Simulated time in a game loop using c++ - c++

I am building a 3d game from scratch in C++ using OpenGL and SDL on linux as a hobby and to learn more about this area of programming.
Wondering about the best way to simulate time while the game is running. Obviously I have a loop that looks something like:
void main_loop()
{
while(!quit)
{
handle_events();
DrawScene();
...
SDL_Delay(time_left());
}
}
I am using the SDL_Delay and time_left() to maintain a framerate of about 33 fps.
I had thought that I just need a few global variables like
int current_hour = 0;
int current_min = 0;
int num_days = 0;
Uint32 prev_ticks = 0;
Then a function like :
void handle_time()
{
Uint32 current_ticks;
Uint32 dticks;
current_ticks = SDL_GetTicks();
dticks = current_ticks - prev_ticks; // get difference since last time
// if difference is greater than 30000 (half minute) increment game mins
if(dticks >= 30000) {
prev_ticks = current_ticks;
current_mins++;
if(current_mins >= 60) {
current_mins = 0;
current_hour++;
}
if(current_hour > 23) {
current_hour = 0;
num_days++;
}
}
}
and then call the handle_time() function in the main loop.
It compiles and runs (using printf to write the time to the console at the moment) but I am wondering if this is the best way to do it. Is there easier ways or more efficient ways?

I've mentioned this before in other game related threads. As always, follow the suggestions by Glenn Fiedler in his Game Physics series
What you want to do is to use a constant timestep which you get by accumulating time deltas. If you want 33 updates per second, then your constant timestep should be 1/33. You could also call this the update frequency. You should also decouple the game logic from the rendering as they don't belong together. You want to be able to use a low update frequency while rendering as fast as the machine allows. Here is some sample code:
running = true;
unsigned int t_accum=0,lt=0,ct=0;
while(running){
while(SDL_PollEvent(&event)){
switch(event.type){
...
}
}
ct = SDL_GetTicks();
t_accum += ct - lt;
lt = ct;
while(t_accum >= timestep){
t += timestep; /* this is our actual time, in milliseconds. */
t_accum -= timestep;
for(std::vector<Entity>::iterator en = entities.begin(); en != entities.end(); ++en){
integrate(en, (float)t * 0.001f, timestep);
}
}
/* This should really be in a separate thread, synchronized with a mutex */
std::vector<Entity> tmpEntities(entities.size());
for(int i=0; i<entities.size(); ++i){
float alpha = (float)t_accum / (float)timestep;
tmpEntities[i] = interpolateState(entities[i].lastState, alpha, entities[i].currentState, 1.0f - alpha);
}
Render(tmpEntities);
}
This handles undersampling as well as oversampling. If you use integer arithmetic like done here, your game physics should be close to 100% deterministic, no matter how slow or fast the machine is. This is the advantage of increasing the time in fixed time intervals. The state used for rendering is calculated by interpolating between the previous and current states, where the leftover value inside the time accumulator is used as the interpolation factor. This ensures that the rendering is is smooth, no matter how large the timestep is.

Other than the issues already pointed out (you should use a structure for the times and pass it to handle_time() and your minute will get incremented every half minute) your solution is fine for keeping track of time running in the game.
However, for most game events that need to happen every so often you should probably base them off of the main game loop instead of an actual time so they will happen in the same proportions with a different fps.

One of Glenn's posts you will really want to read is Fix Your Timestep!. After looking up this link I noticed that Mads directed you to the same general place in his answer.

I am not a Linux developer, but you might want to have a look at using Timers instead of polling for the ticks.
http://linux.die.net/man/2/timer_create
EDIT:
SDL Seem to support Timers: SDL_SetTimer

Related

SDL/C++ movement: time and acceleration

I want to teach myself some basic physics programming by creating a simple 2d platformer with SDL 2. It seems I'm falling at the first hurdle though, because I can't get movement using both velocity and acceleration per time unit, rather than per frame, to work.
I start by calculating the time per frame in the usual way:
previous_time = current_time;
current_time = SDL_GetTicks();
delta_time = current_time - previous_time;
Then, after the movement flag is set to true by pressing a directional button, this is passed to a function to handle the movement.
//Pass the movement flag and the milliseconds per frame to the right movement function.
if ( player.get_x() <= 740 ) {
player.x_movement_right(delta_time, 1, moving_right);
}
The integer that's passed doesn't do anything yet. Anyway, the function then determines the acceleration based on if the movement flag is set to true, and what the current velocity is:
void Player::x_movement_right(float dt, int direction, bool moving_right) {
dt /= 1000;
if (moving_right == true && _x_velocity <= 200 ) {
_x_acceleration = 50;
}
else if ( moving_right == false && _x_velocity > 0 ) {
_x_acceleration = -50;
}
else {
_x_acceleration = 0;
}
_x_velocity += _x_acceleration * dt;
_x_position += _x_velocity * dt;
}
The same process occurs if the left movement flag is activated, with inverted values of course. Yet after compiling I hit the directional keys and nothing happens.
What I've already tried:
I removed the dt's at the bottom of the movement function. The player avatar moves with incredible speed, since the acceleration is now per frame, rather than per second.
Same thing when I don't divide dt at the beginning of the movement function, since it's now per millisecond rather than per second.
I tried rounding the velocity times dt at the bottom, since I suspected SDL might have trouble calculation positions with floating point numbers rather than integers. Still no movement.
Based on this I suspect it has something to do with the numbers being too small, but I can't quite wrap my head around what the problem is or how to solve it. So, does anyone know what undoubtedly obvious thing I'm missing? Thanks in advance!
There is no way to know with the information shown, but there are several points that may help you:
Are your _x_velocity and the like floating point types? In what units are you measuring distance? It may be that your increment has not enough resolution to be nonzero.
Have you printed the values of each variable or run the program in a debugger?
What do you mean by "SDL might have trouble calculation positions with floating point numbers"? If you are using SDL's basic 2D renderer, you just need to give it the type it needs in whatever units they ask. The conversions are up to you.
Overall, I'd recommend trying to code the simulation outside SDL or graphics in general. Getting acquainted with C++, debugging and floating-point is also a plus.

Delay function makes openFrameworks window freeze until specified time passes

I have network of vertices and I want to change their color every second. I tried using Sleep() function and currently using different delay function but both give same result - lets say I want to color 10 vertices red with 1 second pause. When Im starting project it seems like the window freezes for 10 seconds and then shows every vertice already with red color.
This is my update function.
void ofApp::update(){
for (int i = 0; i < vertices.size(); i++) {
ofColor red(255, 0, 0);
vertices[i].setColor(red);
delay(1);
}
}
Here is draw function
void ofApp::draw(){
for (int i = 0; i < vertices.size(); i++) {
for (int j = 0; j < G[i].size(); j++) {
ofDrawLine(vertices[i].getX(), vertices[i].getY(), vertices[G[i][j]].getX(), vertices[G[i][j]].getY());
}
vertices[i].drawBFS();
}
}
void vertice::drawBFS() {
ofNoFill();
ofSetColor(_color);
ofDrawCircle(_x, _y, 20);
ofDrawBitmapString(_id, _x - 3, _y + 3);
ofColor black(0, 0, 0);
ofSetColor(black);
}
This is my delay() function
void ofApp::delay(int number_of_seconds) {
// Converting time into milli_seconds
int milli_seconds = 1000 * number_of_seconds;
// Stroing start time
clock_t start_time = clock();
// looping till required time is not acheived
while (clock() < start_time + milli_seconds)
;
}
There is no bug in your code, just a misconception about waiting. So this is no definitive answer, just a hint in the right direction.
You have probably just one thread. One thread can do exactly one thing at a time. When you call delay all this one thread is doing is checking the time over and over again until some time has passed.
During this time the thread can do nothing else (it can not magically skip instructions or detect your intentions). So it can not issue drawing commands or swap some buffers to display vectors on screen. That's the reason why you application seems to freeze - 99.9% of the time it's checking if the interval has passed. This also places a heavy load on the cpu.
The solution can be a bit tricky and requires threading. Usually you have a UI-Thread that regularly draws stuff, refreshes the display, maybe takes inputs and so on. This thread should never do heavy calculations to keep the UI responsive. A second thread will then manage heavier calculations or updating data.
If you want to run a task in an interval you don't just loop until the time is over, but essentially "tell the OS" that the second thread should be inactive for a certain period. The OS will manage this way more efficient than implementing active waiting.
But that's quite a large topic, so I suggest you read on about Multithreading. C++ has a small thread library since C++11. May be worth a look.
// .h
float nextEventSeconds = 0;
// .cpp
void ofApp::draw(){
float now = ofGetElapsedTimef();
if(now > nextEventSeconds) {
// do something here that should only happen
// every 3 seconds
nextEventSeconds = now + 3;
}
}
Following this example I managed to solve my problem.

Time Step in PhysX

I'm trying to define a time step for the physics simulation in a PhysX application, such that the physics will run at the same speed on all machines. I wish for the physics to update at 60FPS, so each update should have a delta time of 1/60th of a second.
My application must use GLUT. Currently, my loop is set up as follows.
Idle Function:
void GLUTGame::Idle()
{
newElapsedTime = glutGet(GLUT_ELAPSED_TIME);
deltaTime = newElapsedTime - lastElapsedTime;
lastElapsedTime = newElapsedTime;
glutPostRedisplay();
}
The frame rate does not really matter in this case - it's only the speed at which my physics update that actually matters.
My render function contains the following:
void GLUTGame::Render()
{
// Rendering Code
simTimer += deltaTime;
if (simTimer > m_fps)
{
m_scene->UpdatePhys(m_fps);
simTimer = 0;
}
}
Where:
Fl32 m_fps = 1.f/60.f
However, this results in some very slow updates, due to the fact that deltaTime appears to equal 0 on most loops (which shouldn't actually be possible...) I've tried moving my deltaTime calculations to the bottom of my rendering function, as I thought that maybe the idle callback was called too often, but this did not solve the issue. Any ideas what I'm doing wrong here?
From the OpenGL website, we find that glutGet(GLUT_ELAPSED_TIME) returns the number of passed milliseconds as an int. So, if you call your void GLUTGame::Idle() method about 2000 times per second, then the time passed after one such call is about 1000 * 1/2000 = 0.5 ms. Thus more than 2000 calls per second to void GLUTGame::Idle() results in glutGet(GLUT_ELAPSED_TIME) returning 0 due to integer rounding.
Likely you're adding very small numbers to larger ones and you get rounding errors.
Try this:
void GLUTGame::Idle()
{
newElapsedTime = glutGet(GLUT_ELAPSED_TIME);
timeDelta = newElapsedTime - lastElapsedTime;
if (timeDelta < m_fps) return;
lastElapsedTime = newElapsedTime;
glutPostRedisplay();
}
You can do something similar in the other method if you want to.
I don't now anything about GLUT or PhysX, but here's how to have something execute at the same rate (using integers) no matter how fast the game runs:
if (currentTime - lastUpdateTime > msPerUpdate)
{
DWORD msPassed = currentTime - lastUpdateTime;
int updatesPassed = msPassed / msPerUpdate;
for (int i=0; i<updatesPassed; i++)
UpdatePhysX(); //or whatever function you use
lastUpdateTime = currentTime - msPassed + (updatesPassed * msPerUpdate);
}
Where currentTime is updated to timeGetTime every run through the game loop, lastUpdateTime is the last time PhysX updated, and msPerUpdate is the amount of milliseconds you assign to each update - 16 or 17 ms for 60fps
If you want to support floating-point update factors (which is recommended for a physics application), then define float timeMultiplier and update it every frame like so: timeMultiplier = (float)frameRate / desiredFrameRate; - where frameRate is self-explanatory and desiredFramerate is 60.0f if you want the physics updating at 60 fps. To do this, you have to update UpdatePhysX as taking a float parameter that it multiplies all update factors by.

C++: Calculating Moving FPS

I would like to calculate the FPS of the last 2-4 seconds of a game. What would be the best way to do this?
Thanks.
Edit: To be more specific, I only have access to a timer with one second increments.
Near miss of a very recent posting. See my response there on using exponential weighted moving averages.
C++: Counting total frames in a game
Here's sample code.
Initially:
avgFps = 1.0; // Initial value should be an estimate, but doesn't matter much.
Every second (assuming the total number of frames in the last second is in framesThisSecond):
// Choose alpha depending on how fast or slow you want old averages to decay.
// 0.9 is usually a good choice.
avgFps = alpha * avgFps + (1.0 - alpha) * framesThisSecond;
Here's a solution that might work for you. I'll write this in pseudo/C, but you can adapt the idea to your game engine.
const int trackedTime = 3000; // 3 seconds
int frameStartTime; // in milliseconds
int queueAggregate = 0;
queue<int> frameLengths;
void onFrameStart()
{
frameStartTime = getCurrentTime();
}
void onFrameEnd()
{
int frameLength = getCurrentTime() - frameStartTime;
frameLengths.enqueue(frameLength);
queueAggregate += frameLength;
while (queueAggregate > trackedTime)
{
int oldFrame = frameLengths.dequeue();
queueAggregate -= oldFrame;
}
setAverageFps(frameLength.count() / 3); // 3 seconds
}
Could keep a circular buffer of the frame time for the last 100 frames, and average them? That'll be "FPS for the last 100 frames". (Or, rather, 99, since you won't diff the newest time and the oldest.)
Call some accurate system time, milliseconds or better.
What you actually want is something like this (in your mainLoop):
frames++;
if(time<secondsTimer()){
time = secondsTimer();
printf("Average FPS from the last 2 seconds: %d",(frames+lastFrames)/2);
lastFrames = frames;
frames = 0;
}
If you know, how to deal with structures/arrays it should be easy for you to extend this example to i.e. 4 seconds instead of 2. But if you want more detailed help, you should really mention WHY you haven't access to an precise timer (which architecture, language) - otherwise everything is like guessing...

Help with code optimization

I've written a little particle system for my 2d-application. Here is raining code:
// HPP -----------------------------------
struct Data
{
float x, y, x_speed, y_speed;
int timeout;
Data();
};
std::vector<Data> mData;
bool mFirstTime;
void processDrops(float windPower, int i);
// CPP -----------------------------------
Data::Data()
: x(rand()%ScreenResolutionX), y(0)
, x_speed(0), y_speed(0), timeout(rand()%130)
{ }
void Rain::processDrops(float windPower, int i)
{
int posX = rand() % mWindowWidth;
mData[i].x = posX;
mData[i].x_speed = WindPower*0.1; // WindPower is float
mData[i].y_speed = Gravity*0.1; // Gravity is 9.8 * 19.2
// If that is first time, process drops randomly with window height
if (mFirstTime)
{
mData[i].timeout = 0;
mData[i].y = rand() % mWindowHeight;
}
else
{
mData[i].timeout = rand() % 130;
mData[i].y = 0;
}
}
void update(float windPower, float elapsed)
{
// If this is first time - create array with new Data structure objects
if (mFirstTime)
{
for (int i=0; i < mMaxObjects; ++i)
{
mData.push_back(Data());
processDrops(windPower, i);
}
mFirstTime = false;
}
for (int i=0; i < mMaxObjects; i++)
{
// Sleep until uptime > 0 (To make drops fall with randomly timeout)
if (mData[i].timeout > 0)
{
mData[i].timeout--;
}
else
{
// Find new x/y positions
mData[i].x += mData[i].x_speed * elapsed;
mData[i].y += mData[i].y_speed * elapsed;
// Find new speeds
mData[i].x_speed += windPower * elapsed;
mData[i].y_speed += Gravity * elapsed;
// Drawing here ...
// If drop has been falled out of the screen
if (mData[i].y > mWindowHeight) processDrops(windPower, i);
}
}
}
So the main idea is: I have some structure which consist of drop position, speed. I have a function for processing drops at some index in the vector-array. Now if that's first time of running I'm making array with max size and process it in cycle.
But this code works slower that all another I have. Please, help me to optimize it.
I tried to replace all int with uint16_t but I think it doesn't matter.
Replacing int with uint16_t shouldn't do any difference (it'll take less memory, but shouldn't affect running time on most machines).
The shown code already seems pretty fast (it's doing only what it's needed to do, and there are no particular mistakes), I don't see how you could optimize it further (at most you could remove the check on mFirstTime, but that should make no difference).
If it's slow it's because of something else. Maybe you've got too many drops, or the rest of your code is so slow that update gets called little times per second.
I'd suggest you to profile your program and see where most time is spent.
EDIT:
one thing that could speed up such algorithm, especially if your system hasn't got an FPU (! That's not the case of a personal computer...), would be to replace your floating point values with integers.
Just multiply the elapsed variable (and your constants, like those 0.1) by 1000 so that they will represent milliseconds, and use only integers everywhere.
Few points:
Physics is incorrect: wind power should be changed as speed makes closed to wind speed, also for simplicity I would assume that initial value of x_speed is the speed of the wind.
You don't take care the fraction with the wind at all, so drops getting faster and faster. but that depends on your want to model.
I would simply assume that drop fails in constant speed in constant direction because this is really what happens very fast.
Also you can optimize all this very simply as you don't need to solve motion equation using integration as it can be solved quite simply directly as:
x(t):= x_0 + wind_speed * t
y(t):= y_0 - fall_speed * t
This is the case of stable fall when the gravity force is equal to friction.
x(t):= x_0 + wind_speed * t;
y(t):= y_0 - 0.5 * g * t^2;
If you want to model drops that fall faster and faster.
Few things to consider:
In your processDrops function, you pass in windPower but use some sort of class member or global called WindPower, is that a typo? If the value of Gravity does not change, then save the calculation (i.e. mult by 0.1) and use that directly.
In your update function, rather than calculating windPower * elapsed and Gravity * elapsed for every iteration, calculate and save that before the loop, then add. Also, re-organise the loop, there is no need to do the speed calculation and render if the drop is out of the screen, do the check first, and if the drop is still in the screen, then update the speed and render!
Interestingly, you never check to see if the drop is out of the screen interms of it's x co-ordinate, you check the height, but not the width, you could save yourself some calculations and rendering time if you did this check as well!
In loop introduce reference Data& current = mData[i] and use it instead of mData[i]. And use this reference instead of index also in procesDrops.
BTW I think that consulting mFirstTime in processDrops serves no purpose because it will never be true. Hmm, I missed processDrops in initialization loop. Never mind this.
This looks pretty fast to me already.
You could get some tiny speedup by removing the "firsttime" code and putting it in it's own functions to call once rather that testing every calls.
You are doing the same calculation on lots of similar data so maybe you could look into using SSE intrinsics to process several items at once. You'l likely have to rearrange your data structure for that though to be a structure of vectors rather than a vector od structures like now. I doubt it would help too much though. How many items are in your vector anyway?
It looks like maybe all your time goes into ... Drawing Here.
It's easy enough to find out for sure where the time is going.