Can we use a timer for itself? - c++

Actually this is what i want to do;
When a condition appears, my program will close itself and after five minutes it will re-open.
Is it possible with only one .exe -by using any OS property-?
I do it with two .exe
if (close_condition){
//call secondary program
system ("secondary.exe");
return (0);
}
and my secondary program just waits for five minutes and calls the primary one.
main (){
Sleep (300000)//sleep for five minutes;
system ("primary.exe");
return (0);
}
i want to do it without secondary program.
(sorry for poor english)

You can do it with one application that simply has different behaviour if a switch is given (say myapp.exe /startme).
system() is a synchronous call by the way, it does only return when the command run is finished. In win32 CreateProcess() is what you are looking for.
You can also just follow Jays suggestion of letting the OS schedule your job using NetScheduleJobAdd().
But, depending on what you're trying to achieve, a better solution might be to simply hide your application for 5 minutes.

I think you'd have to use the system task scheduler to schedule the re-launch, which in a sense is using another application, but one that is part of the OS.
I'm sure this can be done, but frankly I think you should just stick with your current setup.

Related

Force foreground processing in WindowsAPI

I have an executable program that performs latency measurements. C++ pseudo-code below:
void main(){
lock_priority();
start_measurements();
work();
end_measurements();
}
The work() creates multiple threads and takes a long time to complete, so ideally I'd like to minimize the executable console when the process is running, just to save screen space. This, however, reduces the output latency by around 50% compared to when not minimized.
I'd like to implement the lock_priority() function so that even when minimized, the process does not go into PROCESS_MODE_BACKGROUND_BEGIN mode.
What I've tried so far
SetPriorityClass(GetCurrentProcess(), REALTIME_PRIORITY_CLASS); - did not work
Created a thread that every few seconds calls the function above - it did work, but, scientifically speaking, "it looks ugly"
I have tried to find a method to attach a callback to the SetPriorityClass() function so that after it finishes if the PriorityClass was anything but REALTIME_PRIORITY_CLASS, it'd re-set it again (or at least set PROCESS_MODE_BACKGROUND_END priority). This sounds like a perfect solution, but I could not find anything in the docs about this.
I discovered there is a way to set the processor to prefer foreground/background tasks (reference) - however even if this was possible to be configured through code, I still need a way to bind this theoretical function to the priority change.
Any help would be very appreciated!
How about redirecting the programm output from console to a file or just buffer it, like here:
Redirect both cout and stdout to a string in C++ for Unit Testing
This way, you don't have any console latency at all - if this is alright for your testing.

Creating an update method with custom rate processing in c++

If you've ever used XNA game studio 4 you are familiar with the update method. By default the code within is processed at 60 times per second. I have been struggling to recreate such an effect in c++.
I would like to create a method where it will only process the code x amount of times per second. Every way I've tried it processes all at once, as loops do. I've tried for loops, while, goto, and everything processes all at once.
If anyone could please tell me how and if I can achieve such a thing in c++ it would be much appreciated.
With your current level of knowledge this is as specific as I can get:
You can't do what you want with loops, fors, ifs and gotos, because we are no longer in the MS-DOS era.
You also can't have code running at precisely 60 frames per second.
On Windows a system application runs within something called an "event loop".
Typically, from within the event loop, most GUI frameworks call the "onIdle" event, which happens when an application is doing nothing.
You call update from within the onIdle event.
Your onIdle() function will look like this:
void onIdle(){
currentFrameTime = getCurrentFrameTime();
if ((currentFrameTime - lastFrameTime) < minUpdateDelay){
sleepForSmallAmountOfTime();//using Sleep or anything.
//Delay should be much smaller than minUPdateDelay.
//Doing this will reduce CPU load.
return;
}
update(currentFrameTime - lastFrameTime);
lastFrameTime = currentFrameTime;
}
You will need to write your own update function, your update function should take amount of time passed since last frame, and you need to write a getFrameTime() function using either GetTickCount, QueryPerformanceCounter, or some similar function.
Alternatively you could use system timers, but that is a bad idea compared to onIdle() event - if your app runs too slowly.
In short, there's a long road ahead of you.
You need to learn some (preferably cross-platform) GUI framework, learn how to create a window, the concept of an event loop (can't do anything without it today), and then write your own "update()" and get a basic idea of multithreading programming and system events.
Good luck.
As you are familiar with XNA then i assume you also are familiar with "input" and "draw". What you could do is assign independant threads to these 3 functions and have a timer to see if its time to run a thread.
Eg the input would probably trigger draw, and both draw and input would trigger the update method.
-Another way to handle this is my messages events. If youre using Windows then look into Windows messages loop. This will make your input, update and draw event easier by executing on events triggered by the OS.

C++ executing a bash script which terminates and restarts the current process

So here is the situation, we have a C++ datafeed client program which we run ~30 instances of with different parameters, and there are 3 scripts written to run/stop them: start.sh stop.sh and restart.sh (which runs stop.sh and then start.sh).
When there is a high volume of data the client "falls behind" real time. We test this by comparing the system time to the most recent data entry times listed. If any of the clients falls behind more than 10 minutes or so, I want to call the restart script to start all the binaries fresh so our data is as close to real time as possible.
Normally I call a script using System(script.sh), however the restart script looks up and kills the process using kill, BUT calling System() also makes the current program execution ignore SIGQUIT and SIGINT until system() returns.
On top of this if there are two concurrent executions with the same arguments they will conflict and the program will hang (this stems from establishing database connections), so I can not start the new instance until the old one is killed and I can not kill the current one if it ignores SIGQUIT.
Is there any way around this? The current state of the binary and missing some data does not matter at all if it has reached the threshold, I also can not just have the program restart itself, since if one of the instances falls behind, we want to restart all 30 of the instances (so gaps in the data are at uniform times). Is there a clean way to call a script from within C++ which hands over control and allows the script to restart the program from scratch?
FYI we are running on CentOS 6.3
Use exec() instead of system(). It will replace your process with the new one. Note there is a significant different in how exec() is called and how it behaves: system() passes its string argument to the system shell to run. exec() actually executes an executable file, and you need to supply the arguments to the process one at a time, instead of letting the shell parse them apart for you.
Here's my two cents.
Temporary solution: Use SIGKILL.
Long-term solution: Optimize your code or the general logic of your service tree, using other system calls like exec or by rewritting it to use threads.
If you want better answers maybe you should post some code and or degeneralize the issue.

wxWidgets - multitasking with single thread

I have a GUI app that I am creating with wxWidgets. As part of the functionality, I have to run "tasks" simultaneously with manipulation of the GUI window. For example, I may run the code:
long currentTime = wxGetLocalTime();
long stopTime = wxGetLocalTime() + 3;
while (wxGetLocalTime() != stopTime) {}
wxMessageBox("DONE IN APP");
For the duration of those 3 seconds, my application would essentially be frozen until the wxMessageBox is shown. Is there a way to have this run in the background without the use of multiple threads? It creates problems for the application that I've developing.
I was wondering if there are some types of event handling that could be used. Any sort of help is greatly appreciated.
There are 3 ways to run time-consuming tasks in GUI wx applications:
By far the most preferred is to use a different thread. The explanation of the application being "very GUI intensive" really doesn't make any sense to me, I think you should seriously reconsider your program design if its GUI intensity (whatever it is) prevents you from using background worker threads. If you do use this approach, it's pretty simple but pay special attention to the thread/program termination issues. In particular, you will need to either wait for the thread to finish (acceptable if it doesn't take a long time to run) or cancel it explicitly before exiting the program.
Use EVT_IDLE event to perform your task whenever there are no other events to process. This is not too bad for small tasks which can be broken in small enough pieces as you need to be able to resume processing in your handler. Don't forget to call event.RequestMore() to continue getting idle events even when nothing is happening otherwise.
The worst and most dangerous was is to call wxYield() as suggested by another answer. This can seem simple initially but you will regret doing it later because this can create extremely difficult to debug reentrancy problems in your code. If you do use it, you need to guard against reentrancy everywhere yourself and you should really understand what exactly this function does.
Try this:
long currentTime = wxGetLocalTime();
long stopTime = wxGetLocalTime() + 3;
while (wxGetLocalTime() != stopTime) {
wxYield();
}
wxMessageBox("DONE IN APP");
I know this is late to the game, but...
I've successfully used the EVT_IDLE method for YEARS (back in the 90's with Motif originally). The main idea is to break your task up into small pieces, where each piece calls the next piece (think linked-list). The mechanism to do this is using the CallAfter() method (using C++, of course). You just "CallAfter()" as the last step in the piece and that will allow the GUI main loop to run another iteration and possibly update GUI elements and such before calling your next piece. Just remember to keep the pieces small.
Using a background thread is really nice, but can be trickier than you imagine... eventually. As long as you know the data you're working on in the background won't be touched/viewed by anything else, you're OK. If you know this is the case, then that is the way to go. This method allows the GUI to remain fully responsive during background calculations (resizing/moving the window, etc.)
In either case, just don't forget to desensitize appropriate GUI elements as the first step so you won't accidentally launch the same background task multiple times (for example, accidentally clicking a push button multiple times in succession that launches the background thread).

How to specify a maximum amount of time a program can run in C++

In my C++ program, I will start other programs with exec. However, I want to be able to specify a maximum amount of time that the programs can run. How can that be done?
Is setrlimit the right thing to use?
Bit of a brute-force version, but... save/get the handle of the started programm/process, start a timer and kill the other process after the timer has expired?
2 solutions that comes to mind.
1- Send the duration to the second program via the command line and manage the duration internally in the 2nd exe.
2- Create a timer in the first exe and when the timer is triggered kill the 2nd process.
Max.
In general, it can't be done using standard c++ - you will have to use whatever scheduling functions your operating system (which you haven't specified) provides.