What would be a good way to detect a C++ memory leak in an embedded environment? I tried overloading the new operator to log every data allocation, but I must have done something wrong, that approach isn't working. Has anyone else run into a similar situation?
This is the code for the new and delete operator overloading.
EDIT:
Full disclosure: I am looking for a memory leak in my program and I am using this code that someone else wrote to overload the new and delete operator. Part of my problem is the fact that I don't fully understand what it does. I know that the goal is to log the address of the caller and previous caller, the size of the allocation, a 1 if we are allocating, a 2 if we are deallocation. plus the name of the thread that is running.
Thanks for all the suggestions, I am going to try a different approach that someone here at work suggested. If it works, I will post it here.
Thanks again to all you first-rate programmers for taking the time to answer.
StackOverflow rocks!
Conclusion
Thanks for all the answers. Unfortunately, I had to move on to a different more pressing issue. This leak only occurred under a highly unlikely scenario. I feel crappy about just dropping it, I may go back to it if I have more time. I chose the answer I am most likely to use.
#include <stdlib.h>
#include "stdio.h"
#include "nucleus.h"
#include "plus/inc/dm_defs.h"
#include "plus/inc/pm_defs.h"
#include "posix\inc\posix.h"
extern void* TCD_Current_Thread;
extern "C" void rd_write_text(char * text);
extern PM_PCB * PMD_Created_Pools_List;
typedef struct {
void* addr;
uint16_t size;
uint16_t flags;
} MemLogEntryNarrow_t;
typedef struct {
void* addr;
uint16_t size;
uint16_t flags;
void* caller;
void* prev_caller;
void* taskid;
uint32_t timestamp;
} MemLogEntryWide_t;
//size lookup table
unsigned char MEM_bitLookupTable[] = {
0,1,1,2,1,2,2,3,1,2,2,3,1,3,3,4
};
//#pragma CODE_SECTION ("section_ramset1_0")
void *::operator new(unsigned int size)
{
asm(" STR R14, [R13, #0xC]"); //save stack address temp[0]
asm(" STR R13, [R13, #0x10]"); //save pc return address temp[1]
if ( loggingEnabled )
{
uint32_t savedInterruptState;
uint32_t currentIndex;
// protect the thread unsafe section.
savedInterruptState = NU_Local_Control_Interrupts(NU_DISABLE_INTERRUPTS);
// Note that this code is FRAGILE. It peeks backwards on the stack to find the return
// address of the caller. The location of the return address on the stack can be easily changed
// as a result of other changes in this function (i.e. adding local variables, etc).
// The offsets may need to be adjusted if this function is touched.
volatile unsigned int temp[2];
unsigned int *addr = (unsigned int *)temp[0] - 1;
unsigned int count = 1 + (0x20/4); //current stack space ***
//Scan for previous store
while ((*addr & 0xFFFF0000) != 0xE92D0000)
{
if ((*addr & 0xFFFFF000) == 0xE24DD000)
{
//add offset in words
count += ((*addr & 0xFFF) >> 2);
}
addr--;
}
count += MEM_bitLookupTable[*addr & 0xF];
count += MEM_bitLookupTable[(*addr >>4) & 0xF];
count += MEM_bitLookupTable[(*addr >> 8) & 0xF];
count += MEM_bitLookupTable[(*addr >> 12) & 0xF];
addr = (unsigned int *)temp[1] + count;
// FRAGILE CODE ENDS HERE
currentIndex = currentMemLogWriteIndex;
currentMemLogWriteIndex++;
if ( memLogNarrow )
{
if (currentMemLogWriteIndex >= MEMLOG_SIZE/2 )
{
loggingEnabled = false;
rd_write_text( "Allocation Logging is complete and DISABLED!\r\n\r\n");
}
// advance the read index if necessary.
if ( currentMemLogReadIndex == currentMemLogWriteIndex )
{
currentMemLogReadIndex++;
if ( currentMemLogReadIndex == MEMLOG_SIZE/2 )
{
currentMemLogReadIndex = 0;
}
}
NU_Local_Control_Interrupts(savedInterruptState);
//Standard operator
//(For Partition Analysis we have to consider that if we alloc size of 0 always as size of 1 then are partitions must be optimized for this)
if (size == 0) size = 1;
((MemLogEntryNarrow_t*)memLog)[currentIndex].size = size;
((MemLogEntryNarrow_t*)memLog)[currentIndex].flags = 1; //allocated
//Standard operator
void * ptr;
ptr = malloc(size);
((MemLogEntryNarrow_t*)memLog)[currentIndex].addr = ptr;
return ptr;
}
else
{
if (currentMemLogWriteIndex >= MEMLOG_SIZE/6 )
{
loggingEnabled = false;
rd_write_text( "Allocation Logging is complete and DISABLED!\r\n\r\n");
}
// advance the read index if necessary.
if ( currentMemLogReadIndex == currentMemLogWriteIndex )
{
currentMemLogReadIndex++;
if ( currentMemLogReadIndex == MEMLOG_SIZE/6 )
{
currentMemLogReadIndex = 0;
}
}
((MemLogEntryWide_t*)memLog)[currentIndex].caller = (void *)(temp[0] - 4);
((MemLogEntryWide_t*)memLog)[currentIndex].prev_caller = (void *)*addr;
NU_Local_Control_Interrupts(savedInterruptState);
((MemLogEntryWide_t*)memLog)[currentIndex].taskid = (void *)TCD_Current_Thread;
((MemLogEntryWide_t*)memLog)[currentIndex].size = size;
((MemLogEntryWide_t*)memLog)[currentIndex].flags = 1; //allocated
((MemLogEntryWide_t*)memLog)[currentIndex].timestamp = *(volatile uint32_t *)0xfffbc410; // for arm9
//Standard operator
if (size == 0) size = 1;
void * ptr;
ptr = malloc(size);
((MemLogEntryWide_t*)memLog)[currentIndex].addr = ptr;
return ptr;
}
}
else
{
//Standard operator
if (size == 0) size = 1;
void * ptr;
ptr = malloc(size);
return ptr;
}
}
//#pragma CODE_SECTION ("section_ramset1_0")
void ::operator delete(void *ptr)
{
uint32_t savedInterruptState;
uint32_t currentIndex;
asm(" STR R14, [R13, #0xC]"); //save stack address temp[0]
asm(" STR R13, [R13, #0x10]"); //save pc return address temp[1]
if ( loggingEnabled )
{
savedInterruptState = NU_Local_Control_Interrupts(NU_DISABLE_INTERRUPTS);
// Note that this code is FRAGILE. It peeks backwards on the stack to find the return
// address of the caller. The location of the return address on the stack can be easily changed
// as a result of other changes in this function (i.e. adding local variables, etc).
// The offsets may need to be adjusted if this function is touched.
volatile unsigned int temp[2];
unsigned int *addr = (unsigned int *)temp[0] - 1;
unsigned int count = 1 + (0x20/4); //current stack space ***
//Scan for previous store
while ((*addr & 0xFFFF0000) != 0xE92D0000)
{
if ((*addr & 0xFFFFF000) == 0xE24DD000)
{
//add offset in words
count += ((*addr & 0xFFF) >> 2);
}
addr--;
}
count += MEM_bitLookupTable[*addr & 0xF];
count += MEM_bitLookupTable[(*addr >>4) & 0xF];
count += MEM_bitLookupTable[(*addr >> 8) & 0xF];
count += MEM_bitLookupTable[(*addr >> 12) & 0xF];
addr = (unsigned int *)temp[1] + count;
// FRAGILE CODE ENDS HERE
currentIndex = currentMemLogWriteIndex;
currentMemLogWriteIndex++;
if ( memLogNarrow )
{
if ( currentMemLogWriteIndex >= MEMLOG_SIZE/2 )
{
loggingEnabled = false;
rd_write_text( "Allocation Logging is complete and DISABLED!\r\n\r\n");
}
// advance the read index if necessary.
if ( currentMemLogReadIndex == currentMemLogWriteIndex )
{
currentMemLogReadIndex++;
if ( currentMemLogReadIndex == MEMLOG_SIZE/2 )
{
currentMemLogReadIndex = 0;
}
}
NU_Local_Control_Interrupts(savedInterruptState);
// finish logging the fields. these are thread safe so they dont need to be inside the protected section.
((MemLogEntryNarrow_t*)memLog)[currentIndex].addr = ptr;
((MemLogEntryNarrow_t*)memLog)[currentIndex].size = 0;
((MemLogEntryNarrow_t*)memLog)[currentIndex].flags = 2; //unallocated
}
else
{
((MemLogEntryWide_t*)memLog)[currentIndex].caller = (void *)(temp[0] - 4);
((MemLogEntryWide_t*)memLog)[currentIndex].prev_caller = (void *)*addr;
if ( currentMemLogWriteIndex >= MEMLOG_SIZE/6 )
{
loggingEnabled = false;
rd_write_text( "Allocation Logging is complete and DISABLED!\r\n\r\n");
}
// advance the read index if necessary.
if ( currentMemLogReadIndex == currentMemLogWriteIndex )
{
currentMemLogReadIndex++;
if ( currentMemLogReadIndex == MEMLOG_SIZE/6 )
{
currentMemLogReadIndex = 0;
}
}
NU_Local_Control_Interrupts(savedInterruptState);
// finish logging the fields. these are thread safe so they dont need to be inside the protected section.
((MemLogEntryWide_t*)memLog)[currentIndex].addr = ptr;
((MemLogEntryWide_t*)memLog)[currentIndex].size = 0;
((MemLogEntryWide_t*)memLog)[currentIndex].flags = 2; //unallocated
((MemLogEntryWide_t*)memLog)[currentIndex].taskid = (void *)TCD_Current_Thread;
((MemLogEntryWide_t*)memLog)[currentIndex].timestamp = *(volatile uint32_t *)0xfffbc410; // for arm9
}
//Standard operator
if (ptr != NULL) {
free(ptr);
}
}
else
{
//Standard operator
if (ptr != NULL) {
free(ptr);
}
}
}
If you're running Linux, I suggest trying Valgrind.
There are several forms of operator new:
void *operator new (size_t);
void *operator new [] (size_t);
void *operator new (size_t, void *);
void *operator new [] (size_t, void *);
void *operator new (size_t, /* parameters of your choosing! */);
void *operator new [] (size_t, /* parameters of your choosing! */);
All the above can exist at both global and class scope. For each operator new, there is an equivalent operator delete. You need to make sure you are adding logging to all versions of the operator, if that is the way you want to do it.
Ideally, you would want the system to behave the same regardless of whether the memory logging is present or not. For example, the MS VC run time library allocates more memory in debug than in release because it prefixes the memory allocation with a bigger information block and adds guard blocks to the start and end of the allocation. The best solution is to keep all the memory logging information is a separate chunk or memory and use a map to track the memory. This can also be used to verify that the memory passed to delete is valid.
new
allocate memory
add entry to logging table
delete
check address exists in logging table
free memory
However, you're writing embedded software where, usually, memory is a limited resource. It is usually preferable on these systems to avoid dynamic memory allocation for several reasons:
You know how much memory there is so you know in advance how many objects you can allocate. Allocation should never return null as that is usually terminal with no easy way of getting back to a healthy system.
Allocating and freeing memory leads to fragmentation. The number of objects you can allocate will decrease over time. You could write a memory compactor to move allocated objects around to free up bigger chunks of memory but that will affect performance. As in point 1, once you get a null, things get tricky.
So, when doing embedded work, you usually know up front how much memory can be allocated to various objects and, knowing this, you can write more efficient memory managers for each object type that can take appropriate action when memory runs out - discarding old items, crashing, etc.
EDIT
If you want to know what called the memory allocation, the best thing to do is use a macro (I know, macros are generally bad):
#define NEW new (__FILE__, __LINE__, __FUNCTION__)
and define an operator new:
void *operator new (size_t size, char *file, int line, char *function)
{
// log the allocation somewhere, no need to strcpy file or function, just save the
// pointer values
return malloc (size);
}
and use it like this:
SomeObject *obj = NEW SomeObject (parameters);
You compiler might not have the __FUNCTION__ preprocessor definition so you can safely omit it.
http://www.linuxjournal.com/article/6059
Actually from my experience it always better to create memory pools for embedded systems and use custom allocator/de-allocator. We can easily identify the leaks. For example, we had a simple custom memory manager for vxworks, where we store the task id, timestamp in the allocated mem block.
One way is to insert file name and line number strings (via pointer) of the module allocating memory into the allocated block of data. The file and line number is handled by using the C++ standard "__FILE__" and "__LINE__" macros. When the memory is de-allocated, that information is removed.
One of our systems has this feature and we call it a "memory hog report". So anytime from our CLI we can print out all the allocated memory along with a big list of information of who has allocated memory. This list is sorted by which code module has the most memory allocated. Many times we'll monitor memory usage this way over time, and eventually the memory hog (leak) will bubble up to the top of the list.
overloading new and delete should work if you pay close attention.
Maybe you can show us what isn't working about that approach?
I'm not an embedded environment expert, so the only advise I can give is to test as much code as you can on your development machine using your favorite free or proprietary tools. Tools for a particular embedded platform may also exist and you can use them for final testing. But most powerful tools are for desktops.
On desktop environment I like the job DevPartner Studio does. This is for Windows and proprietary. There're free tools available for Linux but I don't have much expirience with them. As an example there's EFence
If you override constructor and destructor of your classes, you can print to the screen or a log file. Doing this will give you an idea of when things are being created, what is being created, as well as the same information for deletion.
For easy browsing, you can add a temporary global variable, "INSTANCE_ID", and print this (and increment) on every constructor/destructor call. Then you can browse by ID, and it should make goings a little easier.
The way we did it with our C 3D toolkit was to create custom new/malloc and delete macros that logged each allocation and deallocation to a file. We had to ensure that all the code called our macros of course. The writing to the log file was controlled by a run time flag and only happened under debug so we didn't have to recompile.
Once the run was complete a post-processor ran over the file matching allocations to deallocations and reported any unmatched allocations.
It had a performance hit, but we only needed to do it once it a while.
Is there a real need to roll your own memory leak detection?
Assuming you can't use dynamic memory checkers, like the open-source valgrind tool on Linux, static analysis tools like the commercial products Coverity Prevent and Klocwork Insight may be of use. I've used all three, and have had very good results with all of them.
Lots of good answers.
I would just point out that if the program is one that, like a small command-line utility, runs for a short period of time and then releases all its memory back to the OS, memory leaks probably do no harm.
You can use a third party tool to do this.
You can detect leaks within your own class structures by adding memory counters in your New and Delete calls to increment/decrement the memory counters, and print out a report at your application close. However, this won't detect memory leaks for memory allocated outside your class system - a third party tool can do this though.
Can you describe what is "not working" with your log methods?
Do you not get the expected logs? or, are they showing everything is fine but you still have leaks?
How have you confirmed that this is definitely a leak and not some other type of corruption?
One way to check your overloading is correct: Instantiate a counter object per class, increment this in the new and decrement it in the delete of the class. If you have a growing count, you have a leak. Now, you would expect your log lines to be coinciding with the increment and decrement points.
Not specifically for embedded development, but we used to use BoundsChecker for that.
Use smart pointers and never think about it again, there's loads of official types around but are pretty easy to roll your own too:
class SmartCoMem
{
public:
SmartCoMem() : m_size( 0 ), m_ptr64( 0 ) {
}
~SmartCoMem() {
if( m_size )
CoTaskMemFree((LPVOID)m_ptr64);
}
void copyin( LPCTSTR in, const unsigned short size )
{
LPVOID ptr;
ptr = CoTaskMemRealloc( (LPVOID)m_ptr64, size );
if( ptr == NULL )
throw std::exception( "SmartCoMem: CoTaskMemAlloc Failed" );
else
{
m_size = size;
m_ptr64 = (__int64)ptr;
memcpy( (LPVOID)m_ptr64, in, size );
}
}
std::string copyout( ) {
std::string out( (LPCSTR)m_ptr64, m_size );
return out;
}
__int64* ptr() {
return &m_ptr64;
}
unsigned short size() {
return m_size;
}
unsigned short* sizePtr() {
return &m_size;
}
bool loaded() {
return m_size > 0;
}
private:
//don't allow copying as this is a wrapper around raw memory
SmartCoMem (const SmartCoMem &);
SmartCoMem & operator = (const SmartCoMem &);
__int64 m_ptr64;
unsigned short m_size;
};
There's no encapsulation in this example due to the API I was working with but still better than working with completely raw pointers.
For testing like this, try compiling your embedded code natively for Linux (or whatever OS you use), and use the a well-established tool like Valgrind to test for memory leaks. It can be a challenge to do this, but you just need to replace any code that directly accesses hardware with some code that simulates something suitable for your testing.
I've found that using SWIG to convert my embedded code into a linux-native library and running the code from a Python script is really effective. You can use all of the tools that are available for non-embedded projects, and test all of your code except the hardware drivers.
Related
My goal is to lock virtual memory allocated for my process heaps (to prevent a possibility of it being swapped out to disk.)
I use the following code:
//pseudo-code, error checks are omitted for brevity
struct MEM_PAGE_TO_LOCK{
const BYTE* pBaseAddr; //Base address of the page
size_t szcbBlockSz; //Size of the block in bytes
MEM_PAGE_TO_LOCK()
: pBaseAddr(NULL)
, szcbBlockSz(0)
{
}
};
void WorkerThread(LPVOID pVoid)
{
//Called repeatedly from a worker thread
HANDLE hHeaps[256] = {0}; //Assume large array for the sake of this example
UINT nNumberHeaps = ::GetProcessHeaps(256, hHeaps);
if(nNumberHeaps > 256)
nNumberHeaps = 256;
std::vector<MEM_PAGE_TO_LOCK> arrPages;
for(UINT i = 0; i < nNumberHeaps; i++)
{
lockUnlockHeapAndWalkIt(hHeaps[i], arrPages);
}
//Now lock collected virtual memory
for(size_t p = 0; p < arrPages.size(); p++)
{
::VirtualLock((void*)arrPages[p].pBaseAddr, arrPages[p].szcbBlockSz);
}
}
void lockUnlockHeapAndWalkIt(HANDLE hHeap, std::vector<MEM_PAGE_TO_LOCK>& arrPages)
{
if(::HeapLock(hHeap))
{
__try
{
walkHeapAndCollectVMPages(hHeap, arrPages);
}
__finally
{
::HeapUnlock(hHeap);
}
}
}
void walkHeapAndCollectVMPages(HANDLE hHeap, std::vector<MEM_PAGE_TO_LOCK>& arrPages)
{
PROCESS_HEAP_ENTRY phe = {0};
MEM_PAGE_TO_LOCK mptl;
SYSTEM_INFO si = {0};
::GetSystemInfo(&si);
for(;;)
{
//Get next heap block
if(!::HeapWalk(hHeap, &phe))
{
if(::GetLastError() != ERROR_NO_MORE_ITEMS)
{
//Some other error
ASSERT(NULL);
}
break;
}
//We need to skip heap regions & uncommitted areas
//We're interested only in allocated blocks
if((phe.wFlags & (PROCESS_HEAP_REGION |
PROCESS_HEAP_UNCOMMITTED_RANGE | PROCESS_HEAP_ENTRY_BUSY)) == PROCESS_HEAP_ENTRY_BUSY)
{
if(phe.cbData &&
phe.lpData)
{
//Get address aligned at the page size boundary
size_t nRmndr = (size_t)phe.lpData % si.dwPageSize;
BYTE* pBegin = (BYTE*)((size_t)phe.lpData - nRmndr);
//Get segment size, also page aligned (round it up though)
BYTE* pLast = (BYTE*)phe.lpData + phe.cbData;
nRmndr = (size_t)pLast % si.dwPageSize;
if(nRmndr)
pLast += si.dwPageSize - nRmndr;
size_t szcbSz = pLast - pBegin;
//Do we have such a block already, or an adjacent one?
std::vector<MEM_PAGE_TO_LOCK>::iterator itr = arrPages.begin();
for(; itr != arrPages.end(); ++itr)
{
const BYTE* pLPtr = itr->pBaseAddr + itr->szcbBlockSz;
//See if they intersect or are adjacent
if(pLPtr >= pBegin &&
itr->pBaseAddr <= pLast)
{
//Intersected with another memory block
//Get the larger of the two
if(pBegin < itr->pBaseAddr)
itr->pBaseAddr = pBegin;
itr->szcbBlockSz = pLPtr > pLast ? pLPtr - itr->pBaseAddr : pLast - itr->pBaseAddr;
break;
}
}
if(itr == arrPages.end())
{
//Add new page
mptl.pBaseAddr = pBegin;
mptl.szcbBlockSz = szcbSz;
arrPages.push_back(mptl);
}
}
}
}
}
This method works, except that rarely the following happens. The app hangs up, UI and everything, and even if I try to run it with the Visual Studio debugger and then try to Break all, it shows an error message that no user-mode threads are running:
The process appears to be deadlocked (or is not running any user-mode
code). All threads have been stopped.
I tried it several times. The second time when the app hung up, I used the Task Manager to create dump file, after which I loaded the .dmp file into Visual Studio & analyzed it. The debugger showed that the deadlock happened somewhere in the kernel:
and if you review the call stack:
It points to the location of the code as such:
CString str;
str.Format(L"Some formatting value=%d, %s", value, etc);
Experimenting further with it, if I remove HeapLock and HeapUnlock calls from the code above, it doesn't seem to hang anymore. But then HeapWalk may sometimes issue an unhandled exception, access violation.
So any suggestions how to resolve this?
The problem is that you're using the C runtime's memory management, and more specifically the CRT's debug heap, while holding the operating system's heap lock.
The call stack you've posted includes _free_dbg, which always claims the CRT debug heap lock before taking any other action, so we know the thread holds the CRT debug heap lock. We can also see that the CRT was inside an operating system call made by _CrtIsValidHeapPointer when the deadlock occurred; the only such call is to HeapValidate and HEAP_NO_SERIALIZE is not specified.
So the thread whose call stack has been posted is holding the CRT debug heap lock and attempting to claim the operating system's heap lock.
The worker thread, on the other hand, holds the operating system's heap lock and makes calls that attempt to claim the CRT debug heap lock.
QED. Classic deadlock situation.
In a debug build, you will need to refrain from using any C or C++ library functions that might allocate or free memory while you are holding the corresponding operating system heap lock.
Even in a release build, you would still need to avoid any library functions that might allocate or release memory while holding a lock, which might be a problem if, for example, a hypothetical future implementation of std::vector was changed to make it thread-safe.
I recommend that you avoid the issue entirely, which is probably best done by creating a dedicated heap for your worker thread and taking all necessary memory allocations out of that heap. It would probably be best to exclude this heap from processing; the documentation for HeapWalk does not explicitly say that you should not modify the heap during enumeration, but it seems risky.
I wonder why this code doesn't work:
#include <iostream>
using namespace std;
int main()
{
int *pointer = (int*)0x02F70BCC;
cout<<*pointer;
return 0;
}
In my opinion it should write on the screen value of 0x02F70BCC,
instead of this my programm crashes.
I know that memory with adress 0x02F70BCC stores value of 20.
But like I said no matter what it just doesn't want to show correct number.
Please help me guys, detailed explanation would be very nice of you.
It doesn't work, because you won't get access to every location in memory you want. Not every location in memory is valid, you may want to read about Virtual Address Space.
Some addresses are reserved for device drivers and kernel mode operations. Another range of addresses (for example 0xCCCCCCCC and higher) may be reserved for uninitialized pointers.
Even if some location is valid, operating system may still deny access to write to/read from certain location, if that would cause undefined behaviour or violate system safety.
EDIT
I think you might be interested in creating some kind of "GameHack", that allows you to modify amount of resources, number of units, experience level, attributes or anything.
Memory access is not a simple topic. Different OSes use different strategies to prevent security violations. But many thing can be done here, after all there is a lot software for doing such things.
First of all, do you really need to write your own tool? If you just want some cheating, use ArtMoney - it is a great memory editor, that I have been using for years.
But if you really have to write it manually, you need to do some research first.
On Windows, for example, I would start from these:
ReadProcessMemory
WriteProcessMemory
Also, I am quite certain, that one of possible techniques is to pretend, that you are a debugger:
DebugActiveProcess.
EDIT 2
I have done some research and it looks, that on Windows (I assume this is your platform, since you mentioned gaming; can't imagine playing anything on crappy Linux), steps required to write another process' memory are:
1. Enumerate processes: (EnumProcesses)
const size_t MAX_PROC_NUM = 512;
DWORD procIDs[MAX_PROC_NUM] = { 0 };
DWORD idsNum = 0;
if(!EnumProcesses(procIDs, sizeof(DWORD) * MAX_PROC_NUM, &idsNum))
//handle error here
idsNum /= sizeof(DWORD); //After EnumProcesses(), idsNum contains number of BYTES!
2. Open required process. (OpenProcess,GetModuleFileNameEx)
const char* game_exe_path = "E:\\Games\\Spellforce\\Spellforce.exe"; //Example
HANDLE game_proc_handle = nullptr;
DWORD proc_access = PROCESS_QUERY_INFORMATION | PROCESS_VM_READ | PROCESS_VM_WRITE; //read & write memory, query info needed to get .exe name
const DWORD MAX_EXE_PATH_LEN = 1024;
for(DWORD n = 0 ; n < idsNum ; ++idsNum)
{
DWORD current_id = procIDs[n];
HANDLE current_handle = OpenProcess(proc_access, false, current_id);
if(!current_handle)
{
//handle error here
continue;
}
char current_path[MAX_EXE_PATH_LEN];
DWORD length = GetModuleFileNameEx(current_handle, nullptr, current_path, MAX_EXE_PATH_LEN);
if(length > 0)
{
if(strcmp(current_path, game_exe_path) == 0) //that's our game!
{
game_proc_handle = current_handle;
break;
}
}
CloseHandle(current_handle); //don't forget this!
}
if(!game_proc_handle)
//sorry, game not found
3. Write memory (WriteProcessMemory)
void* pointer = reinterpret_cast<void*>(0x02F70BCC);
int new_value = 5000; //value to be written
BOOL success = WriteProcessMemory(game_proc_handle, pointer, &new_value, sizeof(int), nullptr);
if(success)
//data successfully written!
else
//well, that's... em...
This code is written just 'as is', but I see no errors, so you can use it as your starting point. I also provided links for all functions I used, so with some additional research (if necessary), you can achieve what you are trying to.
Cheers.
When you use,
cout<<*pointer;
the program tries to dereference the value of the pointer and writes the value at the address.
If you want to print just the pointer, use:
cout << pointer;
Example:
int main()
{
int i = 20;
int* p = &i;
std::cout << *p << std::endl; // print the value stored at the address
// pointed to by p. In this case, it will
// print the value of i, which is 20
std::cout << p << std::endl; // print the address that p points to
// It will print the address of i.
}
I have the following problem.
I use the following function to receive a string from a buffer until a newline occurs.
string get_all_buf(int sock) {
int n = 1, total = 0, found = 0;
char c;
char temp[1024*1024];
string antw = "";
while (!found) {
n = recv(sock, &temp[total], sizeof(temp) - total - 1, 0);
if (n == -1) {
break;
}
total += n;
temp[total] = '\0';
found = (strchr(temp, '\n') != 0);
if (found == 0){
found = (strchr(temp, '\r\n') != 0);
}
}
antw = temp;
size_t foundIndex = antw.find("\r\n");
if (foundIndex != antw.npos)
antw.erase ( antw.find ("\r\n"), 2 );
foundIndex = antw.find("\n");
if (foundIndex != antw.npos)
antw.erase ( antw.find ("\n"), 2 );
return answ;
}
So use it like this:
string an = get_all_buf(sClient);
If I create an exe file everything works perfectly.
But if I create a dll and run it using rundll32 the application closes at "string an = get_all_buf(sClient);" without any error message...
I tried to fix this for hours now, and I am currently a bit desperate...
P.S. sorry for obvious errors or bad coding style, I just started learning C++.
char temp[1024*1024];
declares a 1Mb structure on the stack. This may be too large and overflow available stack memory. You could instead give it static scope
static char temp[1024*1024];
or allocate it dynamically
char* temp = (char*)malloc(1024*1024);
// function body
free(temp);
Alternatively, assuming the mention of run32.dll means you're working on Windows, you could investigate keeping it on the stack by using the /STACK linker option. This probably isn't the best approach - you've already found it causes problems when you change build settings or try to target other platforms.
Instead of creating temp variable on the stack, I'd create it dynamically (on the heap), but not using raw malloc and free as showed in a previous answer, but using modern C++ and std::vector:
#include <vector>
std::vector<char> temp(1024*1024);
This is exception safe, and you don't have to pay attention to release the allocated memory: std::vector's destructor will do that automatically (also in case of exceptions thrown).
Instead of sizeof(temp), in your code you can use temp.size() (which will return the count of elements in the vector, and since this is a vector of chars, it will return just the total vector size in chars i.e. in bytes).
You can still use operator[] for std::vector, as you do for raw C arrays.
Note also that if you are building a DLL and the above function is exposed at the DLL interface, since this function has a C++ interface with a STL class (std::string) at the boundary, you must pay attention that both your DLL and your clients are built with dynamic linking to the same CRT, and with the same compiler and the same compiler settings (e.g. you can't mix a DLL built with VS2008/VC9 with a .EXE built with VS2010/VC10, or a release-build DLL with a debug-build EXE built with the same compiler).
I just ran into a free(): invalid next size (fast) problem while writing a C++ program. And I failed to figure out why this could happen unfortunately. The code is given below.
bool not_corrupt(struct packet *pkt, int size)
{
if (!size) return false;
bool result = true;
char *exp_checksum = (char*)malloc(size * sizeof(char));
char *rec_checksum = (char*)malloc(size * sizeof(char));
char *rec_data = (char*)malloc(size * sizeof(char));
//memcpy(rec_checksum, pkt->data+HEADER_SIZE+SEQ_SIZE+DATA_SIZE, size);
//memcpy(rec_data, pkt->data+HEADER_SIZE+SEQ_SIZE, size);
for (int i = 0; i < size; i++) {
rec_checksum[i] = pkt->data[HEADER_SIZE+SEQ_SIZE+DATA_SIZE+i];
rec_data[i] = pkt->data[HEADER_SIZE+SEQ_SIZE+i];
}
do_checksum(exp_checksum, rec_data, DATA_SIZE);
for (int i = 0; i < size; i++) {
if (exp_checksum[i] != rec_checksum[i]) {
result = false;
break;
}
}
free(exp_checksum);
free(rec_checksum);
free(rec_data);
return result;
}
The macros used are:
#define RDT_PKTSIZE 128
#define SEQ_SIZE 4
#define HEADER_SIZE 1
#define DATA_SIZE ((RDT_PKTSIZE - HEADER_SIZE - SEQ_SIZE) / 2)
The struct used is:
struct packet {
char data[RDT_PKTSIZE];
};
This piece of code doesn't go wrong every time. It would crash with the free(): invalid next size (fast) sometimes in the free(exp_checksum); part.
What's even worse is that sometimes what's in rec_checksum stuff is just not equal to what's in pkt->data[HEADER_SIZE+SEQ_SIZE+DATA_SIZE] stuff, which should be the same according to the watch expressions from my debugging tools. Both memcpy and for methods are used but this problem remains.
I don't quite understand why this would happen. I would be very thankful if anyone could explain this to me.
Edit:
Here's the do_checksum() method, which is very simple:
void do_checksum(char* checksum, char* data, int size)
{
for (int i = 0; i < size; i++)
{
checksum[i] = ~data[i];
}
}
Edit 2:
Thanks for all.
I switched other part of my code from the usage of STL queue to STL vector, the results turn to be cool then.
But still I didn't figure out why. I am sure that I would never pop an empty queue.
The error you report is indicative of heap corruption. These can be hard to track down and tools like valgrind can be extremely helpful. Heap corruptions are often hard to debug with a simple debugger because the runtime error often occurs long after the actual corruption.
That said, the most obvious potential cause of your heap corruption, given the code posted so far, is if DATA_SIZE is greater than size. If that occurs then do_checksum will write beyond the end of exp_checksum.
Three immediate suggestions:
Check for size <= 0 (instead of "!size")
Check for size >= DATA_SIZE
Check for malloc returning NULL
Have you tried Valgrind?
Also, make sure to never send more than RDT_PKTSIZE as size to not_corrupt()
bool not_corrupt(struct packet *pkt, int size)
{
if (!size) return false;
if (size > RDT_PKTSIZE) return false;
/* ... */
Valgrind is good ... but validating all your inputs and checking all error conditions is even better.
Stepping through the code in the debugger isn't a bad idea, either.
I would also call "do_checksum (size)" (your actual size), instead of DATA_SIZE (presumably "maximum size").
DATA_SIZE is a macro defined the max length in my program so the size
should be less than DATA_SIZE
even if that is true, your logic only creates enough memory to hold size characters.
so you should call
do_checksum(exp_checksum, rec_data, size);
and, if you do not want to use std::string (which is fine), you should switch from malloc/free to new/delete when talking C++
Problem solved, thank you all for the help
I've got a bit of a problem here it's not something that's blowing my program up, but it's just bothering me that I can't fix it. I have a function reading in some data from a file, at the end of the execution, the stack around variable longGarbage is corrupted. I've looked around a bit and found that a possible cause is writing to invalid memory. I cleaned up some memory leaks that I had and the problem still persists. What's confusing me is that it happens when the function finishes executing, so it appears to be happening when the variable goes out of scope. Here's the code...
CHCF::CHCF(std::string fileName)
: PAKID("HVST84838672")
{
FILE * archive = fopen(fileName.c_str(), "rb");
std::string strGarbage = "";
unsigned int intGarbage = 0;
unsigned long longGarbage = 0;
unsigned char * data = 0;
char charGarbage = '0';
if (!archive)
{
fclose (archive);
return;
}
for (int i = 0; i < 12; i++)
{
fread(&charGarbage, 1, 1, archive);
strGarbage += charGarbage;
}
if (strGarbage != PAKID)
{
fclose(archive);
throw "Incorrect archive format";
}
strGarbage = "";
fread(&_gameID, sizeof(_gameID),1,archive);
fread(&_fileCount, sizeof(_fileCount),1,archive);
for (int i = 0; i < _fileCount; i++)
{
fread(&longGarbage, 8,1,archive); //file offset
fread(&intGarbage, 4, 1, archive);//fileName
for (int i = 0; i < intGarbage; i++)
{
fread(&charGarbage, 1, 1, archive);
strGarbage += charGarbage;
}
fread(&longGarbage, 8, 1, archive); //fileSize
fread(&intGarbage, 4, 1, archive); //fileType
data = new unsigned char[longGarbage];
for (long i = 0; i < longGarbage; i++)
{
fread(&charGarbage, 1, 1, archive);
data[i] = charGarbage;
}
switch ((FILETYPES)intGarbage)
{
case MAP:
_maps.append(strGarbage, new CFileData(strGarbage, FILETYPES::MAP, data, longGarbage));
break;
default:
break;
}
delete [] data;
data = 0;
strGarbage.clear();
longGarbage = 0;
}
fclose(archive);
} //error happens here
Here is the CFileData constructor:
CFileData::CFileData(std::string fileName, FILETYPES type, unsigned char *data, long fileSize)
{
_fileName = fileName;
_type = type;
_data = new unsigned char[fileSize];
for (int i = 0; i < fileSize; i++)
_data[i] = data[i];
}
Might I suggest std::vector instead of calling new and delete manually? Your code is not exception safe -- you leak if an exception is thrown.
fread(&longGarbage, 8, 1, archive); //fileSize Are you sure sizeof(long) is 8? I suspect it's 4. I believe on Linux boxes sometimes it's 8, but most everywhere else sizeof(long) is 4, and sizeof(long long) is 8.
What about any constructors on members of this class? They can corrupt the stack too.
What's happening is that something is writing to memory around or over the location of longGarbage which is causing the corruption.
You don't say what development environment you are using. One way to diagnose this would be to set a breakpoint that triggers when a specific memory location changes. Choose a memory location that overlaps the area of corruption and wait for it to trigger unexpectedly.
Another way to diagnose this would be to examine code that changes memory around or over longGarbage. That could be almost anything of course but likely candidates are modifications to 'data', modifications to 'intGarbage' and modifications to 'longGarbage' itself.
We can narrow things down even further because we can (usually) be fairly sure the assignment operator itself is safe. Code like data = new... isn't likely to be the culprit so really we need to focus on memory changes that involve taking the address of 'data', 'intGarbage' or 'longGarbage'. In particular memory changes that change more bytes than they should.
Several others have already pointed out that a long is probably not eight bytes in length. If you pass the wrong length to fread, the extra bytes retrieved have to go somewhere.
You are using a lot of magic numbers for data sizes, so I would check that first. In particular, I doubt that sizeof(unsigned long)==8 and sizeof(unsigned in)==4 in all possible circumstances. Refer to your compiler's documentation, but you should still be wary, as this is very likely to change from one compiler/platform to another.
Check for these bits:
fread(&longGarbage, 8,1,archive); //file offset
You also might want to use C++ <iostream> library instead of the C FILE* stuff for reading. It would allow for a much shorter version because you wouldn't need to close the file 3 times.
It seems from the other comments and the information provided that the issue is on the C++ side you should use either __int64 for a windows environment, or int64_t for cross platform.