I'm looking for a container that maps from a double to object pointers. However, each key is simply a range of doubles that would correspond to that object.
For example, there could be a key/value pair that's <(0.0 3.0), ptr>, or <(3.5 10.0), ptr2>
container[1.0] should return ptr, container[3.0] should also return ptr, and container[-1.0] should be undefined.
Is there any object with similar behaviour by default or will I have to implement it myself?
Edit
Here's the actual code that I've written, it might be easier to debug/offer advice on it.
// Behavior: A range is defined mathematically as (min, max]
class dblRange
{
public:
double min;
double max;
dblRange(double min, double max)
{
this->min = min;
this->max = max;
};
dblRange(double val)
{
this->min = val;
this->max = val;
};
int compare(const dblRange rhs)
{
// 1 if this > rhs
// 0 if this == rhs
//-1 if this < rhs
if (rhs.min == rhs.max && min == max)
{
/*if (min > rhs.min)
return 1;
else if (min == rhs.min)
return 0;
else
return -1;*/
throw "You should not be comparing values like this. :(\n";
}
else if (rhs.max == rhs.min)
{
if (min > rhs.min)
return 1;
else if (min <= rhs.min && max > rhs.min)
return 0;
else // (max <= rhs.min)
return -1;
}
else if (min == max)
{
if (min >= rhs.max)
return 1;
else if (min < rhs.max && min >= rhs.min)
return 0;
else // if (min < rhs.min
return -1;
}
// Check if the two ranges are equal:
if (rhs.min == min && rhs.max == max)
{
return 0;
}
else if (rhs.min < min && rhs.max <= min)
{
// This is what happens if rhs is fully lower than this one.
return 1;
}
else if (rhs.min > min && rhs.min >= max)
{
return -1;
}
else
{
// This means there's an undefined case. Ranges are overlapping,
// so comparisons don't work quite nicely.
throw "Ranges are overlapping weirdly. :(\n";
}
};
int compare(const dblRange rhs) const
{
// 1 if this > rhs
// 0 if this == rhs
//-1 if this < rhs
if (rhs.min == rhs.max && min == max)
{
/*if (min > rhs.min)
return 1;
else if (min == rhs.min)
return 0;
else
return -1;*/
throw "You should not be comparing values like this. :(\n";
}
else if (rhs.max == rhs.min)
{
if (min > rhs.min)
return 1;
else if (min <= rhs.min && max > rhs.min)
return 0;
else // (max <= rhs.min)
return -1;
}
else if (min == max)
{
if (min >= rhs.max)
return 1;
else if (min < rhs.max && min >= rhs.min)
return 0;
else // if (min < rhs.min
return -1;
}
// Check if the two ranges are equal:
if (rhs.min == min && rhs.max == max)
{
return 0;
}
else if (rhs.min < min && rhs.max <= min)
{
// This is what happens if rhs is fully lower than this one.
return 1;
}
else if (rhs.min > min && rhs.min >= max)
{
return -1;
}
else
{
// This means there's an undefined case. Ranges are overlapping,
// so comparisons don't work quite nicely.
throw "Ranges are overlapping weirdly. :(\n";
}
};
bool operator== (const dblRange rhs ) {return (*this).compare(rhs)==0;};
bool operator== (const dblRange rhs ) const {return (*this).compare(rhs)==0;};
bool operator!= (const dblRange rhs ) {return (*this).compare(rhs)!=0;};
bool operator!= (const dblRange rhs ) const {return (*this).compare(rhs)!=0;};
bool operator< (const dblRange rhs ) {return (*this).compare(rhs)<0;};
bool operator< (const dblRange rhs ) const {return (*this).compare(rhs)<0;};
bool operator> (const dblRange rhs ) {return (*this).compare(rhs)>0;};
bool operator> (const dblRange rhs ) const {return (*this).compare(rhs)>0;};
bool operator<= (const dblRange rhs ) {return (*this).compare(rhs)<=0;};
bool operator<= (const dblRange rhs ) const {return (*this).compare(rhs)<=0;};
bool operator>= (const dblRange rhs ) {return (*this).compare(rhs)>=0;};
bool operator>= (const dblRange rhs ) const {return (*this).compare(rhs)>=0;};
};
Right now I'm having trouble having the map accept a double as a key, even though the comparison operators are defined.
Here's some driving code that I'm using to test if it would work:
std::map<dblRange, int> map;
map[dblRange(0,1)] = 1;
map[dblRange(1,4)] = 2;
map[dblRange(4,5)] = 3;
map[3.0] = 4;
I mostly agree with Earwicker in that you can define a range. Now, I am in favor of implementing operators with the real meaning (do what basic types do: two ranges compare equal if both ranges ARE equal). Then you can use the third map parameter to pass it a comparison functor (or function) that solves your particular problem with this map.
// Generic range, can be parametrized for any type (double, float, int...)
template< typename T >
class range
{
public:
typedef T value_type;
range( T const & center ) : min_( center ), max_( center ) {}
range( T const & min, T const & max )
: min_( min ), max_( max ) {}
T min() const { return min_; }
T max() const { return max_; }
private:
T min_;
T max_;
};
// Detection of outside of range to the left (smaller values):
//
// a range lhs is left (smaller) of another range if both lhs.min() and lhs.max()
// are smaller than rhs.min().
template <typename T>
struct left_of_range : public std::binary_function< range<T>, range<T>, bool >
{
bool operator()( range<T> const & lhs, range<T> const & rhs ) const
{
return lhs.min() < rhs.min()
&& lhs.max() <= rhs.min();
}
};
int main()
{
typedef std::map< range<double>, std::string, left_of_range<double> > map_type;
map_type integer; // integer part of a decimal number:
integer[ range<double>( 0.0, 1.0 ) ] = "zero";
integer[ range<double>( 1.0, 2.0 ) ] = "one";
integer[ range<double>( 2.0, 3.0 ) ] = "two";
// ...
std::cout << integer[ range<double>( 0.5 ) ] << std::endl; // zero
std::cout << integer[ range<double>( 1.0 ) ] << std::endl; // one
std::cout << integer[ 1.5 ] << std::endl; // one, again, implicit conversion kicks in
}
You must be careful with equality and comparisons among double values. Different ways of getting to the same value (in the real world) can yield slightly different floating point results.
Create a class DoubleRange to store the double range, and implement the comparison operators on it. That way, std::map will do the rest for you, with the DoubleRange class as the key.
It is better to use Interval tree data structure. Boost has an implementation in Interval Container Library
One approach would be to calculate the "break points" before hand:
typedef vector< tuple<double, double, foo*> > collisionlist_t;
const collisionlist_t vec;
vec.push_back(make_tuple(0.0, 3.0, ptr));
vec.push_back(make_tuple(3.5, 10.0, ptr2));
// sort
std::map<double, foo*> range_lower_bounds;
for(collisionlist_t::const_iterator curr(vec.begin()), end(vec.end()); curr!=end; ++curr)
{
/* if ranges are potentially overlapping, put some code here to handle it */
range_lower_bounds[curr->get<0>()] = curr->get<2>();
range_lower_bounds[curr->get<1>()] = NULL;
}
double x = // ...
std::map<double, foo*>::const_iterator citer = range_lower_bounds.lower_bound(x);
Another suggestion: Use a mathematical transform to map the index from REAL to INT which can be directly compared.
If these ranges are multiple and dense there's also a structure known as an "interval tree" which may help.
Are the intervals open or closed or half open?
I will assumed closed. Note that the intervals cannot overlap by the definition of a map. You will also need splitting rules for when one inserts an over lapping interval. the rules need to decide where the split takes place and must take into account floating point epsilon.
this implementation uses map::lower_bound and does NOT use a class as the domain of the map
map::lower_bound returns an iterator to the first element in a map with a key value that is equal to or greater than that of a specified key. (ie the least key greater than or equal to K. An unfortunate choice of STL method names as it is the least upper bound of K.)
template <class codomain>
class RangeMap : private std::map<double,std::pair<double,codomain>{
public:
typedef double domain;
typedef std::map<double,std::pair<double,codomain>:: super;
typename super::value_type value_type;
protected:
static domain& lower(const value_type& v){
return v.first;
}
static domain& upper(const value_type& v){
return v.second.first;
}
static codomain& v(const value_type& v){
return v.second.second;
}
public:
static const domain& lower(const value_type& v){
return v.first;
}
static const domain& upper(const value_type& v){
return v.second.first;
}
static const codomain& v(const value_type& v){
return v.second.second;
}
static bool is_point(const value_type& vf) {
return lower(v) == upper(v);
}
static bool is_in(const domain& d,const value_type& vf) {
return (lower(v) <= d) && (d <= upper(v));
}
const_iterator greatest_lower_bound(const domain& d)const {
const_iterator j = super::lower_bound(d);
if(j!=end() && j->first==d) return j;//d is the lh side of the closed interval
//remember j->first >= d because it was lower but its the first
if(j==begin()) return end();//d < all intervals
--j; //back up
return j;
}
const_iterator find(domain& d) {
const_iterator j = greatest_lower_bound(d);
if (is_in(j,d)) return j;
return end();
}
iterator greatest_lower_bound(const domain& d) {
iterator j = super::lower_bound(d);
if(j!=end() && j->first==d) return j;//d is the lh side of the closed interval
//remember j->first >= d because it was lower but its the first
if(j==begin()) return end();//d < all intervals
--j; //back up
return j;
}
const_iterator find(domain& d) const{
iterator j = greatest_lower_bound(d);
if (is_in(j,d)) return j;
return end();
} //so much for find(d)
iterator find(domain& d){
iterator j = greatest_lower_bound(d);
if (is_in(j,d)) return j;
return end();
} //so much for find(d)
struct overlap: public std::exception{
};
bool erase(const double lhep,const double rhep);
//you have a lot of work regarding splitting intervals erasing when overlapped
//but that can all be done with erase, and insert below.
//erase may need to split too
std::pair<iterator,bool>
split_and_or_erase_intervals(const double lhep,
const double rhep,
const codomain& cd);
//the insert method - note the addition of the overwrtite
std::pair<iterator,bool>
insert(const double lhep,const double rhep,const codomain& cd,bool overwrite_ok){
if( find(lhep)!=end() || find(rhep)!=end() ) {
if(overwrite_ok){
return split_and_or_erase_intervals(const double lhep,
const double rhep,
const codomain& cd);
}
throw overlap();
}
return insert(value_type(lhep,pair<double,codomain>(rhep,cd)));
}
};
If your intervals must be non-overlapping, you must add some extra code to verify this property at insertion-time. Specifically, the property you wish to assert is that your new interval lies entirely within a range that was previously empty. An easy way to do this is to allow two types of ranges: "occupied" and "empty". You should begin by creating a single "empty" entry which covers the entire usable range. Insertion of a new "occupied" range requires:
(1) lookup some value within the new range.
(2) ensure that the returned range is empty, and wholly encompasses your new range. (This was the required assertion, above)
(3) modify the returned empty range so its end lies at the start of your new range.
(4) insert a new empty range that begins at the end of your new range, and ends at the old end of the returned range.
(5) insert your new range, confident that it is surrounded by empty-ranges.
(6) There may be additional corner-cases when inserting a new occupied range which has no empty space separating it from other occupied ranges.
Related
I'm trying to use std::map with a custom class and in the course of the process the program has to call std::map::find in order to resolve a key to a pair. The custom class doesn't seem to fit well in terms of comparisons.
This is probably better explained in code; I have a class that I want to use as a key:
class index_t
{
int vertex_index;
int normal_index;
int texture_index;
}
std::map<index_t, int> reindexer;
I would like to use
reindexer.find(index_to_find);
In order to find a key with exactly same parameters (exactly same vertex/normal/texture indices) exists in the map already.
So technically I want the std::map::find function to behave like this:
bool find(key_to_find) //this is what I'm expecting from a find function of std::map
{
if(existing_key.vertex == key_to_find.vertex && existing_key.texture == key_to_find.texture && existing_key.normal == key_to_find.normal)
return true;
else return false;
}
However, I'm not sure how to overload the comparison operator appropriately in this situation for it to behave like that (since I can think of no logical less than operator that would suit this class). This is the current operator I'm using:
bool operator<(const index_t& rhv)
{
if(vertex_index < rhv && normal_index < rhv && texture_index < rhv)
return true;
else return false;
}
It doesn't work, since the find relies on the function returning "false" reflexively when comparison orders reversed.
How can I get around this?
This is some more specific, compilable code that reproduces the problem:
class index_t
{
public:
int vertex;
int normal;
int texture;
bool operator< (const index_t& rhv) const
{
if (vertex < rhv.vertex && normal < rhv.normal && texture < rhv.texture)
return true;
else return false;
}
};
map<index_t, int> indexMap;
int main()
{
index_t i;
i.vertex = 0;
i.normal = 0;
i.texture = 0;
index_t i2;
i2.vertex = 1;
i2.normal = 0;
i2.texture = 3;
index_t i4;
i4.vertex = 1;
i4.normal = 0;
i4.texture = 3;
index_t i5;
i5.vertex = 6;
i5.normal = 0;
i5.texture = 3;
index_t i8;
i8.vertex = 7;
i8.normal = 5;
i8.texture = 4;
indexMap.insert(pair<index_t, int>(i, 0));
indexMap.insert(pair<index_t, int > (i2, 1));
if (indexMap.find(i5) != indexMap.end())
cout << "found" << endl;
else
cout << "not found" << endl;
system("pause");
return 0;
}
This results in "found" even though i5 is not a part of the map
I also tried this:
class index_t
{
public:
int vertex;
int normal;
int texture;
};
class index_comparator
{
public:
bool operator()(const index_t& lhv, const index_t& rhv) const
{
if (lhv.vertex == rhv.vertex && lhv.normal == rhv.normal && lhv.texture == rhv.texture)
return true;
else return false;
}
};
map<index_t, int, index_comparator> indexMap;
int main()
{
index_t i;
i.vertex = 0;
i.normal = 0;
i.texture = 0;
index_t i2;
i2.vertex = 1;
i2.normal = 0;
i2.texture = 3;
index_t i4;
i4.vertex = 1;
i4.normal = 0;
i4.texture = 3;
index_t i5;
i5.vertex = 6;
i5.normal = 0;
i5.texture = 3;
index_t i8;
i8.vertex = 7;
i8.normal = 5;
i8.texture = 4;
indexMap.insert(pair<index_t, int>(i, 0));
indexMap.insert(pair<index_t, int > (i2, 1));
if (indexMap.find(i5) != indexMap.end())
cout << "found" << endl;
else
cout << "not found" << endl;
system("pause");
return 0;
}
This also results in "found"
The expected results are that when I call std::map::find on a custom class it compares it other keys in the map and only returns true if an exactly same class (containing the same parameters) exists. Otherwise it should return false.
You have to define a strict order to use class index_t as key in a std::map.
It doesn't need to make sense to you – it just has to provide a unique result of less-than for any pairs of index_t instances (and to grant a < b && b < c => a < c).
The (in question) exposed attempt doesn't seem to fulfil this but the following example would:
bool operator<(const index_t &index1, const index_t &index2)
{
if (index1.vertex != index2.vertex) return index1.vertex < index2.vertex;
if (index1.normal != index2.normal) return index1.normal < index2.normal;
return index1.texture < index2.texture;
}
The simplest way to implement the operator is with tuples, it does all the hard work for you:
bool operator<(const index_t& rhv)
{
return std::tie(vertex_index, normal_index, texture_index) < std::tie(rhv.vertex_index, rhv.normal_index, rhv.texture_index);
}
This is equivalent to the required logic:
bool operator<(const index_t& rhv)
{
if (vertex_index != rhv.vertex_index)
{
return vertex_index < rhv.vertex_index;
}
if (normal_index!= rhv.normal_index)
{
return normal_index< rhv.normal_index;
}
return texture_index< rhv.texture_index;
}
In c++20 this gets even easier with the spaceship operator which does everything for you:
auto operator<=>(const index_t&) const = default;
Your ordering doesn't fulfill the requirements, it has to be what is called a "strict weak ordering relation". It's easiest to not implement that yourself, but instead use existing functionality. Examle:
#include <tuple>
bool operator()(const index_t& lhv, const index_t& rhv) const
{
return std::tie(lhv.vertex, lhv.normal, lhv.texture) <
std::tie(rhv.vertex, rhv.normal, rhv.texture);
}
Your comparison function doesn't have to be logical, it just has to impose a strict weak ordering. Here's a version that works.
bool operator<(const index_t& rhv) const
{
if (vertex < rhv.vertex)
return true;
if (vertex > rhv.vertex)
return false;
if (normal < rhv.normal)
return true;
if (normal > rhv.normal)
return false;
if (texture < rhv.texture)
return true;
if (texture > rhv.texture)
return false;
return false;
}
Since this is not a reasonable operator< for your class it would be better to rename it, to avoid confusion.
struct IndexLT
{
bool operator()(const index_t& lhs, const index_t& rhs)
{
// logic as before
}
};
Then use this newly declared functor like this
std::map<index_t, whatever, IndexLT> my_map;
Yet another alternative would be to use a std::unordered_map since ordering doesn't seem to be significant.
I am trying to implement A* algorithm (with visualization in Qt). I've got this method:
result_path astar_algorithm::calculate(mapview* m_view)
{
map_view = m_view;
auto closed_set = std::vector<std::shared_ptr<node>>();
auto start_node = std::make_shared<node>(_start);
auto open_set = std::vector<std::shared_ptr<node>>{start_node};
std::map<node, node> came_from;
std::shared_ptr<node> current;
while (!open_set.empty())
{
current = *std::min_element(open_set.begin(), open_set.end());
if (*current == _end)
{
// TODO: Reconstruct a result path!!!
break;
}
open_set.erase(std::find(open_set.begin(), open_set.end(), current));
closed_set.push_back(current);
auto neighbors = get_neighbors(*current);
for (auto& neighbor : neighbors)
{
if (std::find_if(closed_set.begin(), closed_set.end(),
[&](std::shared_ptr<node> const& p) { return *p == neighbor; }) !=
closed_set.end())
continue;
auto tentative_g_score = current->G + 1;
if (std::find_if(open_set.begin(), open_set.end(), [&](std::shared_ptr<node> const& p) {
return *p == neighbor;
}) == open_set.end())
{
neighbor.G = tentative_g_score;
neighbor.H = heuristic_cost_estimate(neighbor.pos, _end);
neighbor.parent = current;
open_set.push_back(std::make_shared<node>(neighbor));
}
else if (tentative_g_score < neighbor.G)
{
neighbor.parent = current;
neighbor.G = tentative_g_score;
}
}
}
auto result = result_path();
while (*current != *start_node)
{
result.path.push_back(current->pos);
current = current->parent;
}
result.path.push_back(start_node.pos);
std::reverse(result.path.begin(), result.path.end());
return result;
}
It works, but I have a few problems:
if (std::find_if(closed_set.begin(), closed_set.end(),
[&](std::shared_ptr<node> const& p) { return *p == neighbor; }) !=
closed_set.end())
continue;
This line checks if a node is present in an std::vector and if so, it continues the loop (then there is a second line similar to this, it just checks if node is not actually present in the vector). I guess the better way would be to store those nodes in a vector and then searching and further adding would be easier (cuz I just have to check if the insert succeeded).
The problem is, afaik, to make this work I have to implement < operator. And so I did. I also made == and !=:
class node
{
public:
node() {}
node(const QPoint& p) : pos(p) {}
bool operator == (const node& o ) const { return pos == o.pos; }
bool operator == (const QPoint& o ) const { return pos == o; }
bool operator != (const node& o) const {return pos != o.pos; }
bool operator <(const node& o ) const { return G + H < o.G + o.H; }
QPoint pos;
std::shared_ptr<node> parent;
int G = 0;
int H = 0;
};
It works perfectly for the earlier search for std::min_element (it searches for a node with the lowest F value (F=G+H)), it uses < operator. But then I tried to use a set, so those two vectors at the beginning of the method were set and when I wanted to just insert or even check if a node is already in a set and then insert I had a problem. Many of those nodes will have the same G+H value, as the maze which I used was kind of simple (i.e. a maze completely without terrains). I checked it under the debugger and the nodes with unique .pos values (QPoint) were not added to the set just like they weren't unique (but if the node had a different G+H value than any node in the set, it would be added). For the vector the same nodes of course work, cuz there are no checks made, I checked everything carefully under the debugger.
I don't know if I am getting this wrong, but I thought it would use a == or != operators but as seen in this answer: link, it actually uses < operator, which in my case would not distinguish between two nodes (cuz the unique part of each node is its position in the grid (node represents a box in a grid, which can represent a maze or smth similar))
So, is there something I am doing wrong or am I actually getting this right, and the inserting (which checks if the element is unique) or checking if the element exists in a set uses < operator and I cannot do anything about it? (cuz I would like to have my < operator with comparing G+H and then I would like the searching/inserting to use the == operator to compare)
This is the example that I wrote (I forgot I have Microsoft C++ Compiler from the command line - cl.exe)
#include <algorithm>
#include <iostream>
#include <memory>
#include <set>
class Point
{
public:
int _x, _y;
Point() : _x(0), _y(0) {}
Point(int x, int y) : _x(x), _y(y) {}
bool operator==(const Point& p) const { return _x == p._x && _y == p._y; }
bool operator!=(const Point& p) const { return _x != p._x && _y != p._y; }
};
class node
{
public:
node() {}
node(const Point& p) : pos(p) {}
bool operator==(const node& o) const { return pos == o.pos; }
bool operator==(const Point& o) const { return pos == o; }
bool operator!=(const node& o) const { return pos != o.pos; }
bool operator<(const node& o) const { return G + H < o.G + o.H; }
Point pos;
std::shared_ptr<node> parent;
int G = 0;
int H = 0;
};
int main()
{
node n1(Point(0, 0));
n1.G = 1;
n1.H = 1;
node n2(Point(1, 1));
n2.G = 2;
n2.H = 2;
node n3(Point(2, 2));
n3.G = 1;
n3.H = 1;
std::set<node> nodes;
nodes.insert(n1);
nodes.insert(n2);
nodes.insert(n3);
auto min = (*std::min_element(nodes.begin(), nodes.end())).pos;
std::cout << min._x << " " << min._y << '\n';
std::cout << nodes.size() << '\n';
}
>main.exe
0 0
2
std::min_element works, but those are 3 unique nodes for me (differet .pos values) so there should be 3 nodes in the set. And that's what I want to achieve
I thought it would use a == or != operators
No, std::set does not use operators == and !=,
std::set uses just one function, the comparison function (the second template argument, which defaults to std::less<T>).
Uniqueness is based on the equivalence relation which is derived from applying the same comparison function twice: !a<b && !b<a.
It seems you don't really need uniqueness, in which case you can use std::multiset instead. It will maintain the order, but will not enforce uniqueness.
std::set<node> nodes;
. . .
auto min = (*std::min_element(nodes.begin(), nodes.end())).pos;
std::min_element is always O(N). Using it on a set defeats the purpose of having a set.
Just get the first element, which will be the smallest (according to the comparison function).
auto min = begin(nodes)->pos;
I am having trouble writing a function to rotate a circular array. I need to rotate it in place (no temp arrays) and I need to move around as few elements as possible. For background information the class "Quack" is just a queue mixed with a stack. So items can be pushed and popped off of both ends of the circular array. Here is what I have so far:
void Quack::rotate(int r)
{
front = (front + capacity + r) % capacity;
back = (back + capacity + r) % capacity;
}
front and back are ints that act as indexes for the array. r is the amount to rotate. capacity is the max size of the array.
The problem is if the array has "garbage" values in it, I end up rotating those into the array. For example lets say the ACTUAL array of chars is {a, b, c, d, e, f, g}, and front is 5 and back is 3. If I printed the circular array I would see {f, g, a, b, c, d}. Since front is 5 and back is 3, the index 4 is a "garbage" value (it got popped at some point). So my rotate function as it stands has a problem in that the index 4 gets "rotated in". If I rotate the array by 2, the ACTUAL array is still {a, b, c, d, e, f, g}, except now when I print it out since front and back are different I get {a, b, c, d, e, f}. What I want to see is {a, b, c, d, f, g}. My print function just prints from front to back (wrapping around as needed) so I need my rotate function to somehow eliminate the garbage value.
I think I need to move the back elements over so I have consecutive values without garbage in the middle. But I'm not sure how to do it.
So if the array isn't full you need to move some char's around. First you check if r is positive or negative. If it's negative you need to push the back over to be flush with the front for the number r or vise versa. example:
print out: c, b, a, z, f, g rotate 2
a z f g - c b
0 1 2 3 4 5 6
the c (items[5]) is in the front and g (items[3]) is back. If we just add r to both it will print garbage for the empty space. If r is 2, we want to copy c to items[4] and b to items[5]. Then items[0] should be the front and b now items[5] should be the back.
void Quack::rotate(int r)
{
if (nItems < capacity) { //if it's not full
if (r < 0) { // if r is negative
int r2 = r*(-1); //find absolute value
for (int i = 0; i < r2; i++) {
items[(back + 1 - i) % (capacity)] = items[(back - i < 0) ? capacity + back - i : back - i]; //push back the back chars up to the front r times
}
}
else {
for (int i = 0; i < r; i++){
items[(back + 1 + i)% capacity] = items[(front + i) % capacity];
}
}
}
front = ((front + r > 0) ? (front + r)%capacity : front + r + capacity); //if front + r is negative add capacity to it
back = (back + r) % capacity;
}
With a cyclic iterator and std::rotate:
#include <algorithm>
#include <iterator>
template <typename Iterator>
class cyclic_range
{
public:
typedef Iterator iterator;
cyclic_range(iterator first, iterator middle, iterator last)
: m_first(first), m_middle(middle), m_last(last)
{
if(m_middle == m_last) m_middle = m_first;
}
iterator first() const { return m_first; }
iterator middle() const { return m_middle; }
iterator last() const { return m_last; }
private:
iterator m_first;
iterator m_middle;
iterator m_last;
};
template <typename Iterator>
inline cyclic_range<Iterator>
make_cyclic_range(Iterator first, Iterator middle, Iterator last) {
return cyclic_range<Iterator>(first, middle, last);
}
/// A cyclic random access iterator operating on a iterator range [first, last).
/// If an iterator reaches the last (or is at last) position of the range the iterator
/// becomes equal to the first position of the range.
template <
typename RandomAccessIterator,
typename CyclicRange = cyclic_range<RandomAccessIterator> >
class cyclic_iterator
{
public:
typedef RandomAccessIterator inner_iterator;
typedef std::iterator_traits<inner_iterator> inner_iterator_traits;
typedef typename std::random_access_iterator_tag iterator_category;
typedef typename inner_iterator_traits::value_type value_type;
typedef typename inner_iterator_traits::difference_type difference_type;
typedef typename inner_iterator_traits::reference reference;
typedef typename inner_iterator_traits::pointer pointer;
typedef CyclicRange range_type;
public:
cyclic_iterator(inner_iterator pos, range_type range, bool at_end = false)
: m_pos(pos), m_range(range), m_at_end(at_end)
{
if(m_pos == range.last()) {
m_pos = range.first();
}
if(m_range.first() == m_range.last()) m_at_end = true;
}
const range_type& range() const { return m_range; }
/// True if the incremented or decremented iterator is at the middle of
/// the circular range.
bool at_end() const { return m_at_end; }
reference operator * () const noexcept {
return *m_pos;
}
pointer operator -> () const noexcept { return &*m_pos; }
cyclic_iterator& operator ++ () noexcept {
if(++m_pos == m_range.last()) m_pos = m_range.first();
m_at_end = (m_pos == m_range.middle());
return *this;
}
cyclic_iterator operator ++ (int) noexcept {
return ++cyclic_iterator(*this);
}
cyclic_iterator& operator += (difference_type n) noexcept {
if(n) {
if(n < 0) *this -= -n;
else {
n %= (m_range.last() - m_range.first());
difference_type avail = m_range.last() - m_pos;
if(n < avail) m_pos += n;
else {
m_pos = m_range.first();
n -= avail;
m_pos += n;
}
m_at_end = (m_pos == m_range.middle());
}
}
return *this;
}
cyclic_iterator operator + (difference_type n) const noexcept {
return cyclic_iterator(*this) += n;
}
cyclic_iterator& operator -- () noexcept {
if(m_pos == m_range.first()) m_pos = m_range.last();
--m_pos;
m_at_end = (m_pos == m_range.middle());
return *this;
}
cyclic_iterator operator -- (int) noexcept {
return --cyclic_iterator(*this);
}
cyclic_iterator& operator -= (difference_type n) noexcept {
if(n) {
if(n < 0) *this += -n;
else {
n %= (m_range.last() - m_range.first());
difference_type avail = m_pos - m_range.first();
if(avail < n) {
m_pos = m_range.last();
n -= avail;
}
m_pos -= n;
m_at_end = (m_pos == m_range.middle());
}
}
return *this;
}
cyclic_iterator operator - (difference_type n) const noexcept {
return cyclic_iterator(*this) -= n;
}
difference_type operator - (const cyclic_iterator& other) const noexcept {
return index() - other.index();
}
bool operator == (const cyclic_iterator& other) noexcept {
return (index() == other.index());
}
bool operator != (const cyclic_iterator& other) noexcept {
return ! (*this == other);
}
bool operator < (const cyclic_iterator& other) noexcept {
return index < other.index();
}
bool operator <= (const cyclic_iterator& other) noexcept {
return ! (other < this);
}
bool operator > (const cyclic_iterator& other) noexcept {
return (other < this);
}
bool operator >= (const cyclic_iterator& other) noexcept {
return ! (this < other);
}
private:
/// The index of the iterator position.
typedef std::size_t size_type;
size_type index() const noexcept {
size_type n = m_range.last() - m_range.first();
if( ! m_at_end) {
if(m_range.middle() <= m_pos) {
n = m_pos - m_range.middle();
}
else {
n = (m_pos - m_range.first()) + (m_range.last() - m_range.middle());
}
}
return n;
}
private:
inner_iterator m_pos;
range_type m_range;
bool m_at_end;
};
template <typename Iterator>
cyclic_iterator<Iterator> begin(const cyclic_range<Iterator>& range) {
return cyclic_iterator<Iterator>(range.middle(), range);
}
template <typename Iterator>
cyclic_iterator<Iterator> end(const cyclic_range<Iterator>& range) {
return cyclic_iterator<Iterator>(range.middle(), range, true);
}
// Test
// ====
#include <iostream>
#include <vector>
template <typename Iterator>
void print_cyclic_range(Iterator first, Iterator last) {
std::cout << "Cyclic Range: ";
for( ; first != last; ++first) {
std::cout << *first << ' ';
}
std::cout << '\n';
}
template <typename Iterator>
void print_range(Iterator first, Iterator last) {
std::cout << " Range: ";
for( ; first != last; ++first) {
std::cout << *first << ' ';
}
std::cout << '\n';
}
int main()
{
typedef cyclic_iterator<char*> cyclic_iterator;
char v[] = { 'a', 'b', 'c', 'd', 'e', 'f', 'g'};
print_range(v, v + sizeof(v));
// The cyclic range from 'f' to (including) 'e'
cyclic_iterator::range_type range(v, v + 5, v + sizeof(v));
// The cyclic iterator pointing to 'f'
cyclic_iterator first = begin(range);
// The cyclic iterator pointing to 'e'
cyclic_iterator last = end(range) - 1;
print_cyclic_range(first, last);
// Rotate the cyclic range from 'f' to (including) 'd', excluding 'e'
std::rotate(first, first + 2, last);
print_range(v, v + sizeof(v));
print_cyclic_range(first, last);
return 0;
}
Giving:
Range: a b c d e f g
Cyclic Range: f g a b c d
Range: c d f g e a b
Cyclic Range: a b c d f g
I'm trying (as an exercise) to create a simple numeric range class in C++. It will let you iterate through evenly spaced doubles (like the numpy/Python arange):
What I'd like to do (but with an iterator):
double lower = ..., upper = ..., delta = ...;
for (double val = lower; val < upper; val += delta)
{
// do something with val
f(val);
}
// include the last val to guarantee upper is included or exceeded
f(val); // do something with val
Desired equivalent iterator code:
double lower = ..., upper = ..., delta = ...;
NumericRange nr(lower, upper, delta);
for (NumericRange::const_iterator iter = nr.begin(); iter != nr.end(); iter++)
{
f(*iter);
}
I'd like my iterator to be compatible with STL iterators so I can reuse code (iterating through a NumericRange should be equivalent to iterating through std::vector).
I've had success simply storing the values in a std::vector (and then using the std::vector's iterator). This is how everything I've found online has solved this problem. However, it really isn't necessary to store the entire list.
Is there a way to avoid storing the entire set of values? Is there some iterable class I can inherit from and override ++, ==, etc. to get the desired effect without storing the std::vector<double>?
(I'd really like to know how to do this without BOOST, even though it's great. I'm asking this because I'd like to learn how to write (from scratch) something like a BOOST solution. I definitely know that part of software engineering is using the tools created by others, but I really want to learn how those tools are designed and built.)
My iterable NumericRange class (using std::vector<double> internally):
class NumericRange
{
protected:
double lower, upper, delta;
std::vector<double> sorted_range;
public:
typedef std::vector<double>::const_iterator const_iterator;
NumericRange()
{
lower = upper = delta = std::numeric_limits<double>::quiet_NaN();
// vector is constructed empty
}
NumericRange(double lower_param, double upper_param, double delta_param)
{
lower = lower_param;
upper = upper_param;
delta = delta_param;
assert(upper_param > lower_param);
double val;
// note: can be much faster without push_back
for (val = lower_param; val < upper_param; val += delta_param)
{
sorted_range.push_back(val);
}
// ensure the upper_value is contained or surpassed
sorted_range.push_back(val);
}
// to prevent comparison of the entire vector
bool operator ==(const NumericRange & rhs) const
{
return lower == rhs.lower && upper == rhs.upper && delta == rhs.delta;
}
// note: this class doesn't really need to store the values in a
// vector, but it makes the iterator interface much easier.
const_iterator begin() const
{
return sorted_range.begin();
}
const_iterator end() const
{
return sorted_range.end();
}
double get_lower() const
{
return lower;
}
double get_upper() const
{
return upper;
}
double get_delta() const
{
return delta;
}
size_t size() const
{
return sorted_range.size();
}
void print() const
{
std::cout << "[ " << lower << " : " << upper << ": +=" << delta << " ]" << std::endl;
}
};
Is there some iterable class I can inherit from and override ++, ==, etc. to get the desired effect without storing the std::vector<double>?
Yes, there is. Its name is std::iterator<std::input_iterator_tag, double>.
Here is a start for you, using int. To save space in my brain, I use the same class to represent both the range and the iterator.
#include <iterator>
#include <iostream>
struct NumericRange : public std::iterator< std::input_iterator_tag, int >
{
int current, fini, delta;
typedef NumericRange iterator;
typedef iterator const_iterator;
iterator begin() { return *this; }
iterator end() { return iterator(fini, fini, delta); }
iterator& operator++() { current += delta; return *this; }
iterator operator++(int) { iterator result(*this); ++*this; return result; }
int operator*() const { return current; }
NumericRange(int start, int fini, int delta)
: current(start), fini(fini), delta(delta)
{
}
bool operator==(const iterator& rhs) {
return rhs.current == current;
}
bool operator!=(const iterator& rhs) {
return !(*this == rhs);
}
};
void f(int i, int j) {
std::cout << i << " " << j << "\n";
}
int main () {
int lower = 4, upper = 14, delta = 5;
NumericRange nr(lower, upper, delta);
for (NumericRange::const_iterator iter = nr.begin(); iter != nr.end(); iter++)
{
f(*iter, *nr.end());
}
}
std::map<String, double> m1,m2;
m1["A"] = 20;
m2["A"] = 20.01;
if (m1 == m2)
cout << "True";
else
cout << "False";
The sample code prints False because 20 is not equal to 20.1. However in my application I want to treat these value as equal because of the difference between these values are with in allowable tolerance. So is there any way to provide a custom comparison function for data(not for Key)?
Any help is appreciated.
Edited :
Sorry for the mistake in the code. I copied the code which I tried to find the solution for this problem. The keys must be equal for my scenario.
If all you care about is equality for the whole container, I would recommend the ::std::equal algorithm. Here's how:
const double tolerance = 0.01;
bool equal = m1.size() == m2.size() &&
::std::equal(m1.begin(), m1.end(), m2.begin(),
[tolerance](const decltype(m1)::value_type &a,
const decltype(m2)::value_type &b) {
return (a.first == b.first) &&
(::std::abs(a.second - b.second) < tolerance);
});
If you care about a 'less than' relationship, then ::std::lexicographical_compare is what you want. This requires the C++11 lambda feature to work.
If what you really want are data values that compare equal in a fuzzy way, I present to you a bit of a hack (and something that also requires a couple of C++11 features) fuzzy-double.cpp. I disable ordering comparisons because that would tempt you to stuff these things in ordering containers, and since (2.0 == 2.1) && (2.1 == 2.2), but (2.0 != 2.2), they are not suitable for this purpose.
#include <cmath>
#include <iostream>
template <const double &tolerance>
class fuzzy_double {
public:
fuzzy_double(double x) : x_(x) {
static_assert(tolerance >= 0, "tolerance must be >= 0");
}
operator double() const { return x_; }
const fuzzy_double &operator =(double x) { x_ = x; }
bool equals(const fuzzy_double &b) const {
return ::std::abs(x_ - b.x_) <= tolerance;
}
// This cannot be used as the basis of a 'less than' comparison operator for
// the purposes of other algorithms because it's possible for a transitive
// equality relationship to exit that equates all fuzzy_double's to
// eachother. There is no strict ordering that makes sense.
bool fuzzy_less(const fuzzy_double &b) const {
return (b.x_ - x_) > tolerance;
}
private:
double x_;
};
template <const double &tolerance>
bool operator ==(const fuzzy_double<tolerance> &a,
const fuzzy_double<tolerance> &b)
{
return a.equals(b);
}
template <const double &tolerance>
bool operator !=(const fuzzy_double<tolerance> &a,
const fuzzy_double<tolerance> &b)
{
return !a.equals(b);
}
template <const double &tolerance>
bool operator <(const fuzzy_double<tolerance> &a,
const fuzzy_double<tolerance> &b)
{
// tolerance < 0 should be an impossible condition and always be false, but
// it's dependent on the template parameter and so only evaluated when the
// template is instantiated.
static_assert(tolerance < 0, "fuzzy_doubles cannot be ordered.");
return false;
}
template <const double &tolerance>
bool operator >=(const fuzzy_double<tolerance> &a,
const fuzzy_double<tolerance> &b)
{
// tolerance < 0 should be an impossible condition and always be false, but
// it's dependent on the template parameter and so only evaluated when the
// template is instantiated.
static_assert(tolerance < 0, "fuzzy_doubles cannot be ordered.");
return false;
}
template <const double &tolerance>
bool operator >(const fuzzy_double<tolerance> &a,
const fuzzy_double<tolerance> &b)
{
// tolerance < 0 should be an impossible condition and always be false, but
// it's dependent on the template parameter and so only evaluated when the
// template is instantiated.
static_assert(tolerance < 0, "fuzzy_doubles cannot be ordered.");
return false;
}
template <const double &tolerance>
bool operator <=(const fuzzy_double<tolerance> &a,
const fuzzy_double<tolerance> &b)
{
// tolerance < 0 should be an impossible condition and always be false, but
// it's dependent on the template parameter and so only evaluated when the
// template is instantiated.
static_assert(tolerance < 0, "fuzzy_doubles cannot be ordered.");
return false;
}
extern constexpr double ten_e_minus_2 = 0.01;
int main()
{
fuzzy_double<ten_e_minus_2> a(3);
fuzzy_double<ten_e_minus_2> b(3.009);
fuzzy_double<ten_e_minus_2> c(2.991);
fuzzy_double<ten_e_minus_2> d(3.011);
fuzzy_double<ten_e_minus_2> e(2.989);
using ::std::cout;
cout << "a == a: " << (a == a) << '\n';
cout << "a == b: " << (a == b) << '\n';
cout << "a == c: " << (a == c) << '\n';
cout << "a == d: " << (a == d) << '\n';
cout << "a == e: " << (a == e) << '\n';
return 0;
}
C++11 does not allow a double, not even const one, to be a template parameter. It does, OTOH, allow pointers and references to objects with external linkage to be template parameters. So if you declare your tolerance as an extern constexpr double you can than use the named tolerance as a template parameter.
You are comparing two entirely separate maps, with different keys and values inside. I am pretty sure this is not your intention.
You can make maps with custom comparison operations for the key, to answer what I think you're asking, but making one with variable tolerance is probably not going to work well. STL has strict requirements about what less-than and equals mean, and how they must behave; if you violate the rules, your map will just fail randomly. So I would not use a map for this. And in your case, you are interested in the values, not the keys, in which case STL simply does not care (it does not look at your values at all).
You can use lexicographical_compare with a custom comparator of pairs that ignores small differences in the values, like this:
bool mycomp (pair<string,double> lhs, pair<string,double> rhs) {
if (lhs.first < rhs.first) {
return true;
}
if (lhs.first > rhs.first) {
return false;
}
// Here is the "check tolerance" part:
if (abs(lhs.second-rhs.second) < 0.05) {
return false;
}
return lhs.second < rhs.second;
}
int main() {
std::map<string, double> m1,m2;
m1["A"] = 20;
m2["A"] = 20.01;
bool res = lexicographical_compare(
m1.begin(), m1.end(),
m2.begin(), m2.end(),
mycomp
);
cerr << res << endl;
return 0;
}
When you compare M1 to M2 you are comparing the maps to each other, not the values in the maps. If you want to compare doubles, with some sort of tolarance see this post.