as far as I can tell, no "include only what you use." Even so, it can be useful.
If you're interested in this topic in general, you might want to check out Lakos' Large Scale C++ Software Design. It's a bit dated, but goes into lots of "physical design" issues like finding the absolute minimum of headers that need to be included. I haven't really seen this sort of thing discussed anywhere else.
Give Include Manager a try. It integrates easily in Visual Studio and visualizes your include paths which helps you to find unnecessary stuff.
Internally it uses Graphviz but there are many more cool features. And although it is a commercial product it has a very low price.
You can build an include graph using C/C++ Include File Dependencies Watcher, and find unneeded includes visually.
If your header files generally start with
#ifndef __SOMEHEADER_H__
#define __SOMEHEADER_H__
// header contents
#endif
(as opposed to using #pragma once) you could change that to:
#ifndef __SOMEHEADER_H__
#define __SOMEHEADER_H__
// header contents
#else
#pragma message("Someheader.h superfluously included")
#endif
And since the compiler outputs the name of the cpp file being compiled, that would let you know at least which cpp file is causing the header to be brought in multiple times.
PC-Lint can indeed do this. One easy way to do this is to configure it to detect just unused include files and ignore all other issues. This is pretty straightforward - to enable just message 766 ("Header file not used in module"), just include the options -w0 +e766 on the command line.
The same approach can also be used with related messages such as 964 ("Header file not directly used in module") and 966 ("Indirectly included header file not used in module").
FWIW I wrote about this in more detail in a blog post last week at http://www.riverblade.co.uk/blog.php?archive=2008_09_01_archive.xml#3575027665614976318.
Adding one or both of the following #defines
will exclude often unnecessary header files and
may substantially improve
compile times especially if the code that is not using Windows API functions.
#define WIN32_LEAN_AND_MEAN
#define VC_EXTRALEAN
See http://support.microsoft.com/kb/166474
If you are looking to remove unnecessary #include files in order to decrease build times, your time and money might be better spent parallelizing your build process using cl.exe /MP, make -j, Xoreax IncrediBuild, distcc/icecream, etc.
Of course, if you already have a parallel build process and you're still trying to speed it up, then by all means clean up your #include directives and remove those unnecessary dependencies.
Start with each include file, and ensure that each include file only includes what is necessary to compile itself. Any include files that are then missing for the C++ files, can be added to the C++ files themselves.
For each include and source file, comment out each include file one at a time and see if it compiles.
It is also a good idea to sort the include files alphabetically, and where this is not possible, add a comment.
If you aren't already, using a precompiled header to include everything that you're not going to change (platform headers, external SDK headers, or static already completed pieces of your project) will make a huge difference in build times.
http://msdn.microsoft.com/en-us/library/szfdksca(VS.71).aspx
Also, although it may be too late for your project, organizing your project into sections and not lumping all local headers to one big main header is a good practice, although it takes a little extra work.
If you would work with Eclipse CDT you could try out http://includator.com to optimize your include structure. However, Includator might not know enough about VC++'s predefined includes and setting up CDT to use VC++ with correct includes is not built into CDT yet.
The latest Jetbrains IDE, CLion, automatically shows (in gray) the includes that are not used in the current file.
It is also possible to have the list of all the unused includes (and also functions, methods, etc...) from the IDE.
Some of the existing answers state that it's hard. That's indeed true, because you need a full compiler to detect the cases in which a forward declaration would be appropriate. You cant parse C++ without knowing what the symbols mean; the grammar is simply too ambiguous for that. You must know whether a certain name names a class (could be forward-declared) or a variable (can't). Also, you need to be namespace-aware.
Maybe a little late, but I once found a WebKit perl script that did just what you wanted. It'll need some adapting I believe (I'm not well versed in perl), but it should do the trick:
http://trac.webkit.org/browser/branches/old/safari-3-2-branch/WebKitTools/Scripts/find-extra-includes
(this is an old branch because trunk doesn't have the file anymore)
If there's a particular header that you think isn't needed anymore (say
string.h), you can comment out that include then put this below all the
includes:
#ifdef _STRING_H_
# error string.h is included indirectly
#endif
Of course your interface headers might use a different #define convention
to record their inclusion in CPP memory. Or no convention, in which case
this approach won't work.
Then rebuild. There are three possibilities:
It builds ok. string.h wasn't compile-critical, and the include for it
can be removed.
The #error trips. string.g was included indirectly somehow
You still don't know if string.h is required. If it is required, you
should directly #include it (see below).
You get some other compilation error. string.h was needed and isn't being
included indirectly, so the include was correct to begin with.
Note that depending on indirect inclusion when your .h or .c directly uses
another .h is almost certainly a bug: you are in effect promising that your
code will only require that header as long as some other header you're using
requires it, which probably isn't what you meant.
The caveats mentioned in other answers about headers that modify behavior
rather that declaring things which cause build failures apply here as well.