First of all, I am new to SSE. I decided to accelerate my code, but it seems, that it works slower, then my native code.
This is an example, that calculates the sum of squares. On my Intel i7-6700HQ, it takes 0.43s for native code and 0.52 for SSE. So, where is a bottleneck?
inline float squared_sum(const float x, const float y)
{
return x * x + y * y;
}
#define USE_SIMD
void calculations()
{
high_resolution_clock::time_point t1, t2;
int result_v = 0;
t1 = high_resolution_clock::now();
alignas(16) float data_x[4];
alignas(16) float data_y[4];
alignas(16) float result[4];
__m128 v_x, v_y, v_res;
for (int y = 0; y < 5120; y++)
{
data_y[0] = y;
data_y[1] = y + 1;
data_y[2] = y + 2;
data_y[3] = y + 3;
for (int x = 0; x < 5120; x++)
{
data_x[0] = x;
data_x[1] = x + 1;
data_x[2] = x + 2;
data_x[3] = x + 3;
#ifdef USE_SIMD
v_x = _mm_load_ps(data_x);
v_y = _mm_load_ps(data_y);
v_x = _mm_mul_ps(v_x, v_x);
v_y = _mm_mul_ps(v_y, v_y);
v_res = _mm_add_ps(v_x, v_y);
_mm_store_ps(result, v_res);
#else
result[0] = squared_sum(data_x[0], data_y[0]);
result[1] = squared_sum(data_x[1], data_y[1]);
result[2] = squared_sum(data_x[2], data_y[2]);
result[3] = squared_sum(data_x[3], data_y[3]);
#endif
result_v += (int)(result[0] + result[1] + result[2] + result[3]);
}
}
t2 = high_resolution_clock::now();
duration<double> time_span1 = duration_cast<duration<double>>(t2 - t1);
std::cout << "Exec time:\t" << time_span1.count() << " s\n";
}
UPDATE: fixed code according to comments.
I am using Visual Studio 2017. Compiled for x64.
Optimization: Maximum Optimization (Favor Speed) (/O2);
Inline Function Expansion: Any Suitable (/Ob2);
Favor Size or Speed: Favor fast code (/Ot);
Omit Frame Pointers: Yes (/Oy)
Conclusion
Compilers generate already optimized code, so nowadays it is hard to accelerate it even more. The one thing you can do, to accelerate code more, is parallelization.
Thanks for the answers. They mainly the same, so I accept Søren V. Poulsen answer because it was the first.
Modern compiles are incredible machines and will already use SIMD instructions if possible (and with the correct compilation flags).
One general strategy to determine what the compiler is doing is looking at the disassembly of your code. If you don't want to do it on your own machine you can use an online service like Godbolt: https://gcc.godbolt.org/z/T6GooQ.
One tip is to avoid atomic for storing intermediate results like you are doing here. Atomic values are used to ensure synchronization between threads, and this may come at a very high computational cost, relatively speaking.
Looking through the assembly for the compiler's code based (without your SIMD stuff),
calculations():
pxor xmm2, xmm2
xor edx, edx
movdqa xmm0, XMMWORD PTR .LC0[rip]
movdqa xmm11, XMMWORD PTR .LC1[rip]
movdqa xmm9, XMMWORD PTR .LC2[rip]
movdqa xmm8, XMMWORD PTR .LC3[rip]
movdqa xmm7, XMMWORD PTR .LC4[rip]
.L4:
movdqa xmm5, xmm0
movdqa xmm4, xmm0
cvtdq2ps xmm6, xmm0
movdqa xmm10, xmm0
paddd xmm0, xmm7
cvtdq2ps xmm3, xmm0
paddd xmm5, xmm9
paddd xmm4, xmm8
cvtdq2ps xmm5, xmm5
cvtdq2ps xmm4, xmm4
mulps xmm6, xmm6
mov eax, 5120
paddd xmm10, xmm11
mulps xmm5, xmm5
mulps xmm4, xmm4
mulps xmm3, xmm3
pxor xmm12, xmm12
.L2:
movdqa xmm1, xmm12
cvtdq2ps xmm14, xmm12
mulps xmm14, xmm14
movdqa xmm13, xmm12
paddd xmm12, xmm7
cvtdq2ps xmm12, xmm12
paddd xmm1, xmm9
cvtdq2ps xmm0, xmm1
mulps xmm0, xmm0
paddd xmm13, xmm8
cvtdq2ps xmm13, xmm13
sub eax, 1
mulps xmm13, xmm13
addps xmm14, xmm6
mulps xmm12, xmm12
addps xmm0, xmm5
addps xmm13, xmm4
addps xmm12, xmm3
addps xmm0, xmm14
addps xmm0, xmm13
addps xmm0, xmm12
movdqa xmm12, xmm1
cvttps2dq xmm0, xmm0
paddd xmm2, xmm0
jne .L2
add edx, 1
movdqa xmm0, xmm10
cmp edx, 1280
jne .L4
movdqa xmm0, xmm2
psrldq xmm0, 8
paddd xmm2, xmm0
movdqa xmm0, xmm2
psrldq xmm0, 4
paddd xmm2, xmm0
movd eax, xmm2
ret
main:
xor eax, eax
ret
_GLOBAL__sub_I_calculations():
sub rsp, 8
mov edi, OFFSET FLAT:_ZStL8__ioinit
call std::ios_base::Init::Init() [complete object constructor]
mov edx, OFFSET FLAT:__dso_handle
mov esi, OFFSET FLAT:_ZStL8__ioinit
mov edi, OFFSET FLAT:_ZNSt8ios_base4InitD1Ev
add rsp, 8
jmp __cxa_atexit
.LC0:
.long 0
.long 1
.long 2
.long 3
.LC1:
.long 4
.long 4
.long 4
.long 4
.LC2:
.long 1
.long 1
.long 1
.long 1
.LC3:
.long 2
.long 2
.long 2
.long 2
.LC4:
.long 3
.long 3
.long 3
.long 3
Your SIMD code generates:
calculations():
pxor xmm5, xmm5
xor eax, eax
mov r8d, 1
movabs rdi, -4294967296
cvtsi2ss xmm5, eax
.L4:
mov r9d, r8d
mov esi, 1
movd edx, xmm5
pxor xmm5, xmm5
pxor xmm4, xmm4
mov ecx, edx
mov rdx, QWORD PTR [rsp-24]
cvtsi2ss xmm5, r8d
add r8d, 1
cvtsi2ss xmm4, r8d
and rdx, rdi
or rdx, rcx
pxor xmm2, xmm2
mov edx, edx
movd ecx, xmm5
sal rcx, 32
or rdx, rcx
mov QWORD PTR [rsp-24], rdx
movd edx, xmm4
pxor xmm4, xmm4
mov ecx, edx
mov rdx, QWORD PTR [rsp-16]
and rdx, rdi
or rdx, rcx
lea ecx, [r9+2]
mov edx, edx
cvtsi2ss xmm4, ecx
movd ecx, xmm4
sal rcx, 32
or rdx, rcx
mov QWORD PTR [rsp-16], rdx
movaps xmm4, XMMWORD PTR [rsp-24]
mulps xmm4, xmm4
.L2:
movd edx, xmm2
mov r10d, esi
pxor xmm2, xmm2
pxor xmm7, xmm7
mov ecx, edx
mov rdx, QWORD PTR [rsp-40]
cvtsi2ss xmm2, esi
add esi, 1
and rdx, rdi
cvtsi2ss xmm7, esi
or rdx, rcx
mov ecx, edx
movd r11d, xmm2
movd edx, xmm7
sal r11, 32
or rcx, r11
pxor xmm7, xmm7
mov QWORD PTR [rsp-40], rcx
mov ecx, edx
mov rdx, QWORD PTR [rsp-32]
and rdx, rdi
or rdx, rcx
lea ecx, [r10+2]
mov edx, edx
cvtsi2ss xmm7, ecx
movd ecx, xmm7
sal rcx, 32
or rdx, rcx
mov QWORD PTR [rsp-32], rdx
movaps xmm0, XMMWORD PTR [rsp-40]
mulps xmm0, xmm0
addps xmm0, xmm4
movaps xmm3, xmm0
movaps xmm1, xmm0
shufps xmm3, xmm0, 85
addss xmm1, xmm3
movaps xmm3, xmm0
unpckhps xmm3, xmm0
shufps xmm0, xmm0, 255
addss xmm1, xmm3
addss xmm0, xmm1
cvttss2si edx, xmm0
add eax, edx
cmp r10d, 5120
jne .L2
cmp r9d, 5120
jne .L4
rep ret
main:
xor eax, eax
ret
_GLOBAL__sub_I_calculations():
sub rsp, 8
mov edi, OFFSET FLAT:_ZStL8__ioinit
call std::ios_base::Init::Init() [complete object constructor]
mov edx, OFFSET FLAT:__dso_handle
mov esi, OFFSET FLAT:_ZStL8__ioinit
mov edi, OFFSET FLAT:_ZNSt8ios_base4InitD1Ev
add rsp, 8
jmp __cxa_atexit
Note that the compiler's version is using cvtdq2ps, paddd, cvtdq2ps, mulps, addps, and cvttps2dq. All of these are SIMD instructions. By combining them effectively, the compiler generates fast code.
In constrast, your code generates a lot of add, and, cvtsi2ss, lea, mov, movd, or, pxor, sal, which are not SIMD instructions.
I suspect the compiler does a better job of dealing with data type conversion and data rearrangement than you do, and that this allows it to arrange its math more effectively.
I've been running into some issues that only occurred during Release x86 mode and not during Release x64 or any Debug mode. I managed to reproduce the bug using the following code:
#include <stdio.h>
#include <iostream>
using namespace std;
struct WMatrix {
float _11, _12, _13, _14;
float _21, _22, _23, _24;
float _31, _32, _33, _34;
float _41, _42, _43, _44;
WMatrix(float f11, float f12, float f13, float f14,
float f21, float f22, float f23, float f24,
float f31, float f32, float f33, float f34,
float f41, float f42, float f43, float f44) :
_11(f11), _12(f12), _13(f13), _14(f14),
_21(f21), _22(f22), _23(f23), _24(f24),
_31(f31), _32(f32), _33(f33), _34(f34),
_41(f41), _42(f42), _43(f43), _44(f44) {
}
};
void printmtx(WMatrix m1) {
char str[256];
sprintf_s(str, 256, "%.3f, %.3f, %.3f, %.3f", m1._11, m1._12, m1._13, m1._14);
cout << str << "\n";
sprintf_s(str, 256, "%.3f, %.3f, %.3f, %.3f", m1._21, m1._22, m1._23, m1._24);
cout << str << "\n";
sprintf_s(str, 256, "%.3f, %.3f, %.3f, %.3f", m1._31, m1._32, m1._33, m1._34);
cout << str << "\n";
sprintf_s(str, 256, "%.3f, %.3f, %.3f, %.3f", m1._41, m1._42, m1._43, m1._44);
cout << str << "\n";
}
WMatrix mul1(WMatrix m, float f) {
WMatrix out = m;
for (unsigned int i = 0; i < 4; i++) {
for (unsigned int j = 0; j < 4; j++) {
unsigned int idx = i * 4 + j; // critical code
*(&out._11 + idx) *= f; // critical code
}
}
return out;
}
WMatrix mul2(WMatrix m, float f) {
WMatrix out = m;
unsigned int idx2 = 0;
for (unsigned int i = 0; i < 4; i++) {
for (unsigned int j = 0; j < 4; j++) {
unsigned int idx = i * 4 + j; // critical code
bool b = idx == idx2; // critical code
*(&out._11 + idx) *= f; // critical code
idx2++;
}
}
return out;
}
int main() {
WMatrix m1(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
WMatrix m2 = mul1(m1, 0.5f);
WMatrix m3 = mul2(m1, 0.5f);
printmtx(m1);
cout << "\n";
printmtx(m2);
cout << "\n";
printmtx(m3);
int x;
cin >> x;
}
In the above code, mul2 works, but mul1 does not. mul1 and mul2 are simply trying to iterate over the floats in the WMatrix and multiply them by f, but the way mul1 indexes (i*4+j) somehow evaluates to incorrect results. All mul2 does different is it checks the index before using it and then it works (there are many other ways of tinkering with the index to make it work). Notice if you remove the line "bool b = idx == idx2" then mul2 also breaks...
Here is the output:
1.000, 2.000, 3.000, 4.000
5.000, 6.000, 7.000, 8.000
9.000, 10.000, 11.000, 12.000
13.000, 14.000, 15.000, 16.000
0.500, 0.500, 0.375, 0.250
0.625, 1.500, 3.500, 8.000
9.000, 10.000, 11.000, 12.000
13.000, 14.000, 15.000, 16.000
0.500, 1.000, 1.500, 2.000
2.500, 3.000, 3.500, 4.000
4.500, 5.000, 5.500, 6.000
6.500, 7.000, 7.500, 8.000
Correct output should be...
1.000, 2.000, 3.000, 4.000
5.000, 6.000, 7.000, 8.000
9.000, 10.000, 11.000, 12.000
13.000, 14.000, 15.000, 16.000
0.500, 1.000, 1.500, 2.000
2.500, 3.000, 3.500, 4.000
4.500, 5.000, 5.500, 6.000
6.500, 7.000, 7.500, 8.000
0.500, 1.000, 1.500, 2.000
2.500, 3.000, 3.500, 4.000
4.500, 5.000, 5.500, 6.000
6.500, 7.000, 7.500, 8.000
Am I missing something? Or is it actually a bug in the compiler?
This afflicts only the 32-bit compiler; x86-64 builds are not affected, regardless of optimization settings. However, you see the problem manifest in 32-bit builds whether optimizing for speed (/O2) or size (/O1). As you mentioned, it works as expected in debugging builds with optimization disabled.
Wimmel's suggestion of changing the packing, accurate though it is, does not change the behavior. (The code below assumes the packing is correctly set to 1 for WMatrix.)
I can't reproduce it in VS 2010, but I can in VS 2013 and 2015. I don't have 2012 installed. That's good enough, though, to allow us to analyze the difference between the object code produced by the two compilers.
Here is the code for mul1 from VS 2010 (the "working" code):
(Actually, in many cases, the compiler inlined the code from this function at the call site. But the compiler will still output disassembly files containing the code it generated for the individual functions prior to inlining. That's what we're looking at here, because it is more cluttered. The behavior of the code is entirely equivalent whether it's been inlined or not.)
PUBLIC mul1
_TEXT SEGMENT
_m$ = 8 ; size = 64
_f$ = 72 ; size = 4
mul1 PROC
___$ReturnUdt$ = eax
push esi
push edi
; WMatrix out = m;
mov ecx, 16 ; 00000010H
lea esi, DWORD PTR _m$[esp+4]
mov edi, eax
rep movsd
; for (unsigned int i = 0; i < 4; i++)
; {
; for (unsigned int j = 0; j < 4; j++)
; {
; unsigned int idx = i * 4 + j; // critical code
; *(&out._11 + idx) *= f; // critical code
movss xmm0, DWORD PTR [eax]
cvtps2pd xmm1, xmm0
movss xmm0, DWORD PTR _f$[esp+4]
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax], xmm1
movss xmm1, DWORD PTR [eax+4]
cvtps2pd xmm1, xmm1
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+4], xmm1
movss xmm1, DWORD PTR [eax+8]
cvtps2pd xmm1, xmm1
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+8], xmm1
movss xmm1, DWORD PTR [eax+12]
cvtps2pd xmm1, xmm1
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+12], xmm1
movss xmm2, DWORD PTR [eax+16]
cvtps2pd xmm2, xmm2
cvtps2pd xmm1, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+16], xmm1
movss xmm1, DWORD PTR [eax+20]
cvtps2pd xmm1, xmm1
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+20], xmm1
movss xmm1, DWORD PTR [eax+24]
cvtps2pd xmm1, xmm1
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+24], xmm1
movss xmm1, DWORD PTR [eax+28]
cvtps2pd xmm1, xmm1
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+28], xmm1
movss xmm1, DWORD PTR [eax+32]
cvtps2pd xmm1, xmm1
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+32], xmm1
movss xmm1, DWORD PTR [eax+36]
cvtps2pd xmm1, xmm1
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+36], xmm1
movss xmm2, DWORD PTR [eax+40]
cvtps2pd xmm2, xmm2
cvtps2pd xmm1, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+40], xmm1
movss xmm1, DWORD PTR [eax+44]
cvtps2pd xmm1, xmm1
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+44], xmm1
movss xmm2, DWORD PTR [eax+48]
cvtps2pd xmm1, xmm0
cvtps2pd xmm2, xmm2
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+48], xmm1
movss xmm1, DWORD PTR [eax+52]
cvtps2pd xmm1, xmm1
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
movss DWORD PTR [eax+52], xmm1
movss xmm1, DWORD PTR [eax+56]
cvtps2pd xmm1, xmm1
cvtps2pd xmm2, xmm0
mulsd xmm1, xmm2
cvtpd2ps xmm1, xmm1
cvtps2pd xmm0, xmm0
movss DWORD PTR [eax+56], xmm1
movss xmm1, DWORD PTR [eax+60]
cvtps2pd xmm1, xmm1
mulsd xmm1, xmm0
pop edi
cvtpd2ps xmm0, xmm1
movss DWORD PTR [eax+60], xmm0
pop esi
; return out;
ret 0
mul1 ENDP
Compare that to the code for mul1 generated by VS 2015:
mul1 PROC
_m$ = 8 ; size = 64
; ___$ReturnUdt$ = ecx
; _f$ = xmm2s
; WMatrix out = m;
movups xmm0, XMMWORD PTR _m$[esp-4]
; for (unsigned int i = 0; i < 4; i++)
xor eax, eax
movaps xmm1, xmm2
movups XMMWORD PTR [ecx], xmm0
movups xmm0, XMMWORD PTR _m$[esp+12]
shufps xmm1, xmm1, 0
movups XMMWORD PTR [ecx+16], xmm0
movups xmm0, XMMWORD PTR _m$[esp+28]
movups XMMWORD PTR [ecx+32], xmm0
movups xmm0, XMMWORD PTR _m$[esp+44]
movups XMMWORD PTR [ecx+48], xmm0
npad 4
$LL4#mul1:
; for (unsigned int j = 0; j < 4; j++)
; {
; unsigned int idx = i * 4 + j; // critical code
; *(&out._11 + idx) *= f; // critical code
movups xmm0, XMMWORD PTR [ecx+eax*4]
mulps xmm0, xmm1
movups XMMWORD PTR [ecx+eax*4], xmm0
inc eax
cmp eax, 4
jb SHORT $LL4#mul1
; return out;
mov eax, ecx
ret 0
?mul1##YA?AUWMatrix##U1#M#Z ENDP ; mul1
_TEXT ENDS
It is immediately obvious how much shorter the code is. Apparently the optimizer got a lot smarter between VS 2010 and VS 2015. Unfortunately, sometimes the source of the optimizer's "smarts" is the exploitation of bugs in your code.
Looking at the code that matches up with the loops, you can see that VS 2010 is unrolling the loops. All of the computations are done inline so that there are no branches. This is kind of what you'd expect for loops with upper and lower bounds that are known at compile time and, as in this case, reasonably small.
What happened in VS 2015? Well, it didn't unroll anything. There are 5 lines of code, and then a conditional jump JB back to the top of the loop sequence. That alone doesn't tell you much. What does look highly suspicious is that it only loops 4 times (see the cmp eax, 4 statement that sets flags right before doing the jb, effectively continuing the loop as long as the counter is less than 4). Well, that might be okay if it had merged the two loops into one. Let's see what it's doing inside of the loop:
$LL4#mul1:
movups xmm0, XMMWORD PTR [ecx+eax*4] ; load a packed unaligned value into XMM0
mulps xmm0, xmm1 ; do a packed multiplication of XMM0 by XMM1,
; storing the result in XMM0
movups XMMWORD PTR [ecx+eax*4], xmm0 ; store the result of the previous multiplication
; back into the memory location that we
; initially loaded from
inc eax ; one iteration done, increment loop counter
cmp eax, 4 ; see how many loops we've done
jb $LL4#mul1 ; keep looping if < 4 iterations
The code reads a value from memory (an XMM-sized value from the location determined by ecx + eax * 4) into XMM0, multiplies it by a value in XMM1 (which was set outside the loop, based on the f parameter), and then stores the result back into the original memory location.
Compare that to the code for the corresponding loop in mul2:
$LL4#mul2:
lea eax, DWORD PTR [eax+16]
movups xmm0, XMMWORD PTR [eax-24]
mulps xmm0, xmm2
movups XMMWORD PTR [eax-24], xmm0
sub ecx, 1
jne $LL4#mul2
Aside from a different loop control sequence (this sets ECX to 4 outside of the loop, subtracts 1 each time through, and keeps looping as long as ECX != 0), the big difference here is the actual XMM values that it manipulates in memory. Instead of loading from [ecx+eax*4], it loads from [eax-24] (after having previously added 16 to EAX).
What's different about mul2? You had added code to track a separate index in idx2, incrementing it each time through the loop. Now, this alone would not be enough. If you comment out the assignment to the bool variable b, mul1 and mul2 result in identical object code. Clearly without the comparison of idx to idx2, the compiler is able to deduce that idx2 is completely unused, and therefore eliminate it, turning mul2 into mul1. But with that comparison, the compiler apparently becomes unable to eliminate idx2, and its presence ever so slightly changes what optimizations are deemed possible for the function, resulting in the output discrepancy.
Now the question turns to why is this happening. Is it an optimizer bug, as you first suspected? Well, no—and as some of the commenters have mentioned, it should never be your first instinct to blame the compiler/optimizer. Always assume that there are bugs in your code unless you can prove otherwise. That proof would always involve looking at the disassembly, and preferably referencing the relevant portions of the language standard if you really want to be taken seriously.
In this case, Mystical has already nailed the problem. Your code exhibits undefined behavior when it does *(&out._11 + idx). This makes certain assumptions about the layout of the WMatrix struct in memory, which you cannot legally make, even after explicitly setting the packing.
This is why undefined behavior is evil—it results in code that seems to work sometimes, but other times it doesn't. It is very sensitive to compiler flags, especially optimizations, but also target platforms (as we saw at the top of this answer). mul2 only works by accident. Both mul1 and mul2 are wrong. Unfortunately, the bug is in your code. Worse, the compiler didn't issue a warning that might have alerted you to your use of undefined behavior.
If we look at the generated code, the problem is fairly clear. Ignoring a few bits and pieces that aren't related to the problem at hand, mul1 produces code like this:
movss xmm1, DWORD PTR _f$[esp-4] ; load xmm1 from _11 of source
; ...
shufps xmm1, xmm1, 0 ; duplicate _11 across floats of xmm1
; ...
for ecx = 0 to 3 {
movups xmm0, XMMWORD PTR [dest+ecx*4] ; load 4 floats from dest
mulps xmm0, xmm1 ; multiply each by _11
movups XMMWORD PTR [dest+ecx*4], xmm0 ; store result back to dest
}
So, instead of multiplying each element of one matrix by the corresponding element of the other matrix, it's multiplying each element of one matrix by _11 of the other matrix.
Although it's impossible to confirm exactly how it happened (without looking through the compiler's source code), this certainly fits with #Mysticial's guess about how the problem arose.