MSVC - Any way to check if function is actually inlined? - c++

I have to check whether a function is being inlined by the compiler. Is there any way to do this without looking at assembly (which I don't read). I have no choice in figuring this out, so I would prefer if we could not discuss the wisdom of doing this. Thanks!

If you enable warnings C4714, C4710, and C4711, it should give you fairly detailed information about which functions are and aren't inlined.

Each call site may potentially be different.
The compiler may decide for certain parent methods it is worth inlining and for other parent methods that it is not worth inlining. Thus you can not actually determine the real answer without examing the assembley at each call site.
As a result any tools you use would potentially give you a misleading answer. If you use a tool that checks for the existance of symbol (it may be there because some call sites need it, but potentially it may be inlined at others). Conversely the lack of the symbol does not mean the method/function is not inlined it may be static (as in file static) and thus the compiler does not need to keep the symbol around (yet it was not inlined).

Using the /FAs compiler option to dump the asm with source code is the only way that I know of to be sure.
Note: if you want to force a function to be inline, just use __forceinline.

Generate a "MAP" file. This gives you the addresses of all non-inlined functions. If your function appears in this list, it's not inlined, otherwise it's either inlined or optimized out entirely (e.g. when it's not called at all).

If you really don't want to jump into assembly, declare the function as __forceinline, and if the executable gets larger, you know it wasn't being inlined.

Related

How to put inline functions in the C++ source file?

How can I force the inlining of a function, but define it in a C++ file ?
This is a question that's been asked in the past, for example here: Moving inline methods from a header file to a .cpp files
The answers there, in short, go as follows: "inline used to mean [remove function call overhead at the expense of .text size], now it means [relax ODR], so don't use inline for anything that's not ODR related, the compiler knows better".
I'm aware of that, however in my somewhat exotic case, I don't care about performance.
I'm programming an embedded device and, should someone break through the other layers of security, I want to make it as obnoxious as possible to reverse engineer this part of the code, and one thing this implies is that I don't want function calls (that aren't called numerous times anyway) to expose the function boundaries, which are natural delimitations of pieces of code that achieve something on their own.
However, I would also like to keep my code orderly and not have code in my header files.
I see that I can use __attribute((force_inline)) to force inlining, but then I get warnings if those functions don't have an inline attribute too: warning: always_inline function might not be inlinable [-Wattributes]
Suppressing the attributes warning is an option, but I'd rather only take it once I'm sure there are no clean way to do this.
Hence the question: how can I have a forcibly inlined function whose declaration is in a header, but definition is in a source file, without suppressing all attributes warnings ? Is that impossible ?
Inlining can only be asked. Sometimes a bit forcefully. But you can never guarantee that the function WILL be inlined finally - because reasons, sometimes quite obscure ones.
Here what's MSVC documentation says (I've highlighted the important parts):
The compiler treats the inline expansion options and keywords as suggestions. There's no guarantee that functions will be inlined. You can't force the compiler to inline a particular function, even with the __forceinline keyword. When compiling with /clr, the compiler won't inline a function if there are security attributes applied to the function.
C++ standard says:
No matter how you designate a function as inline, it is a request that the compiler is allowed to ignore: the compiler might inline-expand some, all, or none of the places where you call a function designated as inline.
GCC documentation is a bit less crystal-clear about non-inlinable functions, but cases exists anyway.
The only "real" way to force inlining is quite ugly, since it rely on inlining it before compilation... Yeah, old-style preprocessor macros. The Evil Itself. Or by using a dirty hack with a #include replacing the function call (and inserting C++ code instead)... It may be a bit safer than a macro, regarding double evaluations, but other side-effects can be even worse since it must rely on "global" variables to work.
Does it worth the pain? Probably not. In particular for "obfuscation", because it won't be as "secure" as you think it will be. Yes, an explicit function call is easier to trace. But it won't change anything: reverse engineering don't rely on that to be done. In fact, obfuscation is near never a good (or even working...) solution. I used to think that... a long, very long time ago. I proved to myself that it was near useless. On my own "secured" code. Breaking the code took me much less time than it took me to "protect" it...

Identify whether a function is inlined in the LLVM IR

We are instrumenting the source code at compile-time, based on the LLVM IR. In this procedure, we want to skip the functions that are already inlined (e.g., due to compile-time optimization).
How can we determine whether a function has been inlined in our LLVM pass?
This seems rather vague and open to many interpretations...
One way to see whether foo() is inlined into bar() is to loop over the instructions in bar() and see whether any of them are call %foo or similar. If that is the case, then at least one call wasn't inlined, even if other calls may have been.
Another way is to look at the debug info. Suppose that foo() originates in foo.c lines 10 to 20. You can look at the debug info for all instructions in bar() and check whether any refer to lines 10-20 of foo.c. If any do, then at least one call was inlined, even if others were not.
I can think of at least two more ways, too, and I'm sure there are more. (Edit: I can think of three, including one quite nice way: Attach some unique metadata to the instructions in foo() early in the compilation and see where that metadata is found just before native codegen.)
Well, we gradually noticed that the "inline" operation is in terms of the specific call site rather than the callee function. Thus, one function may not have an attribute of "inline". For each function, it may be inlined at some call points but called normally at other call points, so we shouldn't skip them in our instrument pass.

How do I use gcc's inline report (-Winline)

Enabling -Winline on my project produces a whole lot of output which I don't really understand. Does anyone know how to use this output to figure out why my particular function wasn't inlined?
Well, according to my gcc man page...
The compiler uses a variety of
heuristics to determine whether or not
to inline a function. For example,
the compiler takes into account the
size of the function being inlined and
the amount of inlining that has
already been done in the current
function. Therefore, seemingly
insignificant changes in the source
program can cause the warnings
produced by -Winline to appear or
disappear.
I don't believe that you can force the compiler to inline your function; it's an implementation detail that could even change when the compiler is updated. Besides, as long as the compiler's choice causes your function to run faster, is there any particular reason that you care whether the function is actually inlined or not?
Of course, if you really want to inline your function for some reason, you could probably just use a macro to do so.

Inline Functions

I know compiler may or may not perform inline expansion of a function whether requested by the programmer or not.
I was just curious to know, is there any way by which programmer can know for sure that compiler has inlined a particular function?
Other than by looking at the generated code, no. Some implementations may provide that information but it's not required by the standard.
Things like inline or register (shudder) are suggestions to the compiler and it's free to accept them, ignore them or even lie to you that it's done it while secretly going behind your back and not doing it :-)
I tend not to use features like that since I suspect the compiler often knows better than I do how to wring the most performance out of my code.
You can profile your code and see if the function of interest shows up in the call stack. Although, I suppose there is no guarantee if your stack sampling rate is not high enough.
But it may prove that it is inlined: if you know A calls B, which calls C, and A never calls C directly, if you see A calling C on the call stack, you know B was inlined for that call.
Set your compiler to generate assembler code and check there.
Read the disassembly of the object file.
There is no way to know except to look at the output assembler.
Compilers these days are 'smart' and they decide what functions to inline and in what cases.
Just like the register keyword, compilers do the picking these days and really ignore your requests.
I don't think there is a way to find out what you want,
But you can increase the possibilites of the function being an inline function by,
Making the definition of the function visible to the translation unit in which it is called. i.e you always have to put the definition of an inline function in header file.

What is wrong with using inline functions?

While it would be very convenient to use inline functions at some situations,
Are there any drawbacks with inline functions?
Conclusion:
Apparently, There is nothing wrong with using inline functions.
But it is worth noting the following points!
Overuse of inlining can actually make programs slower. Depending on a function's size, inlining it can cause the code size to increase or decrease. Inlining a very small accessor function will usually decrease code size while inlining a very large function can dramatically increase code size. On modern processors smaller code usually runs faster due to better use of the instruction cache. - Google Guidelines
The speed benefits of inline functions tend to diminish as the function grows in size. At some point the overhead of the function call becomes small compared to the execution of the function body, and the benefit is lost - Source
There are few situations where an inline function may not work:
For a function returning values; if a return statement exists.
For a function not returning any values; if a loop, switch or goto statement exists.
If a function is recursive. -Source
The __inline keyword causes a function to be inlined only if you specify the optimize option. If optimize is specified, whether or not __inline is honored depends on the setting of the inline optimizer option. By default, the inline option is in effect whenever the optimizer is run. If you specify optimize , you must also specify the noinline option if you want the __inline keyword to be ignored. -Source
It worth pointing out that the inline keyword is actually just a hint to the compiler. The compiler may ignore the inline and simply generate code for the function someplace.
The main drawback to inline functions is that it can increase the size of your executable (depending on the number of instantiations). This can be a problem on some platforms (eg. embedded systems), especially if the function itself is recursive.
I'd also recommend making inline'd functions very small - The speed benefits of inline functions tend to diminish as the function grows in size. At some point the overhead of the function call becomes small compared to the execution of the function body, and the benefit is lost.
It could increase the size of the
executable, and I don't think
compilers will always actually make
them inline even though you used the
inline keyword. (Or is it the other
way around, like what Vaibhav
said?...)
I think it's usually OK if the
function has only 1 or 2 statements.
Edit: Here's what the linux CodingStyle document says about it:
Chapter 15: The inline disease
There appears to be a common
misperception that gcc has a magic
"make me faster" speedup option called
"inline". While the use of inlines can
be appropriate (for example as a means
of replacing macros, see Chapter 12),
it very often is not. Abundant use of
the inline keyword leads to a much
bigger kernel, which in turn slows the
system as a whole down, due to a
bigger icache footprint for the CPU
and simply because there is less
memory available for the pagecache.
Just think about it; a pagecache miss
causes a disk seek, which easily takes
5 miliseconds. There are a LOT of cpu
cycles that can go into these 5
miliseconds.
A reasonable rule of thumb is to not
put inline at functions that have more
than 3 lines of code in them. An
exception to this rule are the cases
where a parameter is known to be a
compiletime constant, and as a result
of this constantness you know the
compiler will be able to optimize most
of your function away at compile time.
For a good example of this later case,
see the kmalloc() inline function.
Often people argue that adding inline
to functions that are static and used
only once is always a win since there
is no space tradeoff. While this is
technically correct, gcc is capable of
inlining these automatically without
help, and the maintenance issue of
removing the inline when a second user
appears outweighs the potential value
of the hint that tells gcc to do
something it would have done anyway.
There is a problem with inline - once you defined a function in a header file (which implies inline, either explicit or implicit by defining a body of a member function inside class) there is no simple way to change it without forcing your users to recompile (as opposed to relink). Often this causes problems, especially if the function in question is defined in a library and header is part of its interface.
I agree with the other posts:
inline may be superfluous because the compiler will do it
inline may bloat your code
A third point is it may force you to expose implementation details in your headers, .e.g.,
class OtherObject;
class Object {
public:
void someFunc(OtherObject& otherObj) {
otherObj.doIt(); // Yikes requires OtherObj declaration!
}
};
Without the inline a forward declaration of OtherObject was all you needed. With the inline your
header needs the definition for OtherObject.
As others have mentioned, the inline keyword is only a hint to the compiler. In actual fact, most modern compilers will completely ignore this hint. The compiler has its own heuristics to decide whether to inline a function, and quite frankly doesn't want your advice, thank you very much.
If you really, really want to make something inline, if you've actually profiled it and looked at the disassembly to ensure that overriding the compiler heuristic actually makes sense, then it is possible:
In VC++, use the __forceinline keyword
In GCC, use __attribute__((always_inline))
The inline keyword does have a second, valid purpose however - declaring functions in header files but not inside a class definition. The inline keyword is needed to tell the compiler not to generate multiple definitions of the function.
I doubt it. Even the compiler automatically inlines some functions for optimization.
I don't know if my answer's related to the question but:
Be very careful about inline virtual methods! Some buggy compilers (previous versions of Visual C++ for example) would generate inline code for virtual methods where the standard behaviour was to do nothing but go down the inheritance tree and call the appropriate method.
You should also note that the inline keyword is only a request. The compiler may choose not to inline it, likewise the compiler may choose to make a function inline that you did not define as inline if it thinks the speed/size tradeoff is worth it.
This decision is generaly made based on a number of things, such as the setting between optimise for speed(avoids the function call) and optimise for size (inlining can cause code bloat, so isn't great for large repeatedly used functions).
with the VC++ compiler you can overide this decision by using __forceinline
SO in general:
Use inline if you really want to have a function in a header, but elsewhere theres little point because if your going to gain anything from it, a good compiler will be making it inline for you anyway.
Inlining larger functions can make the program larger, resulting in more instruction cache misses and making it slower.
Deciding when a function is small enough that inlining will increase performance is quite tricky. Google's C++ Style Guide recommends only inlining functions of 10 lines or less.
(Simplified) Example:
Imagine a simple program that just calls function "X" 5 times.
If X is small and all calls are inlined: Potentially all instructions will be prefetched into the instruction cache with a single main memory access - great!
If X is large, let's say approaching the capacity of the instruction cache:
Inlining X will potentially result in fetching instructions from memory once for each inline instance of X.
If X isn't inlined, instructions may be fetched from memory on the first call to X, but could potentially remain in the cache for subsequent calls.
Excessive inlining of functions can increase size of compiled executable which can have negative impact on cache performance, but nowadays compiler decide about function inlining on their own (depending on many criterias) and ignore inline keyword.
Among other issues with inline functions, which I've seen heavily overused (I've seen inline functions of 500 lines), what you have to be aware of are:
build instability
Changing the source of an inline function causes all the users of the header to recompile
#includes leak into the client. This can be very nasty if you rework an inlined function and remove a no-longer used header which some client has relied on.
executable size
Every time an inline is inlined instead of a call instruction the compiler has to generate the whole code of the inline. This is OK if the code of the function is short (one or two lines), not so good if the function is long
Some functions can produce a lot more code than at first appears. I case in point is a 'trivial' destructor of a class that has a lot of non-pod member variables (or two or 3 member variables with rather messy destructors). A call has to be generated for each destructor.
execution time
this is very dependent on your CPU cache and shared libraries, but locality of reference is important. If the code you might be inlining happens to be held in cpu cache in one place, a number of clients can find the code an not suffer from a cache miss and the subsequent memory fetch (and worse, should it happen, a disk fetch). Sadly this is one of those cases where you really need to do performance analysis.
The coding standard where I work limit inline functions to simple setters/getters, and specifically say destructors should not be inline, unless you have performance measurements to show the inlining confers a noticeable advantage.
In addition to other great answers, at least once I saw a case where forced inlining actually slowed down the affected code by 1.5x. There was a nested loop inside (pretty small one) and when this function was compiled as a separate unit, compiler managed to efficiently unroll and optimize it. But when same function was inlined into much bigger outer function, compiler (MSVC 2017) failed to optimize this loop.
As other people said that inline function can create a problem if the the code is large.As each instruction is stored in a specific memory location ,so overloading of inline function make a code to take more time to get exicuted.
there are few other situations where inline may not work
does not work in case of recursive function.
It may also not work with static variable.
it also not work in case there is use of a loop,switch etc.or we can say that with multiple statements.
And the function main cannot work as inline function.