I was wondering if it is possible to run an executable program without adding to its source code, like running any game across several computers. When i was programming in c# i noticed a process method, which lets you summon or close any application or process, i was wondering if there was something similar with c++ which would let me transfer the processes of any executable file or game to other computers or servers minimizing my computer's processor consumption.
thanks.
Everything is possible, but this would require a huge amount of work and would almost for sure make your program painfully slower (I'm talking about a factor of millions or billions here). Essentially you would need to make sure every layer that is used in the program allows this. So you'd have to rewrite the OS to be able to do this, but also quite a few of the libraries it uses.
Why? Let's assume you want to distribute actual threads over different machines. It would be slightly more easy if it were actual processes, but I'd be surprised many applications work like this.
To begin with, you need to synchronize the memory, more specifically all non-thread-local storage, which often means 'all memory' because not all language have a thread-aware memory model. Of course, this can be optimized, for example buffer everything until you encounter an 'atomic' read or write, if of course your system has such a concept. Now can you imagine every thread blocking for synchronization a few seconds whenever a thread has to be locked/unlocked or an atomic variable has to be read/written?
Next to that there are the issues related to managing devices. Assume you need a network connection: which device will start this, how will the ip be chosen, ...? To seamlessly solve this you probably need a virtual device shared amongst all platforms. This has to happen for network devices, filesystems, printers, monitors, ... . And as you kindly mention games: this should happen for a GPU as well, just imagine how this would impact performance in only sending data from/to the GPU (hint: even 16xpci-e is often already a bottleneck).
In conclusion: this is not feasible, if you want a clustered application, you have to build it into the application from scratch.
I believe the closest thing you can do is MapReduce: it's a paradigm which hopefully will be a part of the official boost library soon. However, I don't think that you would want to apply it to a real-time application like a game.
A related question may provide more answers: https://stackoverflow.com/questions/2168558/is-there-anything-like-hadoop-in-c
But as KillianDS pointed out, there is no automagical way to do this, nor does it seem like is there a feasible way to do it. So what is the exact problem that you're trying to solve?
The current state of research is into practical means to distribute the work of a process across multiple CPU cores on a single computer. In that case, these processors still share RAM. This is essential: RAM latencies are measured in nanoseconds.
In distributed computing, remote memory access can take tens if not hundreds of microseconds. Distributed algorithms explicitly take this into account. No amount of magic can make this disappear: light itself is slow.
The Plan 9 OS from AT&T Bell Labs supports distributed computing in the most seamless and transparent manner. Plan 9 was designed to take the Unix ideas of breaking jobs into interoperating small tasks, performed by highly specialised utilities, and "everything is a file", as well as the client/server model, to a whole new level. It has the idea of a CPU server which performs computations for less powerful networked clients. Unfortunately the idea was too ambitious and way beyond its time and Plan 9 remained largerly a research project. It is still being developed as open source software though.
MOSIX is another distributed OS project that provides a single process space over multiple machines and supports transparent process migration. It allows processes to become migratable without any changes to their source code as all context saving and restoration are done by the OS kernel. There are several implementations of the MOSIX model - MOSIX2, openMosix (discontinued since 2008) and LinuxPMI (continuation of the openMosix project).
ScaleMP is yet another commercial Single System Image (SSI) implementation, mainly targeted towards data processing and Hight Performance Computing. It not only provides transparent migration between the nodes of a cluster but also provides emulated shared memory (known as Distributed Shared Memory). Basically it transforms a bunch of computers, connected via very fast network, into a single big NUMA machine with many CPUs and huge amount of memory.
None of these would allow you to launch a game on your PC and have it transparently migrated and executed somewhere on the network. Besides most games are GPU intensive and not so much CPU intensive - most games are still not even utilising the full computing power of multicore CPUs. We have a ScaleMP cluster here and it doesn't run Quake very well...
It's been a couple of decades since I've done any programming. As a matter of fact the last time I programmed was in an MS-DOS environment before Windows came out. I've had this programming idea that I have wanted to try for a few years now and I thought I would give it a try. The amount of calculations are enormous. Consequently I want to run it in the fastest environment I can available to a general hobby programmer.
I'll be using a 64 bit machine. Currently it is running Windows 7. Years ago a program ran much slower in the windows environment then then in MS-DOS mode. My personal programming experience has been in Fortran, Pascal, Basic, and machine language for the 6800 Motorola series processors. I'm basically willing to try anything. I've fooled around with Ubuntu also. No objections to learning new. Just want to take advantage of speed. I'd prefer to spend no money on this project. So I'm looking for a free or very close to free compiler. I've downloaded Microsoft Visual Studio C++ Express. But I've got a feeling that the completed compiled code will have to be run in the Windows environment. Which I'm sure slows the processing speed considerably.
So I'm looking for ideas or pointers to what is available.
Thank you,
Have a Great Day!
Jim
Speed generally comes with the price of either portability or complexity.
If your programming idea involves lots of computation, then if you're using Intel CPU, you might want to use Intel's compiler, which might benefit from some hidden processor features that might make your program faster. Otherwise, if portability is your goal, then use GCC (GNU Compiler Collection), which can cross-compile well optimized executable to practically any platform available on earth. If your computation can be parallelizable, then you might want to look at SIMD (Single Input Multiple Data) and GPGPU/CUDA/OpenCL (using graphic card for computation) techniques.
However, I'd recommend you should just try your idea in the simpler languages first, e.g. Python, Java, C#, Basic; and see if the speed is good enough. Since you've never programmed for decades now, it's likely your perception of what was an enormous computation is currently miniscule due to the increased processor speed and RAM. Nowadays, there is not much noticeable difference in running in GUI environment and command line environment.
Tthere is no substantial performance penalty to operating under Windows and a large quantity of extremely high performance applications do so. With new compiler advances and new optimization techniques, Windows is no longer the up-and-coming, new, poorly optimized technology it was twenty years ago.
The simple fact is that if you haven't programmed for 20 years, then you won't have any realistic performance picture at all. You should make like most people- start with an easy to learn but not very fast programming language like C#, create the program, then prove that it runs too slowly, then make several optimization passes with tools such as profilers, then you may decide that the language is too slow. If you haven't written a line of code in two decades, the overwhelming probability is that any program that you write will be slow because you're a novice programmer from modern perspectives, not because of your choice of language or environment. Creating very high performance applications requires a detailed understanding of the target platform as well as the language of choice, AND the operations of the program.
I'd definitely recommend Visual C++. The Express Edition is free and Visual Studio 2010 can produce some unreasonably fast code. Windows is not a slow platform - even if you handwrote your own OS, it'd probably be slower, and even if you produced one that was faster, the performance gain would be negligible unless your program takes days or weeks to complete a single execution.
The OS does not make your program magically run slower. True, the OS does eat a few clock cycles here and there, but it's really not enough to be at all noticeable (and it does so in order to provide you with services you most likely need, and would need to re-implement yourself otherwise)
Windows doesn't, as some people seem to believe, eat 50% of your CPU. It might eat 0.5%, but so does Linux and OSX. And if you were to ditch all existing OS'es and instead write your own from scratch, you'd end up with a buggy, less capable OS which also eats a bit of CPU time.
So really, the environment doesn't matter.
What does matter is what hardware you run the program on (and here, running it on the GPU might be worth considering) and how well you utilize the hardware (concurrency is pretty much a must if you want to exploit modern hardware).
What code you write, and how you compile it does make a difference. The hardware you're running on makes a difference. The choice of OS does not.
A digression: that the OS doesn't matter for performance is, in general, obviously false. Citing CPU utilization when idle seems a quite "peculiar" idea to me: of course one hopes that when no jobs are running the OS is not wasting energy. Otherwise one measure the speed/throughput of an OS when it is providing a service (i.e. mediating the access to hardware/resources).
To avoid an annoying MS Windows vs Linux vs Mac OS X battle, I will refer to a research OS concept: exokernels. The point of exokernels is that a traditional OS is not just a mediator for resource access but it implements policies. Such policies does not always favor the performance of your application-specific access mode to a resource. With the exokernel concept, researchers proposed to "exterminate all operating system abstractions" (.pdf) retaining its multiplexer role. In this way:
… The results show that common unmodified UNIX applications can enjoy the benefits of exokernels: applications either perform comparably on Xok/ExOS and the BSD UNIXes, or perform significantly better. In addition, the results show that customized applications can benefit substantially from control over their resources (e.g., a factor of eight for a Web server). …
So bypassing the usual OS access policies they gained, for a customized web server, an increase of about 800% in performance.
Returning to the original question: it's generally true that an application is executed with no or negligible OS overhead when:
it has a compute-intensive kernel, where such kernel does not call the OS API;
memory is enough or data is accessed in a way that does not cause excessive paging;
all inessential services running on the same systems are switched off.
There are possibly other factors, depending by hardware/OS/application.
I assume that the OP is correct in its rough estimation of computing power required. The OP does not specify the nature of such intensive computation, so its difficult to give suggestions. But he wrote:
The amount of calculations are enormous
"Calculations" seems to allude to compute-intensive kernels, for which I think is required a compiled language or a fast interpreted language with native array operators, like APL, or modern variant such as J, A+ or K (potentially, at least: I do not know if they are taking advantage of modern hardware).
Anyway, the first advice is to spend some time in researching fast algorithms for your specific problem (but when comparing algorithms remember that asymptotic notation disregards constant factors that sometimes are not negligible).
For the sequential part of your program a good utilization of CPU caches is crucial for speed. Look into cache conscious algorithms and data structures.
For the parallel part, if such program is amenable to parallelization (remember both Amdahl's law and Gustafson's law), there are different kinds of parallelism to consider (they are not mutually exclusive):
Instruction-level parallelism: it is taken care by the hardware/compiler;
data parallelism:
bit-level: sometimes the acronym SWAR (SIMD Within A Register) is used for this kind of parallelism. For problems (or some parts of them) where it can be formulated a data representation that can be mapped to bit vectors (where a value is represented by 1 or more bits); so each instruction from the instruction set is potentially a parallel instruction which operates on multiple data items (SIMD). Especially interesting on a machine with 64 bits (or larger) registers. Possible on CPUs and some GPUs. No compiler support required;
fine-grain medium parallelism: ~10 operations in parallel on x86 CPUs with SIMD instruction set extensions like SSE, successors, predecessors and similar; compiler support required;
fine-grain massive parallelism: hundreds of operations in parallel on GPGPUs (using common graphic cards for general-purpose computations), programmed with OpenCL (open standard), CUDA (NVIDIA), DirectCompute (Microsoft), BrookGPU (Stanford University) and Intel Array Building Blocks. Compiler support or use of a dedicated API is required. Note that some of these have back-ends for SSE instructions also;
coarse-grain modest parallelism (at the level of threads, not single instructions): it's not unusual for CPUs on current desktops/laptops to have more then one core (2/4) sharing the same memory pool (shared-memory). The standard for shared-memory parallel programming is the OpenMP API, where, for example in C/C++, #pragma directives are used around loops. If I am not mistaken, this can be considered data parallelism emulated on top of task parallelism;
task parallelism: each core in one (or multiple) CPU(s) has its independent flow of execution and possibly operates on different data. Here one can use the concept of "thread" directly or a more high-level programming model which masks threads.
I will not go into details of these programming models here because apparently it is not what the OP needs.
I think this is enough for the OP to evaluate by himself how various languages and their compilers/run-times / interpreters / libraries support these forms of parallelism.
Just my two cents about DOS vs. Windows.
Years ago (something like 1998?), I had the same assumption.
I have some program written in QBasic (this was before I discovered C), which did intense calculations (neural network back-propagation). And it took time.
A friend offered to rewrite the thing in Visual Basic. I objected, because, you know, all those gizmos, widgets and fancy windows, you know, would slow down the execution of, you know, the important code.
The Visual Basic version so much outperformed the QBasic one that it became the default application (I won't mention the "hey, even in Excel's VBA, you are outperformed" because of my wounded pride, but...).
The point here, is the "you know" part.
You don't know.
The OS here is not important. As others explained in their answers, choose your hardware, and choose your language. And write your code in a clear way because now, compilers are better at optimizing code developers, unless you're John Carmack (premature optimization is the root of all evil).
Then, if you're not happy with the result, use a profiler to test your code. Consider multithreading (which will help you if you have multiple cores... TBB comes to mind).
What are you trying to do? I believe all the stuff should be compiled in 64bit mode by default. Computers have gotten a lot faster. Speed should not be a problem for the most part.
Side note: As for computation intense stuff you may want to look into OpenCL or CUDA. OpenCL and CUDA take advantage of the GPU which can transfer lots of information at a time compared to the CPU.
If your last points of reference are M68K and PCs running DOS then I'd suggest that you start with C/C++ on a modern processor and OS. If you run into performance problems and can prove that they are caused by running on Linux / Windows or that the compiler / optimizer generated code isn't sufficient, then you could look at other OSes and/or hand coded ASM. If you're looking for free, Linux / gcc is a good place to start.
I am the original poster of this thread.
I am once again reiterating the emphasis that this program will have enormous number of calculations.
Windows & Ubuntu are multi-tasking environments. There are processes running and many of them are using processor resources. True many of them are seen as inactive. But still the Windows environment by the nature of multi-tasking is constantly monitoring the need to start up each process. For example currently there are 62 processes showing in the Windows Task Manager. According the task manager three are consuming CPU resouces. So we have three ongoing processes that are consuming CPU processing. There are an addition 59 showing active but consuming no CPU processing. So that is 63 being monitored by Windows and then there is the Windows that also is checking on various things.
I was hoping to find some way to just be able to run a program on the bare machine level. Side stepping all the Windows (Ubuntu) involvement.
The idea is very calculation intensive.
Thank you all for taking the time to respond.
Have a Great Day,
Jim
As someone in the world of HPC who came from the world of enterprise web development, I'm always curious to see how developers back in the "real world" are taking advantage of parallel computing. This is much more relevant now that all chips are going multicore, and it'll be even more relevant when there are thousands of cores on a chip instead of just a few.
My questions are:
How does this affect your software roadmap?
I'm particularly interested in real stories about how multicore is affecting different software domains, so specify what kind of development you do in your answer (e.g. server side, client-side apps, scientific computing, etc).
What are you doing with your existing code to take advantage of multicore machines, and what challenges have you faced? Are you using OpenMP, Erlang, Haskell, CUDA, TBB, UPC or something else?
What do you plan to do as concurrency levels continue to increase, and how will you deal with hundreds or thousands of cores?
If your domain doesn't easily benefit from parallel computation, then explaining why is interesting, too.
Finally, I've framed this as a multicore question, but feel free to talk about other types of parallel computing. If you're porting part of your app to use MapReduce, or if MPI on large clusters is the paradigm for you, then definitely mention that, too.
Update: If you do answer #5, mention whether you think things will change if there get to be more cores (100, 1000, etc) than you can feed with available memory bandwidth (seeing as how bandwidth is getting smaller and smaller per core). Can you still use the remaining cores for your application?
My research work includes work on compilers and on spam filtering. I also do a lot of 'personal productivity' Unix stuff. Plus I write and use software to administer classes that I teach, which includes grading, testing student code, tracking grades, and myriad other trivia.
Multicore affects me not at all except as a research problem for compilers to support other applications. But those problems lie primarily in the run-time system, not the compiler.
At great trouble and expense, Dave Wortman showed around 1990 that you could parallelize a compiler to keep four processors busy. Nobody I know has ever repeated the experiment. Most compilers are fast enough to run single-threaded. And it's much easier to run your sequential compiler on several different source files in parallel than it is to make your compiler itself parallel. For spam filtering, learning is an inherently sequential process. And even an older machine can learn hundreds of messages a second, so even a large corpus can be learned in under a minute. Again, training is fast enough.
The only significant way I have of exploiting parallel machines is using parallel make. It is a great boon, and big builds are easy to parallelize. Make does almost all the work automatically. The only other thing I can remember is using parallelism to time long-running student code by farming it out to a bunch of lab machines, which I could do in good conscience because I was only clobbering a single core per machine, so using only 1/4 of CPU resources. Oh, and I wrote a Lua script that will use all 4 cores when ripping MP3 files with lame. That script was a lot of work to get right.
I will ignore tens, hundreds, and thousands of cores. The first time I was told "parallel machines are coming; you must get ready" was 1984. It was true then and is true today that parallel programming is a domain for highly skilled specialists. The only thing that has changed is that today manufacturers are forcing us to pay for parallel hardware whether we want it or not. But just because the hardware is paid for doesn't mean it's free to use. The programming models are awful, and making the thread/mutex model work, let alone perform well, is an expensive job even if the hardware is free. I expect most programmers to ignore parallelism and quietly get on about their business. When a skilled specialist comes along with a parallel make or a great computer game, I will quietly applaud and make use of their efforts. If I want performance for my own apps I will concentrate on reducing memory allocations and ignore parallelism.
Parallelism is really hard. Most domains are hard to parallelize. A widely reusable exception like parallel make is cause for much rejoicing.
Summary (which I heard from a keynote speaker who works for a leading CPU manufacturer): the industry backed into multicore because they couldn't keep making machines run faster and hotter and they didn't know what to do with the extra transistors. Now they're desperate to find a way to make multicore profitable because if they don't have profits, they can't build the next generation of fab lines. The gravy train is over, and we might actually have to start paying attention to software costs.
Many people who are serious about parallelism are ignoring these toy 4-core or even 32-core machines in favor of GPUs with 128 processors or more. My guess is that the real action is going to be there.
For web applications it's very, very easy: ignore it. Unless you've got some code that really begs to be done in parallel you can simply write old-style single-threaded code and be happy.
You usually have a lot more requests to handle at any given moment than you have cores. And since each one is handled in its own Thread (or even process, depending on your technology) this is already working in parallel.
The only place you need to be careful is when accessing some kind of global state that requires synchronization. Keep that to a minimum to avoid introducing artificial bottlenecks to an otherwise (almost) perfectly scalable world.
So for me multi-core basically boils down to these items:
My servers have less "CPUs" while each one sports more cores (not much of a difference to me)
The same number of CPUs can substain a larger amount of concurrent users
When the seems to be performance bottleneck that's not the result of the CPU being 100% loaded, then that's an indication that I'm doing some bad synchronization somewhere.
At the moment - doesn't affect it that much, to be honest. I'm more in 'preparation stage', learning about the technologies and language features that make this possible.
I don't have one particular domain, but I've encountered domains like math (where multi-core is essential), data sort/search (where divide & conquer on multi-core is helpful) and multi-computer requirements (e.g., a requirement that a back-up station's processing power is used for something).
This depends on what language I'm working. Obviously in C#, my hands are tied with a not-yet-ready implementation of Parallel Extensions that does seem to boost performance, until you start comparing same algorithms with OpenMP (perhaps not a fair comparison). So on .NET it's going to be an easy ride with some for → Parallel.For refactorings and the like.Where things get really interesting is with C++, because the performance you can squeeze out of things like OpenMP is staggering compared to .NET. In fact, OpenMP surprised me a lot, because I didn't expect it to work so efficiently. Well, I guess its developers have had a lot of time to polish it. I also like that it is available in Visual Studio out-of-the-box, unlike TBB for which you have to pay.As for MPI, I use PureMPI.net for little home projects (I have a LAN) to fool around with computations that one machine can't quite take. I've never used MPI commercially, but I do know that MKL has some MPI-optimized functions, which might be interesting to look at for anyone needing them.
I plan to do 'frivolous computing', i.e. use extra cores for precomputation of results that might or might not be needed - RAM permitting, of course. I also intend to delve into costly algorithms and approaches that most end users' machines right now cannot handle.
As for domains not benefitting from parallellization... well, one can always find something. One thing I am concerned about is decent support in .NET, though regrettably I have given up hope that speeds similar to C++ can be attained.
I work in medical imaging and image processing.
We're handling multiple cores in much the same way we handled single cores-- we have multiple threads already in the applications we write in order to have a responsive UI.
However, because we can now, we're taking strong looks at implementing most of our image processing operations in either CUDA or OpenMP. The Intel Compiler provides a lot of good sample code for OpenMP, and is just a much more mature product than CUDA, and provides a much larger installed base, so we're probably going to go with that.
What we tend to do for expensive (ie, more than a second) operations is to fork that operation off into another process, if we can. That way, the main UI remains responsive. If we can't, or it's just far too inconvenient or slow to move that much memory around, the operation is still in a thread, and then that operation can itself spawn multiple threads.
The key for us is to make sure that we don't hit concurrency bottlenecks. We develop in .NET, which means that UI updates have to be done from an Invoke call to the UI in order to have the main thread update the UI.
Maybe I'm lazy, but really, I don't want to have to spend too much time figuring a lot of this stuff out when it comes to parallelizing things like matrix inversions and the like. A lot of really smart people have spent a lot of time making that stuff fast like nitrous, and I just want to take what they've done and call it. Something like CUDA has an interesting interface for image processing (of course, that's what it's defined for), but it's still too immature for that kind of plug-and-play programming. If I or another developer get a lot of spare time, we might give it a try. So instead, we'll just go with OpenMP to make our processing faster (and that's definitely on the development roadmap for the next few months).
So far, nothing more than more efficient compilation with make:
gmake -j
the -j option allows tasks that don't depend on one another to run in parallel.
I'm developing ASP.NET web applications. There is little possibility to use multicore directly in my code, however IIS already scales well for multiple cores/CPU's by spawning multiple worker threads/processes when under load.
We're having a lot of success with task parallelism in .NET 4 using F#. Our customers are crying out for multicore support because they don't want their n-1 cores idle!
I'm in image processing. We're taking advantage of multicore where possible by processing images in slices doled out to different threads.
I said some of this in answer to a different question (hope this is OK!): there is a concept/methodology called Flow-Based Programming (FBP) that has been around for over 30 years, and is being used to handle most of the batch processing at a major Canadian bank. It has thread-based implementations in Java and C#, although earlier implementations were fiber-based (C++ and mainframe Assembler). Most approaches to the problem of taking advantage of multicore involve trying to take a conventional single-threaded program and figure out which parts can run in parallel. FBP takes a different approach: the application is designed from the start in terms of multiple "black-box" components running asynchronously (think of a manufacturing assembly line). Since the interface between components is data streams, FBP is essentially language-independent, and therefore supports mixed-language applications, and domain-specific languages. Applications written this way have been found to be much more maintainable than conventional, single-threaded applications, and often take less elapsed time, even on single-core machines.
My graduate work is in developing concepts for doing bare-metal multicore work & teaching same in embedded systems.
I'm also working a bit with F# to bring up my high-level multiprocess-able language facilities to speed.
We create the VivaMP code analyzer for error detecting in parallel OpenMP programs.
VivaMP is a lint-like static C/C++ code analyzer meant to indicate errors in parallel programs based on OpenMP technology. VivaMP static analyzer adds much to the abilities of the existing compilers, diagnoses any parallel code which has some errors or is an eventual source of such errors. The analyzer is integrated into VisualStudio2005/2008 development environment.
VivaMP – a tool for OpenMP
32 OpenMP Traps For C++ Developers
I believe that "Cycles are an engineers' best friend".
My company provides a commercial tool for analyzing
and transforming very
large software systems in many computer languages.
"Large" means 10-30 million lines of code.
The tool is the DMS Software Reengineering Toolkit
(DMS for short).
Analyses (and even transformations) on such huge systems
take a long time: our points-to analyzer for C
code takes 90 CPU hours on an x86-64 with 16 Gb RAM.
Engineers want answers faster than that.
Consequently, we implemented DMS in PARLANSE,
a parallel programming language of our own design,
intended to harness small-scale multicore shared
memory systems.
The key ideas behind parlanse are:
a) let the programmer expose parallelism,
b) let the compiler choose which part it can realize,
c) keep the context switching to an absolute minimum.
Static partial orders over computations are
an easy to help achieve all 3; easy to say,
relatively easy to measure costs,
easy for compiler to schedule computations.
(Writing parallel quicksort with this is trivial).
Unfortunately, we did this in 1996 :-(
The last few years have finally been a vindication;
I can now get 8 core machines at Fry's for under $1K
and 24 core machines for about the same price as a small
car (and likely to drop rapidly).
The good news is that DMS is now a fairly mature,
and there are a number of key internal mechanisms
in DMS which take advantage of this, notably
an entire class of analyzers call "attribute grammars",
which we write using a domain-specific language
which is NOT parlanse. DMS compiles these
atrribute grammars into PARLANSE and then they
are executed in parallel. Our C++ front
end uses attribute grammars, and is about 100K
sloc; it is compiled into 800K SLOC of parallel
parlanse code that actually works reliably.
Now (June 2009), we are pretty busy making DMS useful, and
don't always have enough time to harness the parallelism
well. Thus the 90 hour points-to analysis.
We are working on parallelizing that, and
have reasonable hope of 10-20x speedup.
We believe that in the long run, harnessing
SMP well will make workstations far more
friendly to engineers asking hard questions.
As well they should.
Our domain logic is based heavily on a workflow engine and each workflow instance runs off the ThreadPool.
That's good enough for us.
I can now separate my main operating system from my development / install whatever I like os using vitualisation setups with Virtual PC or VMWare.
Dual core means that one CPU runs my host OS, the other runs my development OS with a decent level of performance.
Learning a functional programming language might use multiple cores... costly.
I think it's not really hard to use extra cores. There are some trivialities as web apps that does not need to have any extra care as the web server does its work running the queries in parallel. The questions are for long running algorythms (long is what you call long). These need to be split over smaller domains that does not depend each other, or synchronize the dependencies. A lot of algs can do this, but sometimes horribly different implementations needed (costs again).
So, no silver bullet until you are using imperative programming languages, sorry. Either you need skilled programmers (costly) or you need to turn to an other programming language (costly). Or you may have luck simply (web).
I'm using and programming on a Mac. Grand Central Dispatch for the win. The Ars Technica review of Snow Leopard has a lot of interesting things to say about multicore programming and where people (or at least Apple) are going with it.
I've decided to take advantage of multiple cores in an implementation of the DEFLATE algorithm. MArc Adler did something similar in C code with PIGZ (parallel gzip). I've delivered the philosophical equivalent, but in a managed code library, in DotNetZip v1.9. This is not a port of PIGZ, but a similar idea, implemented independently.
The idea behind DEFLATE is to scan a block of data, look for repeated sequences, build a "dictionary" that maps a short "code" to each of those repeated sequences, then emit a byte stream where each instance of one of the repeated sequences is replaced by a "code" from the dictionary.
Because building the dictionary is CPU intensive, DEFLATE is a perfect candidate for parallelization. i've taken a Map+Reduce type approach, where I divide the incoming uncompressed bytestreeam into a set of smaller blocks (map), say 64k each, and then compress those independently. Then I concatenate the resulting blocks together (reduce). Each 64k block is compressed independently, on its own thread, without regard for the other blocks.
On a dual-core machine, this approach compresses in about 54% of the time of the traditional serial approach. On server-class machines, with more cores available, it can potentially deliver even better results; with no server machine, I haven't tested it personally, but people tell me it's fast.
There's runtime (cpu) overhead associated to the management of multiple threads, runtime memory overhead associated to the buffers for each thead, and data overhead associated to concatenating the blocks. So this approach pays off only for larger bytestreams. In my tests, above 512k, it can pay off. Below that, it is better to use a serial approach.
DotNetZip is delivered as a library. My goal was to make all of this transparent. So the library automatically uses the extra threads when the buffer is above 512kb. There's nothing the application has to do, in order to use threads. It just works, and when threads are used, it's magically faster. I think this is a reasonable approach to take for most libbraries being consumed by applications.
It would be nice for the computer to be smart about automatically and dynamically exploiting resources on parallizable algorithms, but the reality today is that apps designers have to explicitly code the parallelization in.
I work in C# with .Net Threads.
You can combine object-oriented encapsulation with Thread management.
I've read some posts from Peter talking about a new book from Packt Publishing and I've found the following article in Packt Publishing web page:
http://www.packtpub.com/article/simplifying-parallelism-complexity-c-sharp
I've read Concurrent Programming with Windows, Joe Duffy's book. Now, I am waiting for "C# 2008 and 2005 Threaded Programming", Hillar's book - http://www.amazon.com/2008-2005-Threaded-Programming-Beginners/dp/1847197108/ref=pd_rhf_p_t_2
I agree with Szundi "No silver bullet"!
You say "For web applications it's very, very easy: ignore it. Unless you've got some code that really begs to be done in parallel you can simply write old-style single-threaded code and be happy."
I am working with Web applications and I do need to take full advantage of parallelism.
I understand your point. However, we must prepare for the multicore revolution. Ignoring it is the same than ignoring the GUI revolution in the 90's.
We are not still developing for DOS? We must tackle multicore or we'll be dead in many years.
I think this trend will first persuade some developers, and then most of them will see that parallelization is a really complex task.
I expect some design pattern to come to take care of this complexity. Not low level ones but architectural patterns which will make hard to do something wrong.
For example I expect messaging patterns to gain popularity, because it's inherently asynchronous, but you don't think about deadlock or mutex or whatever.
How does this affect your software roadmap?
It doesn't. Our (as with almost all other) business related apps run perfectly well on a single core. So long as adding more cores doesn't significantly reduce the performance of single threaded apps, we're happy
...real stories...
Like everyone else, parallel builds are the main benefit we get. The Visual Studio 2008 C# compiler doesn't seem to use more than one core though, which really sucks
What are you doing with your existing code to take advantage of multicore machines
We may look into using the .NET parallel extensions if we ever have a long-running algorithm that can be parallelized, but the odds of this actually occurring are slim. The most likely answer is that some of the developers will play around with it for interest's sake, but not much else
how will you deal with hundreds or thousands of cores?
Head -> Sand.
If your domain doesn't easily benefit from parallel computation, then explaining why is interesting, too.
The client app mostly pushes data around, the server app mostly relies on SQL server to do the heavy lifting
I'm taking advantage of multicore using C, PThreads, and a home brew implementation of Communicating Sequential Processes on an OpenVPX platform with Linux using the PREEMPT_RT patch set's scheduler. It all adds up to nearly 100% CPU utilisation across multiple OS instances with no CPU time used for data exchange between processor cards in the OpenVPX chassis, and very low latency too. Also using sFPDP to join multiple OpenVPX chassis together into a single machine. Am not using Xeon's internal DMA so as to relieve memory pressure inside CPUs (DMA still uses memory bandwidth at the expense of the CPU cores). Instead we're leaving data in place and passing ownership of it around in a CSP way (so not unlike the philosophy of .NET's task parallel data flow library).
1) Software Roadmap - we have pressure to maximise the use real estate and available power. Making the very most of the latest hardware is essential
2) Software domain - effectively Scientific Computing
3) What we're doing with existing code? Constantly breaking it apart and redistributing parts of it across threads so that each core is maxed out doing the most it possibly can without breaking out real time requirement. New hardware means quite a lot of re-thinking (faster cores can do more in the given time, don't want them to be under utilised). Not as bad as it sounds - the core routines are very modular so easily assembled into thread-sized lumps. Although we planned on taking control of thread affinity away from Linux, we've not yet managed to extract significant extra performance by doing so. Linux is pretty good at getting data and code in more or less the same place.
4) In effect already there - total machine already adds up to thousands of cores
5) Parallel computing is essential - it's a MISD system.
If that sounds like a lot of work, it is. some jobs require going whole hog on making the absolute most of available hardware and eschewing almost everything that is high level. We're finding that the total machine performance is a function of CPU memory bandwidth, not CPU core speed, L1/L2/L3 cache size.