I'm having a problem with a template ARRAY class. I have another Rational class that i added to this ARRAY class.
what i need it to do is take in rational numbers as fractions (exp 1/2) and sort them. i believe i need to overload the relational operators but thats where im stuck. do i over load them in the ARRAY class or the Rational Class.
below is my code
//generic.cpp
using namespace std;
template<class T>
void Quicksort (T& a, int first, int last);
template<class T>
int split (T& a, int first, int last);
template<class T>
void change (T& e1, T& e2);
template<class T>
void Mergesort(T& a, int first, int last);
template<class T>
void Merge(T& a, int first, int last);
int main()
{
int num;
Rational r1;
cout << "\nHow many rationals? ";
cin >> num;
Array<Rational> r2(num);
cout << "Enter the " << num << " rationals below:\n";
for (int i=0; i<num ; i++)
cin >> r2[i];
cout << "\nThank you!!\n";
cout << "Initially, the rationals are\n"
<< " r2 = " << r2 << "\n";
// Copy the original array and sort it using Quicksort
Array<Rational> r3(r2);
Quicksort(r3, 0, num-1);
cout << "\nElements sorted using quicksort:\n";
for (int i=0; i<num ; i++)
cout << r3[i]<< " ";
cout << "\n";
// Print original list of elements.
cout << "\nOriginal elements:\n";
for (int i=0; i<num ; i++)
cout << r2[i]<< " ";
cout << "\n";
// Copy original array and sort it using MergeSort
Array<Rational> r4(r2);
Mergesort(cm, 0, num-1);
cout << "\nElements sorted using mergesort:\n";
for (int i=0; i<num ; i++)
cout << r4[i]<< " ";
cout << "\n";
return 0;
}
template<class T>
int split (T& a, int first, int last)
{
T::value_type pivot = a[first];
int left = first;
int right = last;
while (left<right)
{
while (pivot < a[right]) //search from right for <=pivot
right--;
while (left<right &&(a[left]<pivot || a[left]==pivot))
left++;
if (left<right)
change(a[left],a[right]);
}
int pivotPosition = right;
a[first] = a[pivotPosition];
a[pivotPosition] = pivot;
return pivotPosition;
}
template<class T>
void Quicksort (T& a, int first, int last)
{
int pos;
if (first < last)
{
pos=split(a,first,last);
Quicksort(a,first,pos); //sort lsft sublist
Quicksort(a,pos+1,last); //sort right sublist
}
}
template<class T>
void change (T& e1, T& e2)
{
T tmp = e1;
e1 = e2;
e2 = tmp;
}
template<class T>
void Mergesort(T& a, int first, int last)
{
if (first < last)
{
int mid = (first + last) / 2;
Mergesort(a, first, mid);
Mergesort(a, mid+1, last);
Merge(a, first, last);
}
}
template<class T>
void Merge(T& a, int first, int last)
{
int mid = (first + last) / 2;
int one = 0, two = first, three = mid + 1;
Array<T::value_type> temp(a.get_size());
while (two <= mid && three <= last) // Neither sublist is done
if (a[two] < a[three]) // Value in first half is smaller
temp[one++] = a[two++];
else // Value in second half is smaller
temp[one++] = a[three++];
while (two <= mid) // Finish copying first half
temp[one++] = a[two++];
while (three <= last) // Finish copying second half
temp[one++] = a[three++];
for (one = 0, two = first; two <= last; a[two++] = temp[one++]);
}
.
//ARRAY.h
using namespace std;
template<class T> class Array
{
public:
typedef T value_type;
Array(int s);
Array(int l, int h);
Array(const Array& other);
~Array();
T& operator[](int index);
const T& operator[](int index) const;
int get_size() const {return arraySize;}
private:
int low;
int high;
int arraySize; //size of array
int offset; //to adjust back to an index of zero
T *array_;
void Copy(const Array&);
};
.
//rational.cpp
using namespace std;
Rational::Rational()
{
num = 0;
den = 1;
}
Rational::Rational(int n, int d)
{
if (d==0){
cout << "Error: division by zero." << endl;
exit(1);
}
num = n;
den = d;
simplify();
}
Rational& Rational::operator+=(const Rational& r)
{
num = (num * r.den) + (den * r.num);
den = den * r.den;
simplify();
return *this;
}
Rational& Rational::operator-=(const Rational& r)
{
num = (num * r.den) - (den * r.num);
den = den * r.den;
simplify();
return *this;
}
Rational& Rational::operator*=(const Rational& r)
{
num *= r.num;
den *= r.den;
simplify();
return *this;
}
Rational& Rational::operator/=(const Rational& r)
{
if (r.num == 0) {
cout << "Error: division by zero." << endl;
exit(1);
}
num *= r.den;
den *= r.num;
simplify();
return *this;
}
const Rational& Rational::operator= (const Rational& rightObj)
{
if (this != &rightObj)
{
num = rightObj.num;
den = rightObj.den;
}
return *this;
}
const Rational Rational::operator-() const
{
Rational answer(-num, den);
return answer;
}
const Rational operator+(const Rational& q, const Rational& r)
{
Rational answer = q ;
answer += r ;
return answer;
}
const Rational operator-(const Rational& q, const Rational& r)
{
Rational answer = q ;
answer -= r ;
return answer;
}
const Rational operator*(const Rational& q, const Rational& r)
{
Rational answer = q ;
answer *= r ;
return answer;
}
const Rational operator/(const Rational& q, const Rational& r)
{
Rational answer = q ;
answer /= r ;
return answer;
}
istream& operator>>(istream& in, Rational& r)
{
char ch;
in >> r.num >> ch >> r.den;
r.simplify();
return in;
}
ostream& operator<<(ostream& out, const Rational& r)
{
if (r.den == 1)
{
out << r.num;
}else
{
out << r.num << "/" << r.den;
}
return out;
}
.
//rational.h
using namespace std;
class Rational
{
friend ostream& operator<< (ostream&, const Rational&);
friend istream& operator>> (istream&, Rational&);
public:
Rational();
Rational(int, int);
double value() const;
Rational reciprocal() const;
Rational& operator+=(const Rational&);
Rational& operator-=(const Rational&);
Rational& operator*=(const Rational&);
Rational& operator/=(const Rational&);
const Rational& operator= (const Rational&);
const Rational operator-() const;
private:
int num;
int den;
void simplify();
};
const Rational operator+(const Rational&, const Rational&);
const Rational operator-(const Rational&, const Rational&);
const Rational operator*(const Rational&, const Rational&);
const Rational operator/(const Rational&, const Rational&);
If you are trying to compare two or more objects of class rational then the relational operators should be methods or friends of class rational. If you need to compare two or more objects of class array then the relational operators should be methods or friends of class array.
You overload them in the Rational class, if you're sorting using the < operator:
bool operator < (const Rational& rhs) const { // rhs = right hand side
// return true if 'this' less than 'rhs'
}
or
bool operator < (const Rational&lhs, const Rational& rhs) {
// return true if 'lhs' less than 'rhs'
}
if you choose to not use a member function
/A.B.
Related
I would like to calculate the sum of squares complex numbers in descending order by using three source codes(Complex2.h, Complex2.cpp, Vector3)
ex) (5+6i)^2 (3+4i)^2 (1+2i)^2....
I'm trying to add and change some codes in Vector3 to get the result, but stuck in the middle now..
Does anyone give some advice?
//Complex2.h
#ifndef COMPLEX2_H_INCLUDED
#define COMPLEX2_H_INCLUDED
#include <ostream>
using namespace std;
class Complex2 {
double rPart, iPart; // real part and imaginary part
public:
// operator
Complex2(double r = 0, double i = 0) : rPart(r), iPart(i) {}
Complex2 conj() const {
return Complex2(rPart, -iPart);
}
Complex2 operator+(const Complex2 &c) const;
Complex2 operator+(double r) const;
Complex2 operator-(const Complex2 &c) const;
Complex2 operator-(double r) const;
Complex2 operator*(const Complex2 &c) const;
Complex2 operator*(double r) const;
Complex2 operator/(const Complex2 &c) const;
Complex2 operator/(double r) const;
Complex2& operator+=(const Complex2 &c);
Complex2& operator-=(const Complex2 &c);
Complex2& operator*=(const Complex2 &c);
Complex2& operator/=(const Complex2 &c);
bool operator==(const Complex2 &c) const;
bool operator!=(const Complex2 &c) const;
double real() const { return rPart; }
double imag() const { return iPart; }
void display() const; // print complex value
friend Complex2 operator+(double r, const Complex2& c);
friend ostream& operator<<(ostream& os, const Complex2& c);
};
#endif
//Complex2.cpp
#include <iostream>
#include "Complex2.h"
using namespace std;
Complex2 Complex2::operator+(const Complex2 &c) const
{
return Complex2(rPart + c.rPart, iPart + c.iPart);
}
Complex2 Complex2::operator+(double r) const
{
return Complex2(rPart + r, iPart);
}
Complex2 Complex2::operator-(const Complex2 &c) const
{
return Complex2(rPart - c.rPart, iPart - c.iPart);
}
Complex2 Complex2::operator-(double r) const
{
return Complex2(rPart - r, iPart);
}
Complex2 Complex2::operator*(const Complex2 &c) const
{
return Complex2(rPart * c.rPart - iPart * c.iPart, rPart * c.iPart + iPart * c.rPart);
}
Complex2 Complex2::operator*(double r) const
{
return Complex2(rPart * r, iPart * r);
}
Complex2 Complex2::operator/(const Complex2 &c) const
{
double d = c.rPart * c.rPart + c.iPart * c.iPart;
return Complex2((rPart * c.rPart + iPart * c.iPart) / d, (iPart * c.rPart - rPart * c.iPart) / d);
}
Complex2 Complex2::operator/(double r) const
{
return Complex2(rPart / r, iPart / r);
}
Complex2& Complex2::operator+=(const Complex2 &c)
{
rPart += c.rPart; iPart += c.iPart;
return *this;
}
Complex2& Complex2::operator-=(const Complex2 &c)
{
rPart -= c.rPart; iPart -= c.iPart;
return *this;
}
Complex2& Complex2::operator*=(const Complex2 &c)
{
*this = *this * c;
return *this;
}
Complex2& Complex2::operator/=(const Complex2 &c)
{
*this = *this / c;
return *this;
}
bool Complex2::operator==(const Complex2 &c) const
{
return rPart == c.rPart && iPart == c.iPart;
}
bool Complex2::operator!=(const Complex2 &c) const
{
return rPart != c.rPart || iPart != c.iPart;
}
void Complex2::display() const
{
cout << "(" << rPart;
if (iPart > 0)
cout << "+j" << iPart;
else if (iPart < 0)
cout << "-j" << -iPart;
cout << ")";
}
Complex2 operator+(double r, const Complex2& c)
{
return Complex2(r + c.rPart, c.iPart);
}
ostream& operator<<(ostream& os, const Complex2& c)
{
os << "(" << c.rPart; // print real part
if (c.iPart > 0) // print imaginary part
os << "+j" << c.iPart;
else if (c.iPart < 0)
os << "-j" << -c.iPart;
cout << ")";
return os;
}
//Vector3.cpp
#include <iostream>
#include <vector>
#include <cstdlib>
#include <ctime>
#include <algorithm>
#include "Complex2.h";
using namespace std;
template<typename T> struct GREATER {
bool operator()(const T& a, const T& b) const {
return a > b;
}
};
int main()
{
srand((unsigned)time(NULL)); // Initialize random number generation
vector<Complex2> cv1(5);
cout << "vector1 : ";
for (auto &c : cv1) {
c = rand() % 100; // 0~99 random number generation
cout << c << " ";
}
sort(cv1.begin(), cv1.end(), GREATER<int>()); // sort algorithm in descending
cout << endl << "sorted vector1 : ";
for (auto c : cv1)
cout << c << " ";
cout << endl << endl;
vector<Complex2> cv2(5);
cout << "vector2 : ";
for (auto &c : cv2) {
c = rand() % 100; // 0~99 random number generation
cout << c << " ";
}
sort(cv2.begin(), cv2.end(), GREATER<int>()); // sort algorithm in descending
cout << endl << "sorted vector2 : ";
for (auto c : cv2)
cout << c << " ";
cout << endl << endl;
// vector for saving the merged result
vector<Complex2> cv3(cv1.size() + cv2.size());
// Save the result cv1 plus cv2 as cv3
merge(cv1.begin(), cv1.end(),
cv2.begin(), cv2.end(), cv3.begin(), GREATER<int>());
cout << "the result of merged vector1 and vector2 : ";
for (auto c : cv3)
cout << c << " ";
cout << endl << endl;
return 0;
}
To do this, all you actually need is to define operator>:
bool Complex2::operator>(const Complex2 &c) const
{
return rPart * rPart + iPart * iPart > c.rPart * c.rPart + c.iPart * c.iPart;
}
Then you can call std::sort and std::merge with:
std::sort(cv1.begin(), cv1.end(), std::greater<Complex2>());
std::merge(cv1.begin(), cv1.end(), cv2.begin(), cv2.end(),
cv3.begin(), std::greater<Complex2>());
Side note: why not use std::complex?
One thing which is very important here:
It is impossible to order complex numbers!!!
You are talking about ordering them, and you seem to be looking for some ordering function, but you need to know that, whatever the means of ordering complex numbers, the ordering must satisfy following argument:
Order(Number1, Number2) AND Order(Number2, Number3) => Order(Number1, Number3)
This expression can't be true, for any kind of ordering you might be inventing (at least for complex numbers, for real numbers ordering is simple), so your question about "descending order" of complex numbers cannot make sense.
The whole explanation can be found here.
I have so big problem. I write a program which is about complex numbers. This program read and write complex numbers, add them, etc.
He said that I should read that Why should I overload a C++ operator as a global function (STL does) and what are the caveats? and
1) I must create 5 operators which are member function of class and which have one argument: +, −, !, ++, −−. Then
2) I must create 5 operators which are member function of class and which two arguments: =,+=, −=, *=, /=; Then
3) I must create 8 operators which are global friend function +, −, *, /, ==, !=, <<, >> and take two parameters. I have no problem with the last one:
friend const Comp operator+(const Comp& x, const Comp& y)
{
Comp temp;
temp.real = x.real + y.real;
temp.imag = x.imag + y.imag;
return temp;
}
friend const Comp operator-(const Comp& x, const Comp& y)
{
Comp temp;
temp.real = x.real - y.real;
temp.imag = x.imag - y.imag;
return temp;
}
friend const Comp operator*(const Comp& x, const Comp& y)
{
Comp temp;
temp.real = x.real * y.real;
temp.imag = x.imag * y.imag;
return temp;
}
friend const Comp operator/(const Comp& x, const Comp& y)
{
Comp temp;
temp.real = x.real / y.real;
temp.imag = x.imag / y.imag;
return temp;
}
except this?????? What I should return here????? When I compare It should be bool yeah????
friend const Comp operator==(const Comp& x, const Comp& y)
{
}
friend const Comp operator!=(const Comp& x, const Comp& y)
{
}
I think that I found solution
friend bool operator==(const Comp& x, const Comp& y)
{
return (x.real == y.real && x.imag == y.imag);
}
friend bool operator!=(const Comp& x, const Comp& y)
{
return (x.real != y.real && x.imag != y.imag);
}
This is my whole code
#include <fstream>
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <cmath>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
using namespace std;
class Comp {
double real, imag;
public:
Comp(){
real;
imag;
}
double re(void) const
{
return real;
}
double im(void) const
{
return imag;
}
double mod(void) const
{
return sqrt(re()*re() + im()*im());
}
double arg(void) const
{
double faza;
if (im() >= 0)
faza = acos(re()/mod());
else
faza = 2*M_PI - acos(re()/mod());
return faza;
}
const Comp conj(void) const
{
Comp temp;
-im();
return temp;
}
~Comp(){}
/*
Comp operator+(const Comp& x);
Comp operator-(const Comp& x);
bool operator!(void);
const Comp& operator++();
const Comp operator++(int);
const Comp& operator--();
const Comp operator--(int);
Comp operator=(const Comp x);
Comp operator-=(const Comp& x);
Comp operator+=(const Comp& x);
Comp operator*=(const Comp& x);
Comp operator/=(const Comp& x);
*/
friend const Comp operator+(const Comp& x, const Comp& y)
{
Comp temp;
temp.real = x.real + y.real;
temp.imag = x.imag + y.imag;
return temp;
}
friend const Comp operator-(const Comp& x, const Comp& y)
{
Comp temp;
temp.real = x.real - y.real;
temp.imag = x.imag - y.imag;
return temp;
}
friend const Comp operator*(const Comp& x, const Comp& y)
{
Comp temp;
temp.real = x.real * y.real;
temp.imag = x.imag * y.imag;
return temp;
}
friend const Comp operator/(const Comp& x, const Comp& y)
{
Comp temp;
temp.real = x.real / y.real;
temp.imag = x.imag / y.imag;
return temp;
}
friend const Comp operator==(const Comp& x, const Comp& y)
{
Comp temp;
temp.real = x.real + y.real;
temp.imag = x.imag + y.imag;
return temp;
}
friend const Comp operator!=(const Comp& x, const Comp& y)
{
Comp temp;
temp.real = x.real + y.real;
temp.imag = x.imag + y.imag;
return temp;
}
friend std::ostream& operator<<(std::ostream& wart1, const Comp& a)
{
return wart1 <<fixed << setprecision(2) << '(' << a.re() << "," << a.im() << ')' << ' ' << endl;
}
friend std::istream& operator>>(std::istream& wart2, Comp& b){
char c;
return wart2>>c>>b.real>>c>>b.imag>>c;
}
};
int main(int argc, char* argv[])
{
ifstream read(argv[1]);
if (!read)
{ cerr << "Open error: " << argv[1] << endl; exit(1);}
ofstream write(argv[2]);
if(!write) { cerr << "Open error: " << argv[2] << endl; exit(2);}
read.clear();
read.seekg(0);
Comp x1;
read >> x1;
write << x1;
cout << x1;
Comp x2;
read >> x2;
write << x2;
cout << x2;
cout << x1.mod() << endl;
cout << x2.mod() << endl;
cout << x1.arg() << endl;
cout << x2.arg() << endl;
cout << x1.conj();
cout << x2.conj();
write << x2;
write << x1.mod() << endl;
write << x2.mod() << endl;
write << x1.arg() << endl;
write << x2.arg() << endl;
write << x1.conj();
write << x2.conj();
Comp sum;
sum = x1 + x2;
cout << sum;
write << sum;
Comp sub;
sub = x1 - x2;
cout << sub;
write << sub;
Comp mult;
mult = x1 * x2;
cout << mult;
write << mult;
Comp div;
div = x1 / x2;
cout << div;
write << div;
return 0;
}
If you implement operator== correctly (which you did in your block titled "I think that I found solution"), then you can leverage it for operator!=:
friend bool operator!=(const Comp& x, const Comp& y)
{
return !(x == y);
}
Your version was incorrect since it would report that they are not unequal if they had the same real part and a different imaginary part.
Also, in part (1) it refers to unary + and - (not binary versions which we get in part 3). So your first two declarations in the commented-out block are incorrect, they should be:
Comp operator+();
Comp operator-();
Having trouble with the overloaded IOstream in my C++ class, the code below is my header file, so there is no main(). The overloaded iostream seems to work with simple cin and cout calls, but when put into more complex ones, it throws no match for operato<< and operator>>.
/*
Provide three constructors Complex(a, b), Complex(a), and Complex(). Complex()
creates a Complex object for number 0 and Complex(a) creates a Complex object with 0 for b.
Also provide the getRealPart() and getImaginaryPart() functions for returning
the real and imaginary part of the complex number, respectively.
*/
/*
Overload the operators +, -, *, /, +=, -=, *=, /=, [ ], unary + and -, prefix ++ and --,
postfix ++ and --, <<, >>. Overload the operators +, -, *, / as nonmember functions.
*/
#include <iostream>
#include <sstream>
#include <string>
#include <algorithm>
using namespace std;
class Complex{
public:
Complex();
Complex(double a);
Complex(double a, double b);
void set_I(double input);
void set_R(double input);
double get_I_comp() const; //I accessor
double get_R_comp() const; // double accessor
double getRealPart();
double getImaginaryPart();
Complex operator+(Complex other);
Complex operator+(double other);
Complex operator-(Complex other);
Complex operator-(double other);
Complex operator*(Complex other);
Complex operator*(double other);
Complex operator/(Complex other);
Complex operator/(double other);
void operator++();
Complex& operator++(int dummy);
void operator+=(Complex other);
void operator+=(double other);
void operator-=(Complex other);
void operator-=(double other);
void operator*=(double other);
void operator*=(const Complex& other);
void operator/=(double other);
void operator/=(const Complex& other);
void operator- ();
void operator+ ();
double& operator[](int index);
Complex& operator<<(const int& intput);
Complex& operator>>(const string& output);
friend ostream& operator<<(ostream& out, Complex& target);
friend istream& operator>>(const istream& input, Complex& target);
std::string toString() //temporary solution right now
{
if (this->c_I != 0){
string ret = std::to_string(c_R);
ret = ret + " + ";
ret = ret + std::to_string(c_I);
ret = ret + " i \n";
return ret;
}
else{
string ret = std::to_string(c_R);
return ret;
}
}
Complex& add(double num);
Complex& add(Complex other);
Complex& subtract(double num);
Complex& subtract(Complex other);
Complex& multiply(double num);
Complex& multiply(Complex other);
Complex& divide(double num);
Complex& divide(Complex other);
Complex& abs();
private:
double c_I;
double c_R;
};
Complex::Complex() : c_I(0),c_R(0){ //works
}
Complex::Complex(double a) :c_I(0),c_R(a){ //works
}
Complex::Complex(double a, double b){ //works // at first I have the i as a and r as b, so thats why is fliped
this->c_I = b;
this->c_R = a;
}
double Complex::get_I_comp() const{
return c_I;
}
double Complex::get_R_comp() const{
return c_R;
}
double Complex::getImaginaryPart(){
return c_I;
}
double Complex::getRealPart(){
return c_R;
}
void Complex::set_I(double input){
c_I = input;
}
void Complex::set_R(double input){
c_R = input;
}
Complex Complex::operator+(Complex other){
Complex ret( (this->c_R + other.get_R_comp() ),(this->c_I + other.get_I_comp()));
return (ret);
}
Complex Complex::operator+(double other){
Complex ret(this->c_R + other,this->c_I);
return ret;
}
Complex Complex::operator-(Complex other){
Complex ret(this->c_R - other.get_R_comp(),this->c_I - other.get_I_comp());
return ret;
}
Complex Complex::operator-(double other){
Complex ret(this->c_R - other,this->c_I);
return ret;
}
Complex Complex::operator*(double other){
Complex ret(this->c_R * other ,this->c_I *other);
return ret;
}
Complex Complex::operator*(Complex other){
if((other.get_I_comp() != 0) && (other.get_R_comp() != 0) ){
Complex ret = other * (this->c_R);
Complex neu(-(other.get_I_comp()*this->c_I),other.get_R_comp()*this->c_I);
return (ret + neu);
}
if((other.get_I_comp() == 0 ) && (other.get_R_comp() != 0)){
Complex ret(this->c_R,this->c_I);
ret = ret * other.get_R_comp();
return ret;
}
else{
Complex ret((-((this->c_I)*other.get_I_comp())),(this->c_R)*other.get_I_comp());
return ret;
}
}
Complex Complex::operator/(double other){
if (other == 0) { // zero division error handler
throw runtime_error("Math error: Can't div by zero\n");
return 1;
}
if(other != 0){
Complex ret(this->c_R/other,this->c_I/other);
return ret;
}
}
//To divide a+bi by c+id we will perform the operation (ac+bd)/(c^2 + d^2) + (bc-ad)/(c^2 + d^2)i.
Complex Complex::operator/(Complex other){
if ((other.get_I_comp() != 0) && (other.get_R_comp() != 0)){
double first = ((this->c_R)*other.get_R_comp() + (this->c_I)*other.get_I_comp())/(other.get_R_comp()*other.get_R_comp() + other.get_R_comp()*other.get_R_comp());
double second = (this->c_I*other.get_R_comp() + c_R*other.get_I_comp())/(other.get_R_comp()*other.get_R_comp() + other.get_I_comp()*other.get_I_comp());
Complex ret(first,second);
return ret;
}
if((other.get_I_comp() == 0 ) && (other.get_R_comp() != 0)){
Complex ret(this->c_R,this->c_I);
ret = ret *(1/other.get_R_comp());
return ret;
}
else{
Complex ret(this->c_R,this->c_I);
Complex neu(1/other.get_I_comp());
ret = ret * neu;
return ret;
}
}
void Complex::operator++(){
c_R++;
}
Complex& Complex::operator++(int dummy){
Complex temp = *this;
++temp;
c_R++;
return temp;
}
void Complex::operator+=(double other){
c_R += other;
}
void Complex::operator+=(Complex other){
c_R += other.get_R_comp();
c_I += other.get_I_comp();
}
void Complex::operator-=(double other){
c_R +=(-1*other);
}
void Complex::operator-=(Complex other){
c_R -= other.get_R_comp();
c_I -= other.get_I_comp();
}
void Complex::operator*=(double other){
Complex& reference = *this; //pass by reference editing
reference = reference* other;
}
void Complex::operator*=(const Complex& rhs){
Complex& reference = *this;
reference = reference * rhs;
}
void Complex::operator/=(double other){
Complex& reference = *this;
reference = reference / other;
}
void Complex::operator/=(const Complex& rhs){
Complex& reference = *this;
reference = reference / rhs;
}
double& Complex::operator[](int index){
if(index <= 1){
return(index == 0 ? c_R : c_I);
}
else{
throw std::out_of_range ("index outta bound");
}
}
void Complex::operator-(){
c_R*=(-1);
c_I*=(-1);
}
void Complex::operator+(){
if(c_R<0){
c_R*=(-1);
}
if(c_I<0){
c_I*=(-1);
}
}
Complex& Complex::add(double num){
Complex& reference = *this;
reference = reference + num;
return reference;
}
Complex& Complex::add(Complex other){
Complex& reference = *this;
reference = reference + other;
return reference;
}
Complex& Complex::subtract(double num){
Complex& reference = *this;
reference = reference - num;
return reference;
}
Complex& Complex::subtract(Complex other){
Complex& reference = *this;
reference = reference - other;
return reference;
}
Complex& Complex::multiply(double num){
Complex& reference = *this;
reference = reference*num;
return reference;
}
Complex& Complex::multiply(Complex other){
Complex& reference = *this;
reference = reference * other;
return reference;
}
Complex& Complex::divide(double num){
Complex& reference = *this;
reference = reference/num;
return reference;
}
Complex& Complex::divide(Complex other){
Complex& reference = *this;
reference = reference/other;
return reference;
}
Complex& Complex::abs(){
Complex& reference = *this;
+reference;
return reference;
}
ostream& operator<<(ostream& out, Complex& target){
out << "Real : ";
out << " " << target.getRealPart();
out << " imaginary :";
out <<target.getImaginaryPart();
return out;
}
istream& operator>>(const istream& input, Complex& target) {
string use;
input>>use;
stringstream convert(use);
int x = 0;
convert>>x;
target.set_R(x);
return input;
}
when doing calls such as
cout << "(" << number1 << ")" << " + " << "(" << number2 << ") = " << (number1 + number2) << endl;
it throws the following exception:
main.cpp:19:69: error: no match for ‘operator<<’ (operand types are ‘std::basic_ostream’ and ‘Complex’)
cout << "(" << number1 << ")" << " + " << "(" << number2 << ") = " << (number1 + number2) << endl;
In file included from main.cpp:1:0:
Complex.h:276:10: note: candidate: std::ostream& operator<<(std::ostream&, Complex&)
ostream& operator<<(ostream& out, Complex& target){
You have to overload the following function too!.
ostream& operator<<(ostream& out, Complex&& target){
out << "Real : ";
out << " " << target.getRealPart();
out << " imaginary :";
out <<target.getImaginaryPart();
return out;
}
Non-const references don't bind to temporaries.
So ostream& operator<<(ostream& out, Complex& target) can't be used in code that looks like cout << Complex{1.0} or cout << (complex1 + complex2), because in both cases the second argument is a temporary Complex instance.
A possible fix is to use const references when you don't plan to modify the argument:
ostream& operator<<(ostream& out, Complex const& target)
Another solution (for small objects) is to accept it by-value:
ostream& operator<<(ostream& out, Complex target)
I'm having trouble with the syntax for a homework program. The prompt is to overload an inserter in such a way that it can properly execute the program fragment:
for (int i = 0; i < v.size(); ++i)
cout << v[i] << endl;
cout << endl;
So, this is what I have so far, but I still get an error at the cout << v[i] statement (Invalid operands to binary expression):
unsigned int seed;
struct node
{
int integer;
double value;
};
double random(unsigned int &seed);
void initialize_vector(vector<node> &v);
template<typename T>
void print_vector(const vector<T> &v);
template<typename T>
ostream &operator <<(ostream &out, const vector<T> &v);
template<typename T>
void output(ostream &out, const vector<T> &v);
int main()
{
vector<node> v(10);
initialize_vector(v);
print_vector(v);
return 0;
}
double random(unsigned int &seed)
{
const int MODULUS = 15749;
const int MULTIPLIER = 69069;
const int INCREMENT = 1;
seed = ((MULTIPLIER * seed) + INCREMENT) % MODULUS;
return double(seed) / double(MODULUS);
}
void initialize_vector(vector<node> &v)
{
for (int i = 0; i < v.size(); ++i)
{
v[i].integer = int (11 * random(seed));
v[i].value = double (11 * random(seed));
}
}
template<typename T>
void print_vector(const vector<T> &v)
{
for (int i = 0; i < v.size(); ++i)
cout << v[i] << endl;
cout << endl;
}
template<typename T>
ostream &operator <<(ostream &out, const vector<T> &v)
{
output(out, v);
return (out);
}
template<typename T>
void output(ostream &out, const vector<T> &v)
{
cout << v.integer;
cout << setprecision(2) << fixed << setw(6) << v.value;
}
I've tried passing node instead of T, along with passing with and without const references for the last 3 functions, so again I assume my syntax in the void output function is wrong somehow. Any help or points in the right direction would be greatly appreciated.
*Note: I can't change the ostream &operator function.
cout << v[i] << endl;
If v is a vector of node, then you need one more function to overload operator << for a node
ostream &operator <<(ostream &out, const node &n)
{
out << n.interger << " " << n.value;
return out;
}
So I am working on "TEMPLATES" and I'm required to make a 3 attempt of a function called PrintMax -it's obvious what it does-, to print the maximum element in an array of 3 elements, each attempt is for a different data type in this array -double/int/complex-. So I'm required to first, create the class Complex, and its required operator overloads, after that I use the PrintMax function as template function to work on the 3 types of arrays.
The problem here lies within the 3rd array of course, I can't write the elements of Complex into the array in this for ( a + bi ), because this is my class Complex :
class Complex
{
private :
int imaginary;
int real;
public:
Complex (int = 0, int = 0);
~Complex ();
int getImaginary();
int getReal();
void setImagniary(int i);
void setReal (int r);
bool operator > (Complex&);
};
You can notice, I overloaded operator > to check, but I also have a little problem besides not being able to write the elements in that way, the second problem is I can't -or sleepy and my brain is dying- calculate which is maximum in this array of Complex numbers :
// Input: Complex Array
// 1+3i, 2+4i, 3+3i
// Expected Output: 2+4i
So I want to assign them in the array with this form : Arr[3] = {1+3i, 2+4i, 3+3i};
Why is that the expected output, why not 3+3i ?
Thanks for reading ~
It seems to me that you are looking for something like:
template <typename T> void PrintMax(T array[])
{
// It is assumed that array has 3 elements in it.
std::cout <<
array[0] > array[1] ?
(array[0] > array[2] ? array[0] : array[2]) :
(array[1] > array[2] ? array[1] : array[2])
std::endl;
}
You could use something like the following. Note that there are no range checks in the code, it is just to demonstrate a way how you could solve your problem.
Plus i would suggest you to use a container (eg. std::vector) instead of plain arrays.
#include <algorithm>
#include <cmath>
#include <iostream>
class Complex {
private:
int imaginary;
int real;
public:
Complex(int r, int i) :
imaginary(i), real(r) {
}
~Complex() {
}
int getImaginary() const {
return imaginary;
}
int getReal() const {
return real;
}
void setImaginary(int i) {
imaginary = i;
}
void setReal(int r) {
real = r;
}
double getAbsolut() const {
return std::abs(std::sqrt(std::pow(imaginary, 2) + std::pow(real, 2)));
}
friend bool operator<(const Complex& lhs, const Complex& rhs);
friend std::ostream& operator<<(std::ostream& stream,
const Complex& complex);
};
bool operator<(const Complex& lhs, const Complex& rhs) {
return lhs.getAbsolut() < rhs.getAbsolut();
}
std::ostream& operator<<(std::ostream& stream, const Complex& complex) {
stream << "Complex(" << complex.real << "+" << complex.imaginary
<< "i)";
return stream;
}
template<int size, class T>
void getMax(const T arr[]) {
T max_value = arr[0];
for (size_t i = 1; i < size; ++i) {
max_value = std::max(max_value, arr[i]);
}
std::cout << "max: " << max_value << std::endl;
}
int main(int argc, char **argv) {
Complex arr_complex[] = { Complex(3, 3), Complex(2, 4), Complex(1, 3) };
int arr_int[] = { 3, 5, 1 };
double arr_double[] = { 2.3, 5.6, 9.1 };
getMax<3>(arr_complex);
getMax<3>(arr_int);
getMax<3>(arr_double);
return 0;
}