Alpha transparency with particle effects in OpenGL - opengl

I have a simple particle effect in OpenGL using GL_POINTS. The following is called, being passed particles in order from the particle furthest from the camera first to the one nearest the camera last:
void draw_particle(particle* part) {
/* The following is how the distance is calculated when ordering.
* GLfloat distance = sqrt(pow(get_camera_pos_x() - part->pos_x, 2) + pow(get_camera_pos_y() - part->pos_y, 2) + pow(get_camera_pos_z() - part->pos_z, 2));
*/
static GLfloat quadratic[] = {0.005, 0.01, 1/600.0};
glPointParameterfvARB(GL_POINT_DISTANCE_ATTENUATION_ARB, quadratic);
glPointSize(part->size);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_POINT_SPRITE_ARB);
glEnable(GL_TEXTURE_2D);
glBegin(GL_POINTS);
glColor4f(part->r, part->g, part->b, part->a);
glVertex3f(part->pos_x, part->pos_y, part->pos_z);
glEnd();
glDisable(GL_BLEND);
glDisable(GL_POINT_SPRITE_ARB);
}
However, there is some artifacting when rendering as can be seen in the following effect:artifacted image http://img199.imageshack.us/img199/9574/particleeffect.png
The problems go away if I disable depth testing, but I need the effects to be able to interact with other elements of the scene, appearing in front of and behind elements of the same GL_TRIANGLE_STRIP depending on depth.

If your particules are already sorted you can render like this :
Render particule with GL WRITE DEPTH but no depth testing (I don't remember exactly the constants)
Render the rest of the scene with depth test.
This way you are sure to get scene interaction with nice-looking particules.

Note: Please specify which OpenGL version you use when you post questions. That goes for any API.
When you want to render primitives with alpha blending, you can't have depth writes enabled. You need to draw your blended primitives sorted back-to-front. If you have opaque objects in the scene, render them first, and then draw your transparent primitives in a back-to-front sorted fashion with depth test enabled and depth writes disabled.
glEnable(GL_DEPTH_TEST);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_POINT_SPRITE);
glEnable(GL_CULL_FACE);
while(1)
{
...
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDisable(GL_BLEND);
glDepthMask(1);
RenderOpaque();
SortSprites();
glEnable(GL_BLEND);
glDepthMask(0);
DrawSprites();
...
}

Related

Deferred Rendering Skybox OpenGL

I've just implemented deferred rendering and am having trouble getting my skybox working. I try rendering my skybox at the very end of my rendering loop and all I get is a black screen. Here's the rendering loop:
//binds the fbo
gBuffer.Bind();
//the shader that writes info to gbuffer
geometryPass.Bind();
glDepthMask(GL_TRUE);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
//draw geometry
geometryPass.SetUniform("model", transform.GetModel());
geometryPass.SetUniform("mvp", camera.GetViewProjection() * transform.GetModel());
mesh3.Draw();
geometryPass.SetUniform("model", transform2.GetModel());
geometryPass.SetUniform("mvp", camera.GetViewProjection() * transform2.GetModel());
sphere.Draw();
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_ONE, GL_ONE);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glClear(GL_COLOR_BUFFER_BIT);
//shader that calculates lighting
pointLightPass.Bind();
pointLightPass.SetUniform("cameraPos", camera.GetTransform().GetPosition());
for (int i = 0; i < 2; i++)
{
pointLightPass.SetUniformPointLight("light", pointLights[i]);
pointLightPass.SetUniform("mvp", glm::mat4(1.0f));
//skybox.GetCubeMap()->Bind(9);
quad.Draw();
}
//draw skybox
glEnable(GL_DEPTH_TEST);
skybox.Render(camera);
window.Update();
window.SwapBuffers();
The following is the skybox's render function
glCullFace(GL_FRONT);
glDepthFunc(GL_LEQUAL);
m_transform.SetPosition(camera.GetTransform().GetPosition());
m_shader->Bind();
m_shader->SetUniform("mvp", camera.GetViewProjection() * m_transform.GetModel());
m_shader->SetUniform("cubeMap", 0);
m_cubeMap->Bind(0);
m_cubeMesh->Draw();
glDepthFunc(GL_LESS);
glCullFace(GL_BACK);
And here is the skybox's vertex shader:
layout (location = 0) in vec3 position;
out vec3 TexCoord;
uniform mat4 mvp;
void main()
{
vec4 pos = mvp * vec4(position, 1.0);
gl_Position = pos.xyww;
TexCoord = position;
}
The skybox's fragment shader just sets the output color to texture(cubeMap, TexCoord).
As you can see from the vertex shader, I'm setting the position's z component to be w so that it will always have a depth of 1. I am also setting the depth function to be GL_LEQUAL so that it will fail the depth test. Should this not only draw the skybox in places where other objects weren't already drawn? Why does it result in a black screen?
I know I have set up the skybox correctly because if I just draw the skybox by itself it shows up just fine.
I can briefly see for a split second the geometry that should be drawn before the skybox is drawn on top of everything.
Since you're using double buffering, seeing different things must be due to a different frame being drawn. The depth buffer in the default framebuffer isn't being cleared, which I believe is the cause of the temporal instability at least.
In your case, you want the default depth buffer to be the same as the GBuffer when you draw the skybox. A quick way to achieve this is with glBlitFramebuffer, also avoiding the need to clear it:
glBindFramebuffer(GL_READ_FRAMEBUFFER, gbuffer);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glBlitFramebuffer(..., GL_DEPTH_BUFFER_BIT, ...);
Now to explain the black screen when the skybox fills the screen. Without the depth test, of course the skybox just draws. With the depth test, the skybox still draws on the first frame, but shortly after the second frame clears only the colour buffer. The depth buffer still contains stale skybox values so it does not get re-draw for this frame and you're left with black...
However your geometry pass draws without depth testing enabled, so this should still be visible even if the skybox isn't. Also this would only happen with GL_LESS and you have GL_LEQUAL. And you have glDepthMask false, which means nothing should write to the default depth buffer in your code. This points to the depth buffer containing other values, perhaps uninitialized, but in my experience it's initially zero. Also this still happens when the skybox doesn't fill the screen, drawn as a cube away from the camera, which blows away that argument. Now, perhaps if the geometry failed to draw in the second frame that would explain it. For that matter blatant driver bugs would too, but I'm not seeing any problems in the given code.
TLDR: Many unexplained things, so **I tried it myself and can't reproduce your problem...
Here's a quick example based on your code and it works fine for me...
(green sphere is the geometry, red cube is the skybox)
gl_Position = pos:
Note the yellow from additive blending even if the skybox is drawn over the top. I would have thought you'd be seeing this too.
gl_Position = pos.xyww:
Now for the code...
//I haven't enabled back face culling, but that shouldn't affect anything
//binds the fbo
fbo.bind();
//the shader that writes info to gbuffer
//geometryPass.Bind(); //fixed pipeline for now
glDepthMask(GL_TRUE);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
glColor3f(0,1,0);
fly.uploadCamera(); //glLoadMatrixf
sphere.draw();
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_ONE, GL_ONE);
fbo.unbind(); //glBindFramebuffer(GL_FRAMEBUFFER, 0);
glClear(GL_COLOR_BUFFER_BIT);
//shader that calculates lighting
drawtex.use();
//pointLightPass.SetUniform("cameraPos", camera.GetTransform().GetPosition());
drawtex.set("tex", *(Texture2D*)fbo.colour[0]);
for (int i = 0; i < 2; i++)
{
//pointLightPass.SetUniformPointLight("light", pointLights[i]);
//pointLightPass.SetUniform("mvp", glm::mat4(1.0f));
//skybox.GetCubeMap()->Bind(9);
drawtex.set("modelviewMat", mat44::identity());
quad.draw();
}
drawtex.unuse();
//draw skybox
glEnable(GL_DEPTH_TEST);
glBindFramebuffer(GL_READ_FRAMEBUFFER, fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glBlitFramebuffer(0, 0, fbo.size.x, fbo.size.y, 0, 0, fbo.size.x, fbo.size.y, GL_DEPTH_BUFFER_BIT, GL_NEAREST);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
//glCullFace(GL_FRONT);
glDepthFunc(GL_LEQUAL);
//m_transform.SetPosition(camera.GetTransform().GetPosition());
skybox.use();
skybox.set("mvp", fly.camera.getProjection() * fly.camera.getInverse() * mat44::translate(1,0,0));
//m_shader->SetUniform("mvp", camera.GetViewProjection() * m_transform.GetModel());
//m_shader->SetUniform("cubeMap", 0);
//m_cubeMap->Bind(0);
cube.draw();
skybox.unuse();
glDepthFunc(GL_LESS);
//glCullFace(GL_BACK);
//window.Update();
//window.SwapBuffers();

Creating and blending a dynamic texture in OpenGL

I need to render a sphere to a texture (done using a Framebuffer Object (FBO)), and then alpha blend that texture with the back buffer. So far I'm not doing any processing with the texture except clearing it at the beginning of every frame.
I should say that my scene consists of nothing but a planet in empty space, the sphere should appear next to or around the planet (kind of like a moon for now). When I render the sphere directly to the back buffer, it displays correctly; but when I do the intermediary step of rendering it to a texture and then blending that texture with the back buffer, the sphere only shows up when it is in front of the planet, the part that isn't in front is just "cut off":
I render the sphere using glutSolidSphere to a RGBA8 fullscreen texture that's bound to an FBO, making sure that every sphere pixel receives an alpha value of 1.0. I then pass the texture to a fragment shader program, and use this code to render a fullscreen quad - with the texture mapped onto it - to the backbuffer while alpha blending:
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glBegin(GL_QUADS);
glTexCoord2i(0, 1);
glVertex3i(-1, 1, -1); // TOP LEFT
glTexCoord2i(0, 0);
glVertex3i(-1, -1, -1); // BOTTOM LEFT
glTexCoord2i(1, 0);
glVertex3i( 1, -1, -1); // BOTTOM RIGHT
glTexCoord2i(1, 1);
glVertex3i( 1, 1, -1); // TOP RIGHT
glEnd();
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glEnable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
This is the shader code (taken from an FX file written in Cg):
sampler2D BlitSamp = sampler_state
{
MinFilter = LINEAR;
MagFilter = LINEAR;
MipFilter = LINEAR;
AddressU = Clamp;
AddressV = Clamp;
};
float4 blendPS(float2 texcoords : TEXCOORD0) : COLOR
{
float4 outColor = tex2D(BlitSamp, texcoords);
return outColor;
}
I don't even know whether this is a problem with the depth buffer or with alpha blending, I've tried a lot of combinations of enabling and disabling depth testing (with a depth buffer attached to the FBO) and alpha blending.
EDIT: I tried just rendering a blank fullscreen quad straight to the back buffer and even that was cropped around the planet's edges. For some reason, enabling depth testing for rendering the quad (that is, removing the lines glDisable(GL_DEPTH_TEST) and glEnable(GL_DEPTH_TEST) in the code above) got rid of the problem, but now everything but the planet and the sphere appears white:
I made sure (and could confirm) that the alpha channel of the texture is 0 at every pixel but the sphere's, so I don't understand where the whiteness could be introduced. (Would also still be interested in an explanation why enabling depth testing has this effect.)
I see two possible sources of error here:
1. Rendering to the FBO
If the missing pixels are not even present in the FBO after rendering, there must be some mechanism which discarded the corresponding fragments. The OpenGL pipeline includes four different types of fragment tests which can lead to fragments being discarded:
Scissor Test: Unlikely to be the cause, as the scissor test only affects a rectangular portion of the screen.
Alpha Test: Equally unlikely, as your fragments should all have the same alpha value.
Stencil Test: Also unlikely, unless you use stencil operations when drawing the background planet and copy over the stencil buffer from the back buffer to the FBO.
Depth Test: Same as for stencil test.
So there's a good chance that rendering into FBO is not the issue here. But just to be absolutely sure, you should read back your color attachment texture and dump it into a file for inspection. You can use the following function for that:
void TextureToFile(GLuint texture, const char* filename) {
glBindTexture(GL_TEXTURE_2D, texture);
GLint width, height;
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, &width);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, &height);
std::vector<GLubyte> pixels(3 * width * height);
glGetTexImage(GL_TEXTURE_2D, 0, GL_RGB, GL_UNSIGNED_BYTE, &pixels[0]);
std::ofstream out(filename, std::ios::out | std::ios::binary);
out << "P6\n"
<< width << '\n'
<< height << '\n'
<< 255 << '\n';
out.write(reinterpret_cast<const char*>(&pixels[0]), pixels.size());
}
The resulting file is a portable pixmap (.ppm). Be sure to unbind the FBO before reading back the texture.
2. Texture mapping
Assuming rendering into the FBO works as expected, the only other source of error is blending the texture over the previously rendered scene. There are two scenarios:
a) Fragments get discarded
The possible reasons for fragments to get discarded are the same as in 1.:
Scissor Test: Nope, affects rectangular areas only.
Alpha Test: Probably not, the texels covered sphere should all have the same alpha value.
Stencil Test: Might be the cause if you use stencil operations/stencil testing when drawing the background planet and the old stencil state is still active.
Depth Test: Might be the cause, but as you already disable it, it really shouldn't have any effect.
So you should make sure that all of these tests are disabled, especially the stencil test.
b) Wrong results from blending
Assuming all fragments reach the back buffer, blending is the only thing which could still cause the wrong result. With your blending function (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) the values in the back buffer are irrelevant for blending, and we assume that the alpha values in the texture are correct. So I see no reason for why blending should be the root cause here.
Conclusion
In conclusion, the only sensible cause for the observed result seems to be stencil testing. If it's not, I'm out of options :)
I solved it or at least came up with a work around.
First off, the whiteness stems from the fact that glClearColor had been set to glClearColor(1.0f, 1.0f, 1.0f, 1000.0f), so everything but the planet wasn't even written to in the end. I now copy the contents of the back buffer (which is the planet, the atmosphere, and the space around it) to the texture before rendering the sphere, and I render the atmosphere and space before that copy/blit operation, so they are included in it. Previously, everything but the planet itself was rendered after my quad, which - when using depth testing - apparently placed everything behind the quad, making it invisible.
The reference implementation of the effect I'm trying to achieve has always used this kind of blit operation in its code but I didn't think it was necessary for the effect. Now I feel like there might be no other way...

Untextured Quads appear dark

I just started working with OpenGL, but I ran into a problem after implementing a Font system.
My plan is to simply visualize several Pathfinding Algorithms.
Currently OpenGL gets set up like this (OnSize gets called once on window creation manually):
void GLWindow::OnSize(GLsizei width, GLsizei height)
{
// set size
glViewport(0,0,width,height);
// orthographic projection
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0,width,height,0.0,-1.0,1.0);
glMatrixMode(GL_MODELVIEW);
m_uiWidth = width;
m_uiHeight = height;
}
void GLWindow::InitGL()
{
// enable 2D texturing
glEnable(GL_TEXTURE_2D);
// choose a smooth shading model
glShadeModel(GL_SMOOTH);
// set the clear color to black
glClearColor(0.0, 0.0, 0.0, 0.0);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.0f);
}
In theory I don't need blending, because I will only use untextured Quads to visualize obstacles and line etc to draw paths... So everything will be untextured, except the fonts...
The Font Class has a push and pop function, that look like this (if I remember right my Font system is based on a NeHe Tutorial that I was following quite a while ago):
inline void GLFont::pushScreenMatrix()
{
glPushAttrib(GL_TRANSFORM_BIT);
GLint viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glOrtho(viewport[0],viewport[2],viewport[1],viewport[3], -1.0, 1.0);
glPopAttrib();
}
inline void GLFont::popProjectionMatrix()
{
glPushAttrib(GL_TRANSFORM_BIT);
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glPopAttrib();
}
So the Problem:
If I don't draw a Text I can see the Quads I want to draw, but they are quite dark, so there must be something wrong with my general OpenGL Matrix Properties.
If I draw Text (so the font related push and pop functions get called) I can't see any Quads.
The question:
How do I solve this problem and some background information why this happened would also be nice, because I am still a beginner/student, who just started.
If your quads are untextured, you will run into undefined behaviour. What will probably happen is that any previous texture will be used, and the colour at point (0,0) will be used, which could be what is causing them to be invisible.
Really, you need to disable texturing before trying to draw untextured quads using glDisable(GL_TEXTURE_2D). Again, if you don't, it'll just use the previous texture and texture co-ordinates, which without seeing your draw() loop, I'm assuming to be undefined.

OpenGL: How to optimize 2d rendering with multiple layers overlapping each other in 3d mode?

I know how to speed up rendering in 3d by simply rendering the nearest planes first.
But how do i get advantage of this type of method in 2d mode? I cant use depth testing because they are all in the same z-level.
So i was thinking if it could be speed up when i dont need to render the invisible parts of the layers "below". Is this possible?
Note that i am rendering in 3d mode, there may be 3d objects and 2d objects at the same time. So i cant switch to 2d render only, i always use 3d coordinates for everything. And i may rotate the camera as i wish, so camera-specific tricks arent acceptable.
Edit: i tried the method Ville suggested:
( http://img815.imageshack.us/img815/7857/zfighting.png )
but as you see, it will result in z-fighting.
The code i used for rendering that is here:
glDepthFunc(GL_LESS);
glEnable(GL_DEPTH_TEST);
glDisable(GL_TEXTURE_2D);
glDisable(GL_ALPHA_TEST);
glDisable(GL_POLYGON_OFFSET_FILL);
glColor4f(1,0,0,1);
DrawQuad(0, 0, 10, 10);
glColor4f(0,0,1,1);
DrawQuad(5, 5, 15, 15);
glDepthFunc(GL_LEQUAL);
It sounds like you are rendering all your "2D" objects on the same plane. You could render your 2D parts into an off-screen framebuffer with an orthographic projection and give them different Z values as datenwolf suggested. Then render the framebuffer texture into your main 3D scene.
What do you understand by 2D mode? Do you mean orthographic projection? Then I have good news: Depth testing works there perfectly as well. gluOrtho2D is basically the same like glOrtho(..., -1, 1); i.e. you have the Z range -1 ... 1 to spend.
EDIT due to comment:
It is perfectly possible to combine rendering several projections in one single frame:
void render_perspective_scene(void);
void render_ortho_scene(void);
void render_HUD();
void display()
{
float const aspect = (float)win_width/(float)win_height;
glViewport(0,0,win_width,win_height);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-aspect*near/lens, aspect*near/lens, -near/lens, near/lens, near, far);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
render_perspective_scene();
// just clear the depth buffer, so that everything that's
// drawn next will overlay the previously rendered scene.
glClear(GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-aspect*scale, aspect*scale, -scale, scale, 0, 1);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
render_ortho_scene();
// Same for the HUD, only that we render
// that one in pixel coordinates.
glClear(GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, win_width, 0, win_height, 0, 1);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
render_HUD();
}
Of course if you've fallen for those bad tutorials that place the projection matrix setup in the reshape handler you're of course mind blocked, to see that obvious solution.

Pre Z buffer pass with OpenGL?

How exactly can I do a Z buffer prepass with openGL.
I'v tried this:
glcolormask(0,0,0,0); //disable color buffer
//draw scene
glcolormask(1,1,1,1); //reenable color buffer
//draw scene
//flip buffers
But it doesn't work. after doing this I do not see anything. What is the better way to do this?
Thanks
// clear everything
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// z-prepass
glEnable(GL_DEPTH_TEST); // We want depth test !
glDepthFunc(GL_LESS); // We want to get the nearest pixels
glcolormask(0,0,0,0); // Disable color, it's useless, we only want depth.
glDepthMask(GL_TRUE); // Ask z writing
draw()
// real render
glEnable(GL_DEPTH_TEST); // We still want depth test
glDepthFunc(GL_LEQUAL); // EQUAL should work, too. (Only draw pixels if they are the closest ones)
glcolormask(1,1,1,1); // We want color this time
glDepthMask(GL_FALSE); // Writing the z component is useless now, we already have it
draw();
You're doing the right thing with glColorMask.
However, if you're not seeing anything, it's likely because you're using the wrong depth test function.
You need GL_LEQUAL, not GL_LESS (which happens to be the default).
glDepthFunc(GL_LEQUAL);
If i get you right, you are trying to disable the depth-test performed by OpenGL to determine culling. You are using color functions here, which does not make sense to me. I think you are trying to do the following:
glDisable(GL_DEPTH_TEST); // disable z-buffer
// draw scene
glEnable(GL_DEPTH_TEST); // enable z-buffer
// draw scene
// flip buffers
Do not forget to clear the depth buffer at the beginning of each pass.