C++, How to maintain both data locality and well splitted code structure at every layer of a program? - c++

In my recent project I have a class like this:
class layer1 {
myclassa l1dataa; // layer1 data
...
myclassn l1datan;
public:
void l1datatransformsa()
{
myotherclassa l2dataa; // layer2 data
...
myotherclassn l2datan;
many operations; // way too many operations for a single method
}
void l1datatransformsb() {}
};
The method l1datatransformsa invokes local data and is quite long and robust. I would like to divide its code into smaller meaningful portions (methods) which all work on the same local layer2 data. It can be done in few ways, though none of them seems good enough to me, therefore I'm asking for recommendation on how should it be done:
Breaking the code of "many operations" into private methods of class layer1.
Cons: I would have to pass as arguments to those new methods references to all layer2 data, which is not very elegant as there is too many of them
Rewriting the method l1datatransformsa as a nested class of class layer1 with layer2 data declared as its data members. Then it would be possible to split "many operations" into members of the nested class.
Cons: To access layer1 data from nested class I would have to use reference or pointer to the instance of enclosing class. This will make me include many changes in the code of "many operations" and will make the code less clear. It would be even worse if one would think of a need of splitting in the same manner one of methods of nested class.
The basic idea behind all this is to have a comfortable way of keeping your local data close to the functions or methods which use it and only to them at every layer of your program.
ADDED: "many operations" which we we want to split work both on almost all data members of class layer1 and all local data layer2. They work on layer2 data sequentially and that's why they can be splitted easily, though it's a bit awkward 'programistically'.

First of all, you can increase the clarity of your code by defining your class in a header file, using only prototypes for member functions, and writing the member functions in a separate .cpp file. I'm assuming that you combined these for the sake of making it easier to post here.
The method l1datatransformsa invokes
local data and is quite long and
robust. I would like to divide its
code into smaller meaningful portions
(methods) which all work on the same
local layer2 data.
You might be approaching this incorrectly. If you are only wanting to break down a large member function for the sake of sanity, then all you need are functions, not members. Every function associated with a class is not required to be a member. Only use members here if you will need to call these sub-routines explicitly and individually from somewhere other than inside another member function. When you write your helper functions in the same .cpp file as your class' member functions, declare them static and they will only operate within the scope of that file (effectively limiting them to that class but without giving them the unobstructed data access of a member function). This is an easy way to enforce restrictions on data access as well as promote modularity. Each sub-function will only operate on data passed through the function's parameters (as opposed to a member function which can access all of the class' member data freely).
If you find yourself needing to pass a large number of parameters to a single function, ask yourself if you should A) store them in a struct instead of independent variables and pass the struct to the function or B) break apart the function into several shorter, more focused functions that perform their task on a sub-set of the variables. If these are member variables and you still want to access them individually but pack them into a struct, don't forget you can make the struct private and write simple getter/setter functions for accessing the individual values.
Keep the functions focused; each should do a single task, and do it well. Small functions are easier to read, test, and debug. Don't be afraid to break up your code into several nested layers (l1datatransformsa calls helper func A, which calls helper func B, etc) if it makes the code clearer. If you can write a relatively short name for the function that describes clearly and exactly what the function does (encryptString() or verifyChecksums() instead of dataProcessingStepFour()), you are probably on the right track.
TL:DR version: I don't think nesting a second class is the answer here. If, as you say, the nested class will need to access members of the parent class, that throws up a flag in my head that there is a better way to organize this (classes should function independently and should never assume that they are a child of an object of a particular type). Personally, I would keep l1datatransformsa relatively brief and use helper functions (not member functions) to do the work. If you are needing to pass a lot of different variables to helper functions, either use a struct instead of loose variables or re-think whether that sub-function needs all that information or if it can be split into smaller functions that each operate on less data.

I would conceptualize it, then break up data layers based on conceptual actions and models.

-- New answer --
I removed my old answer because I thought you were looking for a trivial tips. I think you need to do some reading on the tools and techniques you have available to organize and construct software.
Gang Of Four - Design Pattern Book
Modern C++ Design
Generic Programming
The first book is essential, the second builds up some of the concepts that are introduced in the first in C++. The third is quite academic -- but contains a wealth of information, you can probably ignore it.

Related

Class methods VS Class static functions VS Simple functions - Performance-wise?

OK, here's what I want :
I have written several REALLY demanding functions (mostly operating on bitmaps, etc) which have to be as fast as possible
Now, let's also mention that these functions may also be grouped by type, or even by the type of variable on which they operate.
And the thing is, apart from the very implementation of the algorithms, what I should do - from a technical point of view - in order not to mess up the speed.
And now, I'm considering the following scenarios :
Create them as simple functions and just pass the necessary parameters as arguments
Create a class (for 'grouping'/organisation purposes) and just declare them as static
Create class by type, e.g. Create a class for working on bitmaps, create a new instance of that Class for every bitmap (e.g. Bitmap* myBitmap = newBitmap(1010);, and operate on it with its inner methods (e.g. myBitmap->getFirstBitSet())
Now, which of these approaches is the fastest? Is there really any difference between straight simple functions and Class-encapsulated static functions, performance-wise? Any other scenario that would be preferable, which I haven't mentioned?
Sidenote : I'm using the clang++ compiler, for Mac OS X 10.6.8. (if that makes any difference)
At CPU level, there is only one kind of function, and it very much ressemble the C kind. You could craft your own, but...
As it turns out, C++ being built with efficiency in mind maps most functions directly to call instructions:
a namespace level function is like a regular C function
a static method is like a namespace level function (from a call point of view)
a non-static method is very similar to a static method, except an implicit this parameter is passed on top of the other parameters (one pointer)
All those 3 have the exact same kind of performance.
On the other hand, virtual methods have a slight overhead. There was a C++ technical report on performance which estimated the overhead compared to a non-virtual method between 10% and 15% (from memory) for empty functions. Meaning that for any function with meat inside (ie, doing real work), the overhead itself is close to getting lost in the noise. The real cost comes from the inhibition of inlining unless the virtual call can be deduced at compile-time.
There is absolutely no difference between classic old C functions and static methods of classes. The difference is only aesthetic. If you have multiple C functions that have certain relation between them, you can:
group them into a class;
place them into a namespace;
The difference will again be aesthetic. Most likely this will improve readability.
In case if these C functions share some static data, it would make sense (if possible) to define this data as private static data members of a class. In this case variant with the class would be preferable over the variant with namespace.
I would discourage you from creating a dummy instance. This will be misleading to the reader of the source code.
Creating an instance for every bitmap is possible and can even be favorable. Especially if you call methods on this instance several times in a typical scenario.

Single-use class

In a project I am working on, we have several "disposable" classes. What I mean by disposable is that they are a class where you call some methods to set up the info, and you call what equates to a doit function. You doit once and throw them away. If you want to doit again, you have to create another instance of the class. The reason they're not reduced to single functions is that they must store state for after they doit for the user to get information about what happened and it seems to be not very clean to return a bunch of things through reference parameters. It's not a singleton but not a normal class either.
Is this a bad way to do things? Is there a better design pattern for this sort of thing? Or should I just give in and make the user pass in a boatload of reference parameters to return a bunch of things through?
What you describe is not a class (state + methods to alter it), but an algorithm (map input data to output data):
result_t do_it(parameters_t);
Why do you think you need a class for that?
Sounds like your class is basically a parameter block in a thin disguise.
There's nothing wrong with that IMO, and it's certainly better than a function with so many parameters it's hard to keep track of which is which.
It can also be a good idea when there's a lot of input parameters - several setup methods can set up a few of those at a time, so that the names of the setup functions give more clue as to which parameter is which. Also, you can cover different ways of setting up the same parameters using alternative setter functions - either overloads or with different names. You might even use a simple state-machine or flag system to ensure the correct setups are done.
However, it should really be possible to recycle your instances without having to delete and recreate. A "reset" method, perhaps.
As Konrad suggests, this is perhaps misleading. The reset method shouldn't be seen as a replacement for the constructor - it's the constructors job to put the object into a self-consistent initialised state, not the reset methods. Object should be self-consistent at all times.
Unless there's a reason for making cumulative-running-total-style do-it calls, the caller should never have to call reset explicitly - it should be built into the do-it call as the first step.
I still decided, on reflection, to strike that out - not so much because of Jalfs comment, but because of the hairs I had to split to argue the point ;-) - Basically, I figure I almost always have a reset method for this style of class, partly because my "tools" usually have multiple related kinds of "do it" (e.g. "insert", "search" and "delete" for a tree tool), and shared mode. The mode is just some input fields, in parameter block terms, but that doesn't mean I want to keep re-initializing. But just because this pattern happens a lot for me, doesn't mean it should be a point of principle.
I even have a name for these things (not limited to the single-operation case) - "tool" classes. A "tree_searching_tool" will be a class that searches (but doesn't contain) a tree, for example, though in practice I'd have a "tree_tool" that implements several tree-related operations.
Basically, even parameter blocks in C should ideally provide a kind of abstraction that gives it some order beyond being just a bunch of parameters. "Tool" is a (vague) abstraction. Classes are a major means of handling abstraction in C++.
I have used a similar design and wondered about this too. A fictive simplified example could look like this:
FileDownloader downloader(url);
downloader.download();
downloader.result(); // get the path to the downloaded file
To make it reusable I store it in a boost::scoped_ptr:
boost::scoped_ptr<FileDownloader> downloader;
// Download first file
downloader.reset(new FileDownloader(url1));
downloader->download();
// Download second file
downloader.reset(new FileDownloader(url2));
downloader->download();
To answer your question: I think it's ok. I have not found any problems with this design.
As far as I can tell you are describing a class that represents an algorithm. You configure the algorithm, then you run the algorithm and then you get the result of the algorithm. I see nothing wrong with putting those steps together in a class if the alternative is a function that takes 7 configuration parameters and 5 output references.
This structuring of code also has the advantage that you can split your algorithm into several steps and put them in separate private member functions. You can do that without a class too, but that can lead to the sub-functions having many parameters if the algorithm has a lot of state. In a class you can conveniently represent that state through member variables.
One thing you might want to look out for is that structuring your code like this could easily tempt you to use inheritance to share code among similar algorithms. If algorithm A defines a private helper function that algorithm B needs, it's easy to make that member function protected and then access that helper function by having class B derive from class A. It could also feel natural to define a third class C that contains the common code and then have A and B derive from C. As a rule of thumb, inheritance used only to share code in non-virtual methods is not the best way - it's inflexible, you end up having to take on the data members of the super class and you break the encapsulation of the super class. As a rule of thumb for that situation, prefer factoring the common code out of both classes without using inheritance. You can factor that code into a non-member function or you might factor it into a utility class that you then use without deriving from it.
YMMV - what is best depends on the specific situation. Factoring code into a common super class is the basis for the template method pattern, so when using virtual methods inheritance might be what you want.
Nothing especially wrong with the concept. You should try to set it up so that the objects in question can generally be auto-allocated vs having to be newed -- significant performance savings in most cases. And you probably shouldn't use the technique for highly performance-sensitive code unless you know your compiler generates it efficiently.
I disagree that the class you're describing "is not a normal class". It has state and it has behavior. You've pointed out that it has a relatively short lifespan, but that doesn't make it any less of a class.
Short-lived classes vs. functions with out-params:
I agree that your short-lived classes are probably a little more intuitive and easier to maintain than a function which takes many out-params (or 1 complex out-param). However, I suspect a function will perform slightly better, because you won't be taking the time to instantiate a new short-lived object. If it's a simple class, that performance difference is probably negligible. However, if you're talking about an extremely performance-intensive environment, it might be a consideration for you.
Short-lived classes: creating new vs. re-using instances:
There's plenty of examples where instances of classes are re-used: thread-pools, DB-connection pools (probably darn near any software construct ending in 'pool' :). In my experience, they seem to be used when instantiating the object is an expensive operation. Your small, short-lived classes don't sound like they're expensive to instantiate, so I wouldn't bother trying to re-use them. You may find that whatever pooling mechanism you implement, actually costs MORE (performance-wise) than simply instantiating new objects whenever needed.

C++ should all member variable use accessors and mutator

I have about 15~20 member variables which needs to be accessed, I was wondering
if it would be good just to let them be public instead of giving every one of them
get/set functions.
The code would be something like
class A { // a singleton class
public:
static A* get();
B x, y, z;
// ... a lot of other object that should only have one copy
// and doesn't change often
private:
A();
virtual ~A();
static A* a;
};
I have also thought about putting the variables into an array, but I don't
know the best way to do a lookup table, would it be better to put them in an array?
EDIT:
Is there a better way than Singleton class to put them in a collection
The C++ world isn't quite as hung up on "everything must be hidden behind accessors/mutators/whatever-they-decide-to-call-them-todays" as some OO-supporting languages.
With that said, it's a bit hard to say what the best approach is, given your limited description.
If your class is simply a 'bag of data' for some other process, than using a struct instead of a class (the only difference is that all members default to public) can be appropriate.
If the class actually does something, however, you might find it more appropriate to group your get/set routines together by function/aspect or interface.
As I mentioned, it's a bit hard to tell without more information.
EDIT: Singleton classes are not smelly code in and of themselves, but you do need to be a bit careful with them. If a singleton is taking care of preference data or something similar, it only makes sense to make individual accessors for each data element.
If, on the other hand, you're storing generic input data in a singleton, it might be time to rethink the design.
You could place them in a POD structure and provide access to an object of that type :
struct VariablesHolder
{
int a;
float b;
char c[20];
};
class A
{
public:
A() : vh()
{
}
VariablesHolder& Access()
{
return vh;
}
const VariablesHolder& Get() const
{
return vh;
}
private:
VariablesHolder vh;
};
No that wouldn't be good. Image you want to change the way they are accessed in the future. For example remove one member variable and let the get/set functions compute its value.
It really depends on why you want to give access to them, how likely they are to change, how much code uses them, how problematic having to rewrite or recompile that code is, how fast access needs to be, whether you need/want virtual access, what's more convenient and intuitive in the using code etc.. Wanting to give access to so many things may be a sign of poor design, or it may be 100% appropriate. Using get/set functions has much more potential benefit for volatile (unstable / possibly subject to frequent tweaks) low-level code that could be used by a large number of client apps.
Given your edit, an array makes sense if your client is likely to want to access the values in a loop, or a numeric index is inherently meaningful. For example, if they're chronologically ordered data samples, an index sounds good. Summarily, arrays make it easier to provide algorithms to work with any or all of the indices - you have to consider whether that's useful to your clients; if not, try to avoid it as it may make it easier to mistakenly access the wrong values, particularly if say two people branch some code, add an extra value at the end, then try to merge their changes. Sometimes it makes sense to provide arrays and named access, or an enum with meaningful names for indices.
This is a horrible design choice, as it allows any component to modify any of these variables. Furthermore, since access to these variables is done directly, you have no way to impose any invariant on the values, and if suddenly you decide to multithread your program, you won't have a single set of functions that need to be mutex-protected, but rather you will have to go off and find every single use of every single data member and individually lock those usages. In general, one should:
Not use singletons or global variables; they introduce subtle, implicit dependencies between components that allow seemingly independent components to interfere with each other.
Make variables const wherever possible and provide setters only where absolutely required.
Never make variables public (unless you are creating a POD struct, and even then, it is best to create POD structs only as an internal implementation detail and not expose them in the API).
Also, you mentioned that you need to use an array. You can use vector<B> or vector<B*> to create a dynamically-sized array of objects of type B or type B*. Rather than using A::getA() to access your singleton instance; it would be better to have functions that need type A to take a parameter of type const A&. This will make the dependency explicit, and it will also limit which functions can modify the members of that class (pass A* or A& to functions that need to mutate it).
As a convention, if you want a data structure to hold several public fields (plain old data), I would suggest using a struct (and use in tandem with other classes -- builder, flyweight, memento, and other design patterns).
Classes generally mean that you're defining an encapsulated data type, so the OOP rule is to hide data members.
In terms of efficiency, modern compilers optimize away calls to accessors/mutators, so the impact on performance would be non-existent.
In terms of extensibility, methods are definitely a win because derived classes would be able to override these (if virtual). Another benefit is that logic to check/observe/notify data can be added if data is accessed via member functions.
Public members in a base class is generally a difficult to keep track of.

Best practices for a class with many members

Any opinions on best way to organize members of a class (esp. when there are many) in C++. In particular, a class has lots of user parameters, e.g. a class that optimizes some function and has number of parameters such as # of iterations, size of optimization step, specific method to use, optimization function weights etc etc. I've tried several general approaches and seem to always find something non-ideal with it. Just curious others experiences.
struct within the class
struct outside the class
public member variables
private member variables with Set() & Get() functions
To be more concrete, the code I'm working on tracks objects in a sequence of images. So one important aspect is that it needs to preserve state between frames (why I didn't just make a bunch of functions). Significant member functions include initTrack(), trackFromLastFrame(), isTrackValid(). And there are a bunch of user parameters (e.g. how many points to track per object tracked, how much a point can move between frames, tracking method used etc etc)
If your class is BIG, then your class is BAD.
A class should respect the Single Responsibility Principle , i.e. : A class should do only one thing, but should do it well. (Well "only one" thing is extreme, but it should have only one role, and it has to be implemented clearly).
Then you create classes that you enrich by composition with those single-role little classes, each one having a clear and simple role.
BIG functions and BIG classes are nest for bugs, and misunderstanding, and unwanted side effects, (especially during maintainance), because NO MAN can learn in minutes 700 lines of code.
So the policy for BIG classes is: Refactor, Composition with little classes targetting only at what they have do.
if i had to choose one of the four solutions you listed: private class within a class.
in reality: you probably have duplicate code which should be reused, and your class should be reorganized into smaller, more logical and reusable pieces. as GMan said: refactor your code
First, I'd partition the members into two sets: (1) those that are internal-only use, (2) those that the user will tweak to control the behavior of the class. The first set should just be private member variables.
If the second set is large (or growing and changing because you're still doing active development), then you might put them into a class or struct of their own. Your main class would then have a two methods, GetTrackingParameters and SetTrackingParameters. The constructor would establish the defaults. The user could then call GetTrackingParameters, make changes, and then call SetTrackingParameters. Now, as you add or remove parameters, your interface remains constant.
If the parameters are simple and orthogonal, then they could be wrapped in a struct with well-named public members. If there are constraints that must be enforced, especially combinations, then I'd implement the parameters as a class with getters and setters for each parameter.
ObjectTracker tracker; // invokes constructor which gets default params
TrackerParams params = tracker.GetTrackingParameters();
params.number_of_objects_to_track = 3;
params.other_tracking_option = kHighestPrecision;
tracker.SetTrackingParameters(params);
// Now start tracking.
If you later invent a new parameter, you just need to declare a new member in the TrackerParams and initialize it in ObjectTracker's constructor.
It all depends:
An internal struct would only be useful if you need to organize VERY many items. And if this is the case, you ought to reconsider your design.
An external struct would be useful if it will be shared with other instances of the same or different classes. (A model, or data object class/struct might be a good example)
Is only ever advisable for trivial, throw-away code.
This is the standard way of doing things but it all depends on how you'll be using the class.
Sounds like this could be a job for a template, the way you described the usage.
template class FunctionOptimizer <typename FUNCTION, typename METHOD,
typename PARAMS>
for example, where PARAMS encapsulates simple optimization run parameters (# of iterations etc) and METHOD contains the actual optimization code. FUNCTION describes the base function you are targeting for optimization.
The main point is not that this is the 'best' way to do it, but that if your class is very large there are likely smaller abstractions within it that lend themselves naturally to refactoring into a less monolithic structure.
However you handle this, you don't have to refactor all at once - do it piecewise, starting small, and make sure the code works at every step. You'll be surprised how much better you quickly feel about the code.
I don't see any benefit whatsoever to making a separate structure to hold the parameters. The class is already a struct - if it were appropriate to pass parameters by a struct, it would also be appropriate to make the class members public.
There's a tradeoff between public members and Set/Get functions. Public members are a lot less boilerplate, but they expose the internal workings of the class. If this is going to be called from code that you won't be able to refactor if you refactor the class, you'll almost certainly want to use Get and Set.
Assuming that the configuration options apply only to this class, use private variables that are manipulated by public functions with meaningful function names. SetMaxInteriorAngle() is much better than SetMIA() or SetParameter6(). Having getters and setters allows you to enforce consistency rules on the configuration, and can be used to compensate for certain amounts of change in the configuration interface.
If these are general settings, used by more than one class, then an external class would be best, with private members and appropriate functions.
Public data members are usually a bad idea, since they expose the class's implementation and make it impossible to have any guaranteed relation between them. Walling them off in a separate internal struct doesn't seem useful, although I would group them in the list of data members and set them off with comments.

Access members directly or always use getters

I personally find it weird/ugly when a class uses a getter to access its own member data. I know the performance impact is none but I just don't like to see all those method calls.
Are there any strong arguments either way, or is it just one of those things that's personal preference and should be left to each coder, or arbitrarily controlled in a coding standard?
Update: I'm meaning simple getters, specifically for a class' non-public members.
The reason you might want to use a getter/setter is because it conceals the implementation. You won't have to rewrite all of your code if you are using getters/setters in case the implementation does change, because those members can continue to work.
EDIT based on the many clever comments:
As for a class using setters and getters on itself, that may depend on the particulars. After all, the implementation of a particular class is available to the class itself. In the cases where a class is normally instantiated, the class should use the member values directly for its own members (private or otherwise) and its parent classes (if they are protected) and only use getters/setters in the case that those members are private to the parent class.
In the case of an abstract type, which will usually not contain any implementation at all, it should provide pure virtual getters and setters and use only those in the methods it does implement.
Willingness to use getters/setters within class member implementation is the canary in the mine telling that your class is growing unreasonably. It tells that your class is trying to do too many different things, that it serves several purposes where it should serve one instead.
In fact, this is usually encountered when you are using one part of your class to store or access your data, and another part to make operations on it. Maybe you should consider using a standalone class to store and give access to your data, and another one to provide a higher view, with more complex operations with your data.
THE OBVIOUS
getters and setters for protected members makes as much sense as for public... derived classes are just another form of client code, and encapsulating implementation details from them can still be useful. I'm not saying always do it, just to weight pros and cons along the normal lines.
getters and setters for private members is rarely a net benefit, though:
it does provide the same kind of encapsulation benefits
single place for breakpoints/logging of get/set + invariant checks during dev (if used consistently)
virtual potential
etc...
but only to the presumably relatively small implementation of the same struct/class. In enterprise environments, and for public/protected member data, those benefits can be substantial enough to justify get/set methods: a logging function may end up having millions of lines of code depedent on it, and hundreds or thousands of libraries and apps for which a change to a header may trigger recompilation. Generally a single class implementation shouldn't be more than a few hundred (or at worst thousand) lines - not big or complex enough to justify encapsulating internal private data like this... it could be said to constitute a "code smell".
THE NOT-SO OBVIOUS
get/set methods can very occasionally be more readable than direct variable access (though more often less readable)
get/set methods may be able to provide a more uniform and convenient interface for code-generated member or friend methods (whether from macros or external tools/scripts)
less work required to transition between being a member or friend to a freestanding helper function should that become possible
implementation may be rendered more understandable (and hence maintainable) to people who're normally only users of the class (as more operations are expressed via, or in the style of, the public interface)
It's a bit out of scope for the question, but it's worth noting that classes should generally provide action-oriented commands, event-triggered callbacks etc. rather than encouraging a get/set usage pattern.
It seems most people didn't read your question properly, the question is concerning whether or not class methods accessing its own class' members should use getters and setters; not about an external entity accessing the class' members.
I wouldn't bother using getter and setter for accessing a class' own members.
However, I also keep my classes small (typically about 200-500 lines), such that if I do need to change the fields or change its implementations or how they are calculated, search and replace wouldn't be too much work (indeed, I often change variable/class/function names in the early development period, I'm picky name chooser).
I only use getter and setters for accessing my own class members when I am expecting to change the implementation in the near future (e.g. if I'm writing a suboptimal code that can be written quickly, but plans to optimize it in the future) that might involve radically changing the data structure used. Conversely, I don't use getter and setter before I already have the plan; in particular, I don't use getter and setter in expectation of changing things I'm very likely never going to change anyway.
For external interface though, I strictly adhere to the public interface; all variables are private, and I avoid friend except for operator overloads; I use protected members conservatively and they are considered a public interface. However, even for public interface, I usually still avoid having direct getters and setters methods, as they are often indicative of bad OO design (every OO programmers in any language should read: Why getter and setter methods are Evil). Instead, I have methods that does something useful, instead of just fetching the values. For example:
class Rectangle {
private:
int x, y, width, height;
public:
// avoid getX, setX, getY, setY, getWidth, setWidth, getHeight, setHeight
void move(int new_x, int new_y);
void resize(int new_width, int new_height);
int area();
}
The only advantage is that it allows changing internal representation without changing external interface, permitting lazy evaluation, or why not access counting.
In my experience, the number of times I did this is very, very low. And it seems you do, I also prefer to avoid the uglyness and weightyness of getter/setters. It is not that difficult to change it afterwards if I really need it.
As you speak about a class using its own getter/setters in its own implementation functions, then you should consider writing non-friend non-member functions where possible. They improve encapsulation as explained here.
An argument in favor of using getters is that you might decide one day to change how the member field is calculated. You may decide that you need it to be qualified with some other member, for instance. If you used a getter, all you have to do is change that one getter function. If you didn't you have to change each and every place where that field is used currently and in the future.
Just a crude example. Does this help?
struct myclass{
int buf[10];
int getAt(int i){
if(i >= 0 && i < sizeof(buf)){
return buf[i];
}
}
void g(){
int index = 0;
// some logic
// Is it worth repeating the check here (what getAt does) to ensure
// index is within limits
int val = buf[index];
}
};
int main(){}
EDIT:
I would say that it depends. In case the getters do some kind of validation, it is better to go through the validation even if it means the class members being subjected to that validation. Another case where going through a common entry point could be helpful is when the access needs to be essentially in a sequential and synchronized manner e.g. in a multithreaded scenario.
Protecting a member variable by wrapping its access with get/set functions has its advantages. One day you may wish to make your class thread-safe - and in that instance, you'll thank yourself for using those get/set functions
this is actually for supporting the object oriented-ness of the class by abstracting the way to get(getter). and just providing its easier access.
Simple answer. If you are writing a one shoot program, that will never change, you can leave the getters at peace and do without any.
However if you write a program that could change or been written over time, or others might use that code, use getters.
If you use getters it helps change the code faster later on, like putting a guard on the property to verify correctness of value, or counting access to the property(debugging).
Getters to me are about easy possibilities(free lunch). The programmer who write the code does not need getters, he wants them.
hope that help.
My thoughts are as follows.
Everything should be static, constant, and private if possible.
As you need a variable to be instanced meaning more than one unique
copy you remove static.
As you need a variable to be modifiable you remove the const.
As you need a class/variable to be accessed by other classes you remove
the private.
The Usage of Setters/Getters - General Purpose.
Getter's are okay if the value is to ONLY be changed by the class and
we want to protect it. This way we can retrieve the current state of
this value without the chance of it's value getting changed.
Getter's should not be used if you are planning to provide a Setter
with it. At this point you should simply convert the value to public
and just modify it directly. Since this is the intent with a Get/Set.
A Setter is plain useless if you are planning to do more then simply
"this.value = value". Then you shouldn't be calling it "SetValue"
rather describe what it is actually doing.
If let's say you want to make modifications to a value before you
"GET" it's value. Then DO NOT call it "GetValue". This is ambiguous
to your intent and although YOU might know what's happening. Someone
else wouldn't unless they viewed the source code of that function.
If let's say you are indeed only Getting/Setting a value, but you are
doing some form of security. I.e. Size check, Null Check, etc.. this
is an alternative scenario. However you should still clarify that in
the name E.g. "SafeSetValue" , "SafeGetValue" or like in the "printf"
there is "printf_s".
Alternatives to the Get/Set situations
An example that I personally have. Which you can see how I handle a
Get/Set scenario. Is I have a GameTime class which stores all kinds
of values and every game tick these values get changed.
https://github.com/JeremyDX/DX_B/blob/master/DX_B/GameTime.cpp
As you will see in the above my "GETS" are not actually "GETS" of
values except in small cases where modification wasn't needed. Rather
they are descriptions of values I am trying to retrieve out of this
GameTime class. Every value is "Static Private". I cannot do Const
given the information is obtained until runtime and I keep this
static as there is no purpose to have multiple instances of Timing.
As you will also see I don't have any way of performing a "SET" on any of this data, but there are two functions "Begin()" and "Tick()" which both change the values. This is how ALL "setters" should be handled. Basically the "Begin()" function resets all the data and loads in our constants which we CANT set as constants since this is data we retrieve at runtime. Then TICK() updates specific values as time passes in this case so we have fresh up to date information.
If you look far into the code you'll find the values "ResetWindowFrameTime()" and "ElapsedFrameTicks()". Typically I wouldn't do something like this and would have just set the value to public. Since as you'll see I'm retrieving the value and setting the value. This is another form of Set/Get, but it still uses naming that fits the scenario and it uses data from private variables so it didn't make sense to pull another private variable and then multiply it by this rather do the work here and pull the result. There is also NO need to edit the value other then to reset it to the current frame index and then retrieve the elapsed frames. It is used when I open a new window onto my screen so I can know how long I've been viewing this window for and proceed accordingly.