Good example of livelock? - concurrency

I understand what livelock is, but I was wondering if anyone had a good code-based example of it? And by code-based, I do not mean "two people trying to get past each other in a corridor". If I read that again, I'll lose my lunch.

Here's a very simple Java example of livelock where a husband and wife are trying to eat soup, but only have one spoon between them. Each spouse is too polite, and will pass the spoon if the other has not yet eaten.
public class Livelock {
static class Spoon {
private Diner owner;
public Spoon(Diner d) { owner = d; }
public Diner getOwner() { return owner; }
public synchronized void setOwner(Diner d) { owner = d; }
public synchronized void use() {
System.out.printf("%s has eaten!", owner.name);
}
}
static class Diner {
private String name;
private boolean isHungry;
public Diner(String n) { name = n; isHungry = true; }
public String getName() { return name; }
public boolean isHungry() { return isHungry; }
public void eatWith(Spoon spoon, Diner spouse) {
while (isHungry) {
// Don't have the spoon, so wait patiently for spouse.
if (spoon.owner != this) {
try { Thread.sleep(1); }
catch(InterruptedException e) { continue; }
continue;
}
// If spouse is hungry, insist upon passing the spoon.
if (spouse.isHungry()) {
System.out.printf(
"%s: You eat first my darling %s!%n",
name, spouse.getName());
spoon.setOwner(spouse);
continue;
}
// Spouse wasn't hungry, so finally eat
spoon.use();
isHungry = false;
System.out.printf(
"%s: I am stuffed, my darling %s!%n",
name, spouse.getName());
spoon.setOwner(spouse);
}
}
}
public static void main(String[] args) {
final Diner husband = new Diner("Bob");
final Diner wife = new Diner("Alice");
final Spoon s = new Spoon(husband);
new Thread(new Runnable() {
public void run() { husband.eatWith(s, wife); }
}).start();
new Thread(new Runnable() {
public void run() { wife.eatWith(s, husband); }
}).start();
}
}
Run the program and you'll get:
Bob: You eat first my darling Alice!
Alice: You eat first my darling Bob!
Bob: You eat first my darling Alice!
Alice: You eat first my darling Bob!
Bob: You eat first my darling Alice!
Alice: You eat first my darling Bob!
...
This will go on forever if uninterrupted. This is a livelock because both Alice and Bob are repeatedly asking each other to go first in an infinite loop (hence live). In a deadlock situation, both Alice and Bob would simply be frozen waiting on each other to go first — they won't be doing anything except wait (hence dead).

Flippant comments aside, one example which is known to come up is in code which tries to detect and handle deadlock situations. If two threads detect a deadlock, and try to "step aside" for each other, without care they will end up being stuck in a loop always "stepping aside" and never managing to move forwards.
By "step aside" I mean that they would release the lock and attempt to let the other one acquire it. We might imagine the situation with two threads doing this (pseudocode):
// thread 1
getLocks12(lock1, lock2)
{
lock1.lock();
while (lock2.locked())
{
// attempt to step aside for the other thread
lock1.unlock();
wait();
lock1.lock();
}
lock2.lock();
}
// thread 2
getLocks21(lock1, lock2)
{
lock2.lock();
while (lock1.locked())
{
// attempt to step aside for the other thread
lock2.unlock();
wait();
lock2.lock();
}
lock1.lock();
}
Race conditions aside, what we have here is a situation where both threads, if they enter at the same time will end up running in the inner loop without proceeding. Obviously this is a simplified example. A naiive fix would be to put some kind of randomness in the amount of time the threads would wait.
The proper fix is to always respect the lock heirarchy. Pick an order in which you acquire the locks and stick to that. For example if both threads always acquire lock1 before lock2, then there is no possibility of deadlock.

As there is no answer marked as accepted answer, I have attempted to create live lock example;
Original program was written by me in Apr 2012 to learn various concept of multithreading. This time I have modified it to create deadlock, race condition, livelock etc.
So let's understand the problem statement first;
Cookie Maker Problem
There are some ingredient containers: ChocoPowederContainer, WheatPowderContainer. CookieMaker takes some amount of powder from ingredient containers to bake a Cookie. If a cookie maker finds a container empty it checks for another container to save time. And waits until Filler fills the required container. There is a Filler who checks container on regular interval and fills some quantity if a container needs it.
Please check the complete code on github;
Let me explain you implementation in brief.
I start Filler as daemon thread. So it'll keep filling containers on regular interval. To fill a container first it locks the container -> check if it needs some powder -> fills it -> signal all makers who are waiting for it -> unlock container.
I create CookieMaker and set that it can bake up to 8 cookies in parallel. And I start 8 threads to bake cookies.
Each maker thread creates 2 callable sub-thread to take powder from containers.
sub-thread takes a lock on a container and check if it has enough powder. If not, wait for some time. Once Filler fills the container, it takes the powder, and unlock the container.
Now it completes other activities like: making mixture and baking etc.
Let's have a look in the code:
CookieMaker.java
private Integer getMaterial(final Ingredient ingredient) throws Exception{
:
container.lock();
while (!container.getIngredient(quantity)) {
container.empty.await(1000, TimeUnit.MILLISECONDS);
//Thread.sleep(500); //For deadlock
}
container.unlock();
:
}
IngredientContainer.java
public boolean getIngredient(int n) throws Exception {
:
lock();
if (quantityHeld >= n) {
TimeUnit.SECONDS.sleep(2);
quantityHeld -= n;
unlock();
return true;
}
unlock();
return false;
}
Everything runs fine until Filler is filling the containers. But if I forget to start the filler, or filler goes on unexpected leave, sub-threads keep changing their states to allow other maker to go and check the container.
I have also create a daemon ThreadTracer which keeps watch on thread states and deadlocks. This the output from console;
2016-09-12 21:31:45.065 :: [Maker_0:WAITING, Maker_1:WAITING, Maker_2:WAITING, Maker_3:WAITING, Maker_4:WAITING, Maker_5:WAITING, Maker_6:WAITING, Maker_7:WAITING, pool-7-thread-1:TIMED_WAITING, pool-7-thread-2:TIMED_WAITING, pool-8-thread-1:TIMED_WAITING, pool-8-thread-2:TIMED_WAITING, pool-6-thread-1:TIMED_WAITING, pool-6-thread-2:TIMED_WAITING, pool-5-thread-1:TIMED_WAITING, pool-5-thread-2:TIMED_WAITING, pool-1-thread-1:TIMED_WAITING, pool-3-thread-1:TIMED_WAITING, pool-2-thread-1:TIMED_WAITING, pool-1-thread-2:TIMED_WAITING, pool-4-thread-1:TIMED_WAITING, pool-4-thread-2:RUNNABLE, pool-3-thread-2:TIMED_WAITING, pool-2-thread-2:TIMED_WAITING]
2016-09-12 21:31:45.065 :: [Maker_0:WAITING, Maker_1:WAITING, Maker_2:WAITING, Maker_3:WAITING, Maker_4:WAITING, Maker_5:WAITING, Maker_6:WAITING, Maker_7:WAITING, pool-7-thread-1:TIMED_WAITING, pool-7-thread-2:TIMED_WAITING, pool-8-thread-1:TIMED_WAITING, pool-8-thread-2:TIMED_WAITING, pool-6-thread-1:TIMED_WAITING, pool-6-thread-2:TIMED_WAITING, pool-5-thread-1:TIMED_WAITING, pool-5-thread-2:TIMED_WAITING, pool-1-thread-1:TIMED_WAITING, pool-3-thread-1:TIMED_WAITING, pool-2-thread-1:TIMED_WAITING, pool-1-thread-2:TIMED_WAITING, pool-4-thread-1:TIMED_WAITING, pool-4-thread-2:TIMED_WAITING, pool-3-thread-2:TIMED_WAITING, pool-2-thread-2:TIMED_WAITING]
WheatPowder Container has 0 only.
2016-09-12 21:31:45.082 :: [Maker_0:WAITING, Maker_1:WAITING, Maker_2:WAITING, Maker_3:WAITING, Maker_4:WAITING, Maker_5:WAITING, Maker_6:WAITING, Maker_7:WAITING, pool-7-thread-1:TIMED_WAITING, pool-7-thread-2:TIMED_WAITING, pool-8-thread-1:TIMED_WAITING, pool-8-thread-2:TIMED_WAITING, pool-6-thread-1:TIMED_WAITING, pool-6-thread-2:TIMED_WAITING, pool-5-thread-1:TIMED_WAITING, pool-5-thread-2:TIMED_WAITING, pool-1-thread-1:TIMED_WAITING, pool-3-thread-1:TIMED_WAITING, pool-2-thread-1:TIMED_WAITING, pool-1-thread-2:TIMED_WAITING, pool-4-thread-1:TIMED_WAITING, pool-4-thread-2:TIMED_WAITING, pool-3-thread-2:TIMED_WAITING, pool-2-thread-2:RUNNABLE]
2016-09-12 21:31:45.082 :: [Maker_0:WAITING, Maker_1:WAITING, Maker_2:WAITING, Maker_3:WAITING, Maker_4:WAITING, Maker_5:WAITING, Maker_6:WAITING, Maker_7:WAITING, pool-7-thread-1:TIMED_WAITING, pool-7-thread-2:TIMED_WAITING, pool-8-thread-1:TIMED_WAITING, pool-8-thread-2:TIMED_WAITING, pool-6-thread-1:TIMED_WAITING, pool-6-thread-2:TIMED_WAITING, pool-5-thread-1:TIMED_WAITING, pool-5-thread-2:TIMED_WAITING, pool-1-thread-1:TIMED_WAITING, pool-3-thread-1:TIMED_WAITING, pool-2-thread-1:TIMED_WAITING, pool-1-thread-2:TIMED_WAITING, pool-4-thread-1:TIMED_WAITING, pool-4-thread-2:TIMED_WAITING, pool-3-thread-2:TIMED_WAITING, pool-2-thread-2:TIMED_WAITING]
You'll notice that sub-threads and changing their states and waiting.

A real (albeit without exact code) example is two competing processes live locking in an attempt to correct for a SQL server deadlock, with each process using the same wait-retry algorithm for retrying. While it's the luck of timing, I have seen this happen on separate machines with similar performance characteristics in response to a message added to an EMS topic (e.g. saving an update of a single object graph more than once), and not being able to control the lock order.
A good solution in this case would be to have competing consumers (prevent duplicate processing as high up in the chain as possible by partitioning the work on unrelated objects).
A less desirable (ok, dirty-hack) solution is to break the timing bad luck (kind of force differences in processing) in advance or break it after deadlock by using different algorithms or some element of randomness. This could still have issues because its possible the lock taking order is "sticky" for each process, and this takes a certain minimum of time not accounted for in the wait-retry.
Yet another solution (at least for SQL Server) is to try a different isolation level (e.g. snapshot).

I coded up the example of 2 persons passing in a corridor. The two threads will avoid each other as soon as they realise their directions are the same.
public class LiveLock {
public static void main(String[] args) throws InterruptedException {
Object left = new Object();
Object right = new Object();
Pedestrian one = new Pedestrian(left, right, 0); //one's left is one's left
Pedestrian two = new Pedestrian(right, left, 1); //one's left is two's right, so have to swap order
one.setOther(two);
two.setOther(one);
one.start();
two.start();
}
}
class Pedestrian extends Thread {
private Object l;
private Object r;
private Pedestrian other;
private Object current;
Pedestrian (Object left, Object right, int firstDirection) {
l = left;
r = right;
if (firstDirection==0) {
current = l;
}
else {
current = r;
}
}
void setOther(Pedestrian otherP) {
other = otherP;
}
Object getDirection() {
return current;
}
Object getOppositeDirection() {
if (current.equals(l)) {
return r;
}
else {
return l;
}
}
void switchDirection() throws InterruptedException {
Thread.sleep(100);
current = getOppositeDirection();
System.out.println(Thread.currentThread().getName() + " is stepping aside.");
}
public void run() {
while (getDirection().equals(other.getDirection())) {
try {
switchDirection();
Thread.sleep(100);
} catch (InterruptedException e) {}
}
}
}

C# version of jelbourn's code:
using System;
using System.Runtime.CompilerServices;
using System.Threading;
using System.Threading.Tasks;
namespace LiveLockExample
{
static class Program
{
public static void Main(string[] args)
{
var husband = new Diner("Bob");
var wife = new Diner("Alice");
var s = new Spoon(husband);
Task.WaitAll(
Task.Run(() => husband.EatWith(s, wife)),
Task.Run(() => wife.EatWith(s, husband))
);
}
public class Spoon
{
public Spoon(Diner diner)
{
Owner = diner;
}
public Diner Owner { get; private set; }
[MethodImpl(MethodImplOptions.Synchronized)]
public void SetOwner(Diner d) { Owner = d; }
[MethodImpl(MethodImplOptions.Synchronized)]
public void Use()
{
Console.WriteLine("{0} has eaten!", Owner.Name);
}
}
public class Diner
{
public Diner(string n)
{
Name = n;
IsHungry = true;
}
public string Name { get; private set; }
private bool IsHungry { get; set; }
public void EatWith(Spoon spoon, Diner spouse)
{
while (IsHungry)
{
// Don't have the spoon, so wait patiently for spouse.
if (spoon.Owner != this)
{
try
{
Thread.Sleep(1);
}
catch (ThreadInterruptedException e)
{
}
continue;
}
// If spouse is hungry, insist upon passing the spoon.
if (spouse.IsHungry)
{
Console.WriteLine("{0}: You eat first my darling {1}!", Name, spouse.Name);
spoon.SetOwner(spouse);
continue;
}
// Spouse wasn't hungry, so finally eat
spoon.Use();
IsHungry = false;
Console.WriteLine("{0}: I am stuffed, my darling {1}!", Name, spouse.Name);
spoon.SetOwner(spouse);
}
}
}
}
}

Consider a UNIX system having 50 process slots.
Ten programs are running, each of which having to create 6 (sub)processes.
After each process has created 4 processes, the 10 original processes and the 40 new processes have exhausted the table. Each of the 10 original processes now sits in an endless loop forking and failing – which is aptly the situation of a livelock. The probability of this happening is very little but it could happen.

One example here might be using a timed tryLock to obtain more than one lock and if you can't obtain them all, back off and try again.
boolean tryLockAll(Collection<Lock> locks) {
boolean grabbedAllLocks = false;
for(int i=0; i<locks.size(); i++) {
Lock lock = locks.get(i);
if(!lock.tryLock(5, TimeUnit.SECONDS)) {
grabbedAllLocks = false;
// undo the locks I already took in reverse order
for(int j=i-1; j >= 0; j--) {
lock.unlock();
}
}
}
}
I could imagine such code would be problematic as you have lots of threads colliding and waiting to obtain a set of locks. But I'm not sure this is very compelling to me as a simple example.

Python version of jelbourn's code:
import threading
import time
lock = threading.Lock()
class Spoon:
def __init__(self, diner):
self.owner = diner
def setOwner(self, diner):
with lock:
self.owner = diner
def use(self):
with lock:
"{0} has eaten".format(self.owner)
class Diner:
def __init__(self, name):
self.name = name
self.hungry = True
def eatsWith(self, spoon, spouse):
while(self.hungry):
if self != spoon.owner:
time.sleep(1) # blocks thread, not process
continue
if spouse.hungry:
print "{0}: you eat first, {1}".format(self.name, spouse.name)
spoon.setOwner(spouse)
continue
# Spouse was not hungry, eat
spoon.use()
print "{0}: I'm stuffed, {1}".format(self.name, spouse.name)
spoon.setOwner(spouse)
def main():
husband = Diner("Bob")
wife = Diner("Alice")
spoon = Spoon(husband)
t0 = threading.Thread(target=husband.eatsWith, args=(spoon, wife))
t1 = threading.Thread(target=wife.eatsWith, args=(spoon, husband))
t0.start()
t1.start()
t0.join()
t1.join()
if __name__ == "__main__":
main()

I modify the answer of #jelbourn.
When one of them notices that the other is hungry, he(her) should release the spoon and wait another notify, so a livelock happens.
public class LiveLock {
static class Spoon {
Diner owner;
public String getOwnerName() {
return owner.getName();
}
public void setOwner(Diner diner) {
this.owner = diner;
}
public Spoon(Diner diner) {
this.owner = diner;
}
public void use() {
System.out.println(owner.getName() + " use this spoon and finish eat.");
}
}
static class Diner {
public Diner(boolean isHungry, String name) {
this.isHungry = isHungry;
this.name = name;
}
private boolean isHungry;
private String name;
public String getName() {
return name;
}
public void eatWith(Diner spouse, Spoon sharedSpoon) {
try {
synchronized (sharedSpoon) {
while (isHungry) {
while (!sharedSpoon.getOwnerName().equals(name)) {
sharedSpoon.wait();
//System.out.println("sharedSpoon belongs to" + sharedSpoon.getOwnerName())
}
if (spouse.isHungry) {
System.out.println(spouse.getName() + "is hungry,I should give it to him(her).");
sharedSpoon.setOwner(spouse);
sharedSpoon.notifyAll();
} else {
sharedSpoon.use();
sharedSpoon.setOwner(spouse);
isHungry = false;
}
Thread.sleep(500);
}
}
} catch (InterruptedException e) {
System.out.println(name + " is interrupted.");
}
}
}
public static void main(String[] args) {
final Diner husband = new Diner(true, "husband");
final Diner wife = new Diner(true, "wife");
final Spoon sharedSpoon = new Spoon(wife);
Thread h = new Thread() {
#Override
public void run() {
husband.eatWith(wife, sharedSpoon);
}
};
h.start();
Thread w = new Thread() {
#Override
public void run() {
wife.eatWith(husband, sharedSpoon);
}
};
w.start();
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
h.interrupt();
w.interrupt();
try {
h.join();
w.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}

package concurrently.deadlock;
import static java.lang.System.out;
/* This is an example of livelock */
public class Dinner {
public static void main(String[] args) {
Spoon spoon = new Spoon();
Dish dish = new Dish();
new Thread(new Husband(spoon, dish)).start();
new Thread(new Wife(spoon, dish)).start();
}
}
class Spoon {
boolean isLocked;
}
class Dish {
boolean isLocked;
}
class Husband implements Runnable {
Spoon spoon;
Dish dish;
Husband(Spoon spoon, Dish dish) {
this.spoon = spoon;
this.dish = dish;
}
#Override
public void run() {
while (true) {
synchronized (spoon) {
spoon.isLocked = true;
out.println("husband get spoon");
try { Thread.sleep(2000); } catch (InterruptedException e) {}
if (dish.isLocked == true) {
spoon.isLocked = false; // give away spoon
out.println("husband pass away spoon");
continue;
}
synchronized (dish) {
dish.isLocked = true;
out.println("Husband is eating!");
}
dish.isLocked = false;
}
spoon.isLocked = false;
}
}
}
class Wife implements Runnable {
Spoon spoon;
Dish dish;
Wife(Spoon spoon, Dish dish) {
this.spoon = spoon;
this.dish = dish;
}
#Override
public void run() {
while (true) {
synchronized (dish) {
dish.isLocked = true;
out.println("wife get dish");
try { Thread.sleep(2000); } catch (InterruptedException e) {}
if (spoon.isLocked == true) {
dish.isLocked = false; // give away dish
out.println("wife pass away dish");
continue;
}
synchronized (spoon) {
spoon.isLocked = true;
out.println("Wife is eating!");
}
spoon.isLocked = false;
}
dish.isLocked = false;
}
}
}

Example:
Thread 1
top:
lock(L1);
if (try_lock(L2) != 0) {
unlock(L1);
goto top;
Thread 2
top:
lock(L2);
if (try_lock(L1) != 0) {
unlock(L2);
goto top;
The only difference is Thread 1 and Thread 2 try to acquire the locks in a different order. Livelock could happen as follows:
Thread 1 runs acquires L1, then a context switch occurs. Thread 2 runs acquires L2, then another context switch occurs. Thread 1 runs and cannot acquire L2, but before releasing L1 a context switch occurs. Thread 2 runs and cannot acquire L1, releases L2, and a context switch occurs. Thread 1 releases L1, and now we are basically back to the starting state, and in theory these steps could keep repeating forever.

Related

Modify data inside thread

I am writing unit tests for one of the classes I want to test. Function infFooLoop() what I want to test is executed in endless loop (request to stop it comes externally). My problem is I want to change the private variable state_ via setter in setState when function executes in separate thread asynchronously. Some simplified code example is here:
enum class State : int
{
Success = 1,
Failure = 2
};
class Foo
{
private:
State state_{State::Success};
bool stop_flag_{false};
public:
void setState(State state) { state_ = state; }
void infFooLoop(bool &start)
{
while (start)
{
std::cout << "While loop executes \n";
if (state_ == State::Failure)
{
stop_flag_ = true;
}
else if (stop_flag_)
{
std::cout << "Program stopped\n";
// Report error but for this example break
break;
}
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
}
};
int main()
{
Foo obj;
bool flag{true};
std::future<void> future = std::async(std::launch::async, [&](){ obj.infFooLoop(flag);});
// Try to change the data:
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
// I want to change data for `Failure` so stop_flag condition will be used
obj.setState(State::Failure);
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
// terminate loop
flag = false;
return 0;
}
state_ will be taken from external component and stop_flag_ is used to handle some corner-case here (in real it wont break the loop, just report error to different component).
I assume infFooLoop executes on a separate thread so I can't just call another function in a different thread to change this data. stop_flag_ is some internal variable used only in this one function so I want to leave it as simple as possible (do not introduce mutexes/atomic in Foo class only for tests). Can you give me some suggestions on what should I do here?

std::list::empty() returns true even though list is filled

I am having issues in a code having structure similar to the following minimum example. There is only one instance of MainClass. It makes new instance of Classlet on each call to its MainClass::makeclasslet()
I have multiple classlets writing to a single list buffer. After some time I need to copy/ dump the values from list buffer (FIFO).
The problem is that I am getting the following output in MainClass::clearbuffer()
>>>>>>>>>> 704 >>>>>>>>>>>>>>>>>>> Buffer size: 65363..... 1
I am unable to understand why the std::list::empty() returns true even when the buffer is locked with an atomic bool flag.
I have tried moving the call to clearbuffer() (in addval()) to the main application thread so that not each Classlet event calls clearbuffer().
I have also tried adding delay QThread::msleep(10); after setting busy = true;.
But some time after the application starts, I am getting the output shown above. Instead of popping all 65363+704 values in the list, it only popped 704 and broke the loop on list::isempty() being true (apparently).
class MainClass : public QObject {
Q_OBJECT
private:
std:: list<int> alist;
std::atomic<bool> busy;
MainClass() {
busy = false;
}
~MainClass() {
// delete all classlets
}
void makeclasslet() {
Classlet newclasslet = new Classlet();
// store the reference
}
void addval(int val) {
alist.push_back(val);
if (alist.size() > 100)
{
if (!busy)
{
clearbuffer();
}
}
}
void clearbuffer() {
if (!busy)
{
busy = true;
int i = 0;
while (!alist.empty())
{
i = i + 1;
// save alist.front() to file
alist.pop_front();
}
printf(">>>>>>>>>> %d >>>>>>>>>>> Buffer size: %d ..... %d\n", i, m_lstCSVBuffer.size(), m_lstCSVBuffer.empty());
busy = false;
}
}
}
class Classlet {
private:
Mainclass* parent;
void onsomeevent(int val) {
parent->addval(val);
}
}
I am using qt5.9 on Ubuntu 18.04. GCC/ G++ 7.5.0

Accessing retrofit 2 data outside on response?

I am working on two apps, in one of my app "A" i applied retrofit 2.
This was the method i used to retrieve data.
But here in on Response the data retrieved in response body can be set to activity variables and can be used outside this method without getting null values.
public void fetch_information() {
ApiInterface = ApiClient.getApiClient().create(Api.class);
Call<List<City>> call = ApiInterface.GetCities();
call.enqueue(new Callback<List<City>>() {
#Override
public void onResponse(Call<List<City>> call, Response<List<City>> response) {
citylist = new ArrayList<City>();
citylist = response.body();
cities = new String[citylist.size()];
citiesid = new String[citylist.size()];
for (int i = 0; i < citylist.size(); i++) {
cities[i] = citylist.get(i).getCityName();
citiesid[i] = citylist.get(i).getCityId();
}
city_adapter = new ArrayAdapter<String>(Pay_Payment_X.this, android.R.layout.simple_list_item_1, cities);
city_adapter.setDropDownViewResource(R.layout.spinner_dropdown_layout);
City_Spinner.setAdapter(city_adapter);
}
#Override
public void onFailure(Call<List<City>> call, Throwable t) {
Toast.makeText(getApplicationContext(), t.getMessage(), Toast.LENGTH_SHORT).show();
}
});
}
after applying this method and on debugging this method i will retain values of varaibles "cities" and "citiesid"out side onResponse.
But applying retrofit 2 similarly on another app "B", i did the same thing for retrieving data on different URL.
ApiUtil.getServiceClass().getAllPost().enqueue(new Callback<List<ApiObject>>() {
#Override
public void onResponse(Call<List<ApiObject>> call, Response<List<ApiObject>> response) {
if (response.isSuccessful()) {
List<ApiObject> postList = response.body();
try {
for (int i = 0; i < postList.size(); i++) {
String Name = postList.get(i).getGamesName();
mGamesName.add(Name);
}
} catch (Exception e) {
}
Log.d(TAG, "Returned count " + postList.size());
NewAdapter adapter = new NewAdapter(getApplicationContext(), postList);
recyclerView.setAdapter(adapter);
}
}
#Override
public void onFailure(Call<List<ApiObject>> call, Throwable t) {
//showErrorMessage();
Log.d(TAG, "error loading from API");
}
});
the data is retrievable inside onResponse but outside it shows null.
So here variables are not retaining values.
Why is this happening?
the only thing came to mind is retrieving data can take time while your code lines are being read and finding null values as data has not been received yet.
Also to mention in app "A" the data retrieved is huge but in app "B" only 3 objects with string values.But still in app"A" data is retrievable.
In app 2 did this for resolving my issue.
public void doRequest( final ApiCallback callback){
ApiUtil.getServiceClass().getAllPost().enqueue(new Callback<List<ApiObject>>() {
#Override
public void onResponse(Call<List<ApiObject>> call, Response<List<ApiObject>> response) {
if (response.isSuccessful()) {
List<ApiObject> postList = response.body();
callback.onSuccess(postList);
// apobject =response.body();
if(response.isSuccessful()) {
try {
for (int i = 0; i < postList.size(); i++) {
String Name = postList.get(i).getGamesName().toString();
mGamesName.add(Name);
}
} catch (Exception e) {
}
}
Log.d(TAG, "Returned count " + postList.size());
NewAdapter adapter = new NewAdapter(getApplicationContext(), postList);
recyclerView.setAdapter(adapter);
}
}
#Override
public void onFailure(Call<List<ApiObject>> call, Throwable t) {
//showErrorMessage();
Log.d(TAG, "error loading from API");
}
});
}
pass an interface
public interface ApiCallback{
void onSuccess(List<ApiObject> result);
}
and in on Create view of activity i called this
doRequest(new ApiCallback(){
#Override
public void onSuccess(List<ApiObject> result){
//here i can set variable values
}
});
the only thing came to mind is retrieving data can take time while your code lines are being read and finding null values as data has not been received yet.
That's entirely correct. Your call is finishing after you check the values. I'm going to go on a limb here and say that it's just a coincidence that it works on one app and not in the other (if they are actually doing it the same way)
When you call callback.onSuccess(postList); doesn't seem to be right either, because you haven't checked yet for success. This means that response.body() might be null and response.errorBody() will contain the body of the error.
If you'd move callback.onSuccess inside the if this would be fixed:
if(response.isSuccessful()) {
callback.onSuccess(response.body());
try {
for (int i = 0; i < postList.size(); i++) {
String Name = postList.get(i).getGamesName().toString();
mGamesName.add(Name);
}
} catch (Exception e) {
}
Last but not least, inside the onSuccess method is when you can use your global variables. Maybe it's better to stop using global variables and just use the callback parameters.

RxCpp: how to control subject observer's lifetime when used with buffer_with_time

The purpose of the following code is to have various classes publish data to an observable. Some classes will observe every data, some will observe periodically with buffer_with_time().
This works well until the program exits, then it crashes, probably because the observer using buffer_with_time() is still hanging on to some thread.
struct Data
{
Data() : _subscriber(_subject.get_subscriber()) { }
~Data() { _subscriber.on_completed(); }
void publish(std::string data) { _subscriber.on_next(data); }
rxcpp::observable<std::string> observable() { return _subject.get_observable(); }
private:
rxcpp::subjects::subject<std::string> _subject;
rxcpp::subscriber<std::string> _subscriber;
};
void foo()
{
Data data;
auto period = std::chrono::milliseconds(30);
auto s1 = data.observable()
.buffer_with_time(period , rxcpp::observe_on_new_thread())
.subscribe([](std::vector<std::string>& data)
{ std::cout << data.size() << std::endl; });
data.publish("test 1");
data.publish("test 2");
std::this_thread::sleep_for(std::chrono::milliseconds(100));
// hope to call something here so s1's thread can be joined.
// program crashes upon exit
}
I tried calling "s1.unsubscribe()", and various as_blocking(), from(), merge(), but still can't get the program to exit gracefully.
Note that I used "subjects" here because "publish" can then be called from different places (which can be from different threads). I am not sure if this is the best mechanism to do that, I am open to other ways to accomplish that.
Advice?
This is very close to working..
However, having the Data destructor complete the input while also wanting the subscription to block the exit of foo until input is completed makes this more complex.
Here is a way to ensure that foo blocks after Data destructs. This is using the existing Data contract.
void foo1()
{
rxcpp::observable<std::vector<std::string>> buffered;
{
Data data;
auto period = std::chrono::milliseconds(30);
buffered = data.observable()
.buffer_with_time(period , rxcpp::observe_on_new_thread())
.publish().ref_count();
buffered
.subscribe([](const std::vector<std::string>& data)
{ printf("%lu\n", data.size()); },
[](){printf("data complete\n");});
data.publish("test 1");
data.publish("test 2");
// hope to call something here so s1's thread can be joined.
// program crashes upon exit
}
buffered.as_blocking().subscribe();
printf("exit foo1\n");
}
Alternatively, the changing the shape of Data (add a complete method) would allow the following code:
struct Data
{
Data() : _subscriber(_subject.get_subscriber()) { }
~Data() { complete(); }
void publish(std::string data) { _subscriber.on_next(data); }
void complete() {_subscriber.on_completed();}
rxcpp::observable<std::string> observable() { return _subject.get_observable(); }
private:
rxcpp::subjects::subject<std::string> _subject;
rxcpp::subscriber<std::string> _subscriber;
};
void foo2()
{
printf("foo2\n");
Data data;
auto newthread = rxcpp::observe_on_new_thread();
auto period = std::chrono::milliseconds(30);
auto buffered = data.observable()
.buffer_with_time(period , newthread)
.tap([](const std::vector<std::string>& data)
{ printf("%lu\n", data.size()); },
[](){printf("data complete\n");});
auto emitter = rxcpp::sources::timer(std::chrono::milliseconds(0), newthread)
.tap([&](long) {
data.publish("test 1");
data.publish("test 2");
data.complete();
});
// hope to call something here so s1's thread can be joined.
// program crashes upon exit
buffered.combine_latest(newthread, emitter).as_blocking().subscribe();
printf("exit foo2\n");
}
I think that this better expresses the dependencies..

Synchronization between threads without overload

I can't find a good solution on how to implement a good mutual exclusion on a common resource between different threads.
I've got many methods (from a class) that do a lot of access to a database, this is one of them
string id = QUERYPHYSICAL + toString(ID);
wait();
mysql_query(connection, id.c_str());
MYSQL_RES *result = mysql_use_result(connection);
while (MYSQL_ROW row = mysql_fetch_row(result)){
Physical[ID - 1].ID = atoi(row[0]);
Physical[ID - 1].NAME = row[1];
Physical[ID - 1].PEOPLE = atoi(row[2]);
Physical[ID - 1].PIRSTATUS = atoi(row[3]);
Physical[ID - 1].LIGHTSTATUS = atoi(row[4]);
}
mysql_free_result(result);
signal();
The methods wait and signal do these things:
void Database::wait(void) {
while(!this->semaphore);
this->semaphore = false;
}
void Database::signal(void) {
this->semaphore = true;
}
But in this case my CPU goes to more than 190% of usage (reading from /proc/loadavg). What should I do to reduce CPU overload and let the system be more efficient? I'm on a 800MHz RaspberryPi
You can use pthread_mutex_t init at the constructor, lock for wait, unlock for signal, destroy at the destructor.
like this:
class Mutex{
pthread_mutex_t m;
public:
Mutex(){
pthread_mutex_init(&m,NULL);
}
~Mutex(){
pthread_mutex_destroy(&m);
}
void wait() {
pthread_mutex_lock(&m);
}
void signal() {
pthread_mutex_unlock(&m);
}
} ;
You also should check the return value of the pthread_mutex functions: 0 for success, non zero means error.