How to make a cross-platform c++ inline assembly language? - c++

I hacked a following code:
unsigned long long get_cc_time () volatile {
uint64 ret;
__asm__ __volatile__("rdtsc" : "=A" (ret) : :);
return ret;
}
It works on g++ but not on Visual Studio.
How can I port it ?
What are the right macros to detect VS / g++ ?

#if defined(_MSC_VER)
// visual c
#elif defined(__GCCE__)
// gcce
#else
// unknown
#endif
My inline assembler skills are rusty, but it works like:
__asm
{
// some assembler code
}
But to just use rdtsc you can just use intrinsics:
unsigned __int64 counter;
counter = __rdtsc();
http://msdn.microsoft.com/en-us/library/twchhe95.aspx

The specific problem OP had aside: I found a way to define a macro that works for both syntax versions:
#ifdef _MSC_VER
# define ASM(asm_literal) \
__asm { \
asm_literal \
};
#elif __GNUC__ || __clang__
# define ASM(asm_literal) \
"__asm__(\"" \
#asm_literal \
"\" : : );"
#endif
Unfortunately, because the preprocessor strips newlines before macro expansion, you have to surround each assembly statement with this macro.
float abs(float x) {
ASM( fld dword ptr[x] );
ASM( fabs );
ASM( fstp dword ptr[x] );
return x;
}
But please be aware that GCC and clang use AT&T/UNIX assembly synax but MSVC usees Intel assembly syntax (couldn't find any official source though). But fortunately GCC/clang can be configured to use Intel syntax, too. Either use __asm__(".intel_syntax noprefix");/ __asm__(".att_syntax prefix"); (be sure to reset the changes as it will affect all assembly generated from that point on, even the one generated by the compiler from the C source). This would leave us with a macro like this:
#ifdef _MSC_VER
# define ASM(asm_literal) \
__asm { \
asm_literal \
};
#elif __GNUC__ || __clang__
# define ASM(asm_literal) \
"__asm__(\".intel_syntax noprefix\");" \
"__asm__(\"" \
#asm_literal \
"\" : : );" \
"__asm__(\".att_syntax prefix\");"
#endif
Or you can also compile with GCC/clang using the -masm=intel flag, which switches the syntax globally.

There's a _MSC_VER macro in VC++ that is described as "Microsoft specific" in MSDN and presumably is not defined when code is compiled on other compilers. You can use #ifdef to determine what compiler it is and compile different code for gcc and VC++.
#ifdef _MSC_VER
//VC++ version
#else
//gcc version
#endif

Using the RDTSC instruction directly has some severe drawbacks:
The TSC isn't guaranteed to be synchronized on all CPUs, so if your thread/process migrates from one CPU core to another the TSC may appear to "warp" forward or backward in time unless you use thread/process affinity to prevent migration.
The TSC isn't guaranteed to advance at a constant rate, particularly on PCs that have power management or "C1 clock ramping" enabled. With multiple CPUs, this may increase the skew (for example, if you have one thread that is spinning and another that is sleeping, one TSC may advance faster than the other).
Accessing the TSC directly doesn't allow you to take advantage of HPET.
Using an OS timer interface is better, but still may have some of the same drawbacks depending on the implementation:
Linux: clock_gettime()
Windows: QueryPerformanceCounter()
Also note that Microsoft Visual C++ doesn't support inline assembly when targeting 64-bit processors, hence the __rdtsc() intrinsic that Virne pointed out.

Related

getting compiler used at run-time

I have written a benchmark and test it with different compilers (MinGW, Visual, 32-bit and 64-bit and want to print out the type of compiler used with the benchmark data.
I have found QSysInfo::buildCpuArchitecture() to get info wether 32-bit or 64-bit build has been performed.
How can I get the info about the compiler name or vendor?
I did the following:
// get compiler used
#if defined(_MSC_VER)
# define CPL "VC++"
#elif defined(__GNUC__)
# define CPL "Mingw"
#else
# define CPL "other CPL"
#endif
inline QString compilerInfo() { return( QString(CPL) + " " + (( QSysInfo::buildCpuArchitecture() == "i386")? "32-bit":"64-bit")); }

how to tell if 32 or 64 bit? [duplicate]

I'm looking for a way to reliably determine whether C++ code is being compiled in 32 vs 64 bit. We've come up with what we think is a reasonable solution using macros, but was curious to know if people could think of cases where this might fail or if there is a better way to do this. Please note we are trying to do this in a cross-platform, multiple compiler environment.
#if ((ULONG_MAX) == (UINT_MAX))
# define IS32BIT
#else
# define IS64BIT
#endif
#ifdef IS64BIT
DoMy64BitOperation()
#else
DoMy32BitOperation()
#endif
Thanks.
Unfortunately there is no cross platform macro which defines 32 / 64 bit across the major compilers. I've found the most effective way to do this is the following.
First I pick my own representation. I prefer ENVIRONMENT64 / ENVIRONMENT32. Then I find out what all of the major compilers use for determining if it's a 64 bit environment or not and use that to set my variables.
// Check windows
#if _WIN32 || _WIN64
#if _WIN64
#define ENVIRONMENT64
#else
#define ENVIRONMENT32
#endif
#endif
// Check GCC
#if __GNUC__
#if __x86_64__ || __ppc64__
#define ENVIRONMENT64
#else
#define ENVIRONMENT32
#endif
#endif
Another easier route is to simply set these variables from the compiler command line.
template<int> void DoMyOperationHelper();
template<> void DoMyOperationHelper<4>()
{
// do 32-bits operations
}
template<> void DoMyOperationHelper<8>()
{
// do 64-bits operations
}
// helper function just to hide clumsy syntax
inline void DoMyOperation() { DoMyOperationHelper<sizeof(size_t)>(); }
int main()
{
// appropriate function will be selected at compile time
DoMyOperation();
return 0;
}
Unfortunately, in a cross platform, cross compiler environment, there is no single reliable method to do this purely at compile time.
Both _WIN32 and _WIN64 can sometimes both be undefined, if the project settings are flawed or corrupted (particularly on Visual Studio 2008 SP1).
A project labelled "Win32" could be set to 64-bit, due to a project configuration error.
On Visual Studio 2008 SP1, sometimes the intellisense does not grey out the correct parts of the code, according to the current #define. This makes it difficult to see exactly which #define is being used at compile time.
Therefore, the only reliable method is to combine 3 simple checks:
1) Compile time setting, and;
2) Runtime check, and;
3) Robust compile time checking.
Simple check 1/3: Compile time setting
Choose any method to set the required #define variable. I suggest the method from #JaredPar:
// Check windows
#if _WIN32 || _WIN64
#if _WIN64
#define ENV64BIT
#else
#define ENV32BIT
#endif
#endif
// Check GCC
#if __GNUC__
#if __x86_64__ || __ppc64__
#define ENV64BIT
#else
#define ENV32BIT
#endif
#endif
Simple check 2/3: Runtime check
In main(), double check to see if sizeof() makes sense:
#if defined(ENV64BIT)
if (sizeof(void*) != 8)
{
wprintf(L"ENV64BIT: Error: pointer should be 8 bytes. Exiting.");
exit(0);
}
wprintf(L"Diagnostics: we are running in 64-bit mode.\n");
#elif defined (ENV32BIT)
if (sizeof(void*) != 4)
{
wprintf(L"ENV32BIT: Error: pointer should be 4 bytes. Exiting.");
exit(0);
}
wprintf(L"Diagnostics: we are running in 32-bit mode.\n");
#else
#error "Must define either ENV32BIT or ENV64BIT".
#endif
Simple check 3/3: Robust compile time checking
The general rule is "every #define must end in a #else which generates an error".
#if defined(ENV64BIT)
// 64-bit code here.
#elif defined (ENV32BIT)
// 32-bit code here.
#else
// INCREASE ROBUSTNESS. ALWAYS THROW AN ERROR ON THE ELSE.
// - What if I made a typo and checked for ENV6BIT instead of ENV64BIT?
// - What if both ENV64BIT and ENV32BIT are not defined?
// - What if project is corrupted, and _WIN64 and _WIN32 are not defined?
// - What if I didn't include the required header file?
// - What if I checked for _WIN32 first instead of second?
// (in Windows, both are defined in 64-bit, so this will break codebase)
// - What if the code has just been ported to a different OS?
// - What if there is an unknown unknown, not mentioned in this list so far?
// I'm only human, and the mistakes above would break the *entire* codebase.
#error "Must define either ENV32BIT or ENV64BIT"
#endif
Update 2017-01-17
Comment from #AI.G:
4 years later (don't know if it was possible before) you can convert
the run-time check to compile-time one using static assert:
static_assert(sizeof(void*) == 4);. Now it's all done at compile time
:)
Appendix A
Incidentially, the rules above can be adapted to make your entire codebase more reliable:
Every if() statement ends in an "else" which generates a warning or error.
Every switch() statement ends in a "default:" which generates a warning or error.
The reason why this works well is that it forces you to think of every single case in advance, and not rely on (sometimes flawed) logic in the "else" part to execute the correct code.
I used this technique (among many others) to write a 30,000 line project that worked flawlessly from the day it was first deployed into production (that was 12 months ago).
You should be able to use the macros defined in stdint.h. In particular INTPTR_MAX is exactly the value you need.
#include <cstdint>
#if INTPTR_MAX == INT32_MAX
#define THIS_IS_32_BIT_ENVIRONMENT
#elif INTPTR_MAX == INT64_MAX
#define THIS_IS_64_BIT_ENVIRONMENT
#else
#error "Environment not 32 or 64-bit."
#endif
Some (all?) versions of Microsoft's compiler don't come with stdint.h. Not sure why, since it's a standard file. Here's a version you can use: http://msinttypes.googlecode.com/svn/trunk/stdint.h
That won't work on Windows for a start. Longs and ints are both 32 bits whether you're compiling for 32 bit or 64 bit windows. I would think checking if the size of a pointer is 8 bytes is probably a more reliable route.
You could do this:
#if __WORDSIZE == 64
char *size = "64bits";
#else
char *size = "32bits";
#endif
Try this:
#ifdef _WIN64
// 64 bit code
#elif _WIN32
// 32 bit code
#else
if(sizeof(void*)==4)
// 32 bit code
else
// 64 bit code
#endif
Below code works fine for most current environments:
#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
#define IS64BIT 1
#else
#define IS32BIT 1
#endif
"Compiled in 64 bit" is not well defined in C++.
C++ sets only lower limits for sizes such as int, long and void *. There is no guarantee that int is 64 bit even when compiled for a 64 bit platform. The model allows for e.g. 23 bit ints and sizeof(int *) != sizeof(char *)
There are different programming models for 64 bit platforms.
Your best bet is a platform specific test. Your second best, portable decision must be more specific in what is 64 bit.
Your approach was not too far off, but you are only checking whether long and int are of the same size. Theoretically, they could both be 64 bits, in which case your check would fail, assuming both to be 32 bits. Here is a check that actually checks the size of the types themselves, not their relative size:
#if ((UINT_MAX) == 0xffffffffu)
#define INT_IS32BIT
#else
#define INT_IS64BIT
#endif
#if ((ULONG_MAX) == 0xfffffffful)
#define LONG_IS32BIT
#else
#define LONG_IS64BIT
#endif
In principle, you can do this for any type for which you have a system defined macro with the maximal value.
Note, that the standard requires long long to be at least 64 bits even on 32 bit systems.
People already suggested methods that will try to determine if the program is being compiled in 32-bit or 64-bit.
And I want to add that you can use the c++11 feature static_assert to make sure that the architecture is what you think it is ("to relax").
So in the place where you define the macros:
#if ...
# define IS32BIT
static_assert(sizeof(void *) == 4, "Error: The Arch is not what I think it is")
#elif ...
# define IS64BIT
static_assert(sizeof(void *) == 8, "Error: The Arch is not what I think it is")
#else
# error "Cannot determine the Arch"
#endif
Borrowing from Contango's excellent answer above and combining it with "Better Macros, Better Flags" from Fluent C++, you can do:
// Macro for checking bitness (safer macros borrowed from
// https://www.fluentcpp.com/2019/05/28/better-macros-better-flags/)
#define MYPROJ_IS_BITNESS( X ) MYPROJ_IS_BITNESS_PRIVATE_DEFINITION_##X()
// Bitness checks borrowed from https://stackoverflow.com/a/12338526/201787
#if _WIN64 || ( __GNUC__ && __x86_64__ )
# define MYPROJ_IS_BITNESS_PRIVATE_DEFINITION_64() 1
# define MYPROJ_IS_BITNESS_PRIVATE_DEFINITION_32() 0
# define MYPROJ_IF_64_BIT_ELSE( x64, x86 ) (x64)
static_assert( sizeof( void* ) == 8, "Pointer size is unexpected for this bitness" );
#elif _WIN32 || __GNUC__
# define MYPROJ_IS_BITNESS_PRIVATE_DEFINITION_64() 0
# define MYPROJ_IS_BITNESS_PRIVATE_DEFINITION_32() 1
# define MYPROJ_IF_64_BIT_ELSE( x64, x86 ) (x86)
static_assert( sizeof( void* ) == 4, "Pointer size is unexpected for this bitness" );
#else
# error "Unknown bitness!"
#endif
Then you can use it like:
#if MYPROJ_IS_BITNESS( 64 )
DoMy64BitOperation()
#else
DoMy32BitOperation()
#endif
Or using the extra macro I added:
MYPROJ_IF_64_BIT_ELSE( DoMy64BitOperation(), DoMy32BitOperation() );
Here are a few more ways to do what you want in modern C++.
You can create a variable that defines the number of system bits:
static constexpr size_t sysbits = (CHAR_BIT * sizeof(void*));
And then in C++17 you can do something like:
void DoMy64BitOperation() {
std::cout << "64-bit!\n";
}
void DoMy32BitOperation() {
std::cout << "32-bit!\n";
}
inline void DoMySysBitOperation()
{
if constexpr(sysbits == 32)
DoMy32BitOperation();
else if constexpr(sysbits == 64)
DoMy64BitOperation();
/*else - other systems. */
}
Or in C++20:
template<void* = nullptr>
// template<int = 32> // May be clearer, pick whatever you like.
void DoMySysBitOperation()
requires(sysbits == 32)
{
std::cout << "32-bit!\n";
}
template<void* = nullptr>
// template<int = 64>
void DoMySysBitOperation()
requires(sysbits == 64)
{
std::cout << "64-bit!\n";
}
template<void* = nullptr>
void DoMySysBitOperation()
/* requires(sysbits == OtherSystem) */
{
std::cout << "Unknown System!\n";
}
The template<...> is usually not needed, but since those functions will have the same mangling name, we must enforce the compiler to pick the correct ones. Also, template<void* = nullptr> may be confusing ( The other template may be better and more logically correct ), I only used it as a workaround to satisfy the compiler name mangling.
If you can use project configurations in all your environments, that would make defining a 64- and 32-bit symbol easy. So you'd have project configurations like this:
32-bit Debug
32-bit Release
64-bit Debug
64-bit Release
EDIT: These are generic configurations, not targetted configurations. Call them whatever you want.
If you can't do that, I like Jared's idea.
I'd place 32-bit and 64-bit sources in different files and then select appropriate source files using the build system.
I'm adding this answer as a use case and complete example for the runtime-check described in another answer.
This is the approach I've been taking for conveying to the end-user whether the program was compiled as 64-bit or 32-bit (or other, for that matter):
version.h
#ifndef MY_VERSION
#define MY_VERSION
#include <string>
const std::string version = "0.09";
const std::string arch = (std::to_string(sizeof(void*) * 8) + "-bit");
#endif
test.cc
#include <iostream>
#include "version.h"
int main()
{
std::cerr << "My App v" << version << " [" << arch << "]" << std::endl;
}
Compile and Test
g++ -g test.cc
./a.out
My App v0.09 [64-bit]

pure/const function attributes in different compilers

pure is a function attribute which says that a function does not modify any global memory.
const is a function attribute which says that a function does not read/modify any global memory.
Given that information, the compiler can do some additional optimisations.
Example for GCC:
float sigmoid(float x) __attribute__ ((const));
float calculate(float x, unsigned int C) {
float sum = 0;
for(unsigned int i = 0; i < C; ++i)
sum += sigmoid(x);
return sum;
}
float sigmoid(float x) { return 1.0f / (1.0f - exp(-x)); }
In that example, the compiler could optimise the function calculate to:
float calculate(float x, unsigned int C) {
float sum = 0;
float temp = C ? sigmoid(x) : 0.0f;
for(unsigned int i = 0; i < C; ++i)
sum += temp;
return sum;
}
Or if your compiler is clever enough (and not so strict about floats):
float calculate(float x, unsigned int C) { return C ? sigmoid(x) * C : 0.0f; }
How can I mark a function in such way for the different compilers, i.e. GCC, Clang, ICC, MSVC or others?
GCC: pure/const function attributes
llvm-gcc: supports the GCC pure/const attributes
Clang: seems to support it (I tried on a simple example with the GCC style attributes and it worked.)
ICC: seems to adopt the GCC attributes (Sorry, only a forum post.)
MSVC: Seems not to support it. (discussion)
In general, it seems that almost all compilers support the GCC attributes. MSVC is so far the only compiler which does not support them (and which also doesn't have any alternative).
First, it's useful to note that "const" is a more strict version of
"pure", so "pure" can be used as a fallback if a compiler doesn't
implement "const".
As others have mentioned, MSVC doesn't really have anything similar,
but a lot of compilers have adopted the GCC syntax, including many
which don't define __GNUC__ (and some which sometimes do and
sometimes don't, depending on flags).
GCC supports
pure
since 2.96+, and
const
since 2.5.0, in case you feel like checking the version.
Clang supports both; you can use __has_attribute(pure) and
__has_attribute(const) to detect them, but it's probably fine to
just rely on clang setting __GNUC__. This also includes compilers
based on clang like emscripten and XL C/C++ 13+.
Intel C/C++ Compiler supports both, but their documentation is
terrible so I have no idea when they were added. 16.0+ is certainly
safe.
Oracle Developer Studio 12.2+ supports both.
ARM C/C++ Compiler 4.1+ (and possibly older) supports both
pure
and
const
IBM XL C/C++ since at least 10.1.
TI 8.0+
TI 7.3+
with --gcc (detected with __TI_GNU_ATTRIBUTE_SUPPORT__) supports both.
PGI doesn't document it (AFAICT), but both attributes work (or are
at least silently ignored). 17.10+ is safe, though they've probably
been acceptable for much longer.
Of these, clang always defines __GNUC__ and friends (currently to
4.2, IIRC). Intel defines __GNUC__ by default (though it can be
suppressed with -no-gcc) as does PGI in C++ mode (but not in C
mode). The others you'll have to check for manually.
Oracle Developer Studio has also supported pragmas since it was known
as Forte Developer
6. They're
used a bit differently since they require you to specify the function
name:
/* pure: */
#pragma does_not_write_global_data (funcname)
/* const; SPARC-only until 12.2 */
#pragma no_side_effect (funcname)
TI 6.0+ (at least) supports a #pragma FUNC_IS_PURE; pragma in C++
mode only. In C mode, it's #pragma FUNC_IS_PURE(funcname);.
Most of this can be hidden behind a macro, which is what I've done in
Hedley:
#if \
HEDLEY_GNUC_HAS_ATTRIBUTE(pure,2,96,0) || \
HEDLEY_INTEL_VERSION_CHECK(16,0,0) || \
HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
HEDLEY_PGI_VERSION_CHECK(17,10,0)
# define HEDLEY_PURE __attribute__((__pure__))
#elif HEDLEY_TI_VERSION_CHECK(6,0,0) && defined(__cplusplus)
# define HEDLEY_NO_RETURN _Pragma("FUNC_IS_PURE;")
#else
# define HEDLEY_PURE
#endif
#if HEDLEY_GNUC_HAS_ATTRIBUTE(const, 2, 5, 0) || \
HEDLEY_INTEL_VERSION_CHECK(16,0,0) || \
HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
HEDLEY_PGI_VERSION_CHECK(17,10,0)
# define HEDLEY_CONST __attribute__((__const__))
#else
# define HEDLEY_CONST HEDLEY_PURE
#endif
This doesn't include the variants which would require the function
names as an argument, but it still covers the vast majority of
users, and it's safe to use everywhere.
If you don't want to use Hedley (it's a single public domain / CC0 header) it
shouldn't be too difficult to replace the internal version macros. If
you choose to do that, you should probably base your port on the
Hedley repo instead of this answer as I'm much more likely to keep it
up to date.
As an update for anyone reading this after all these years, starting with C++11 (and with continuous improvements with C++14, C++17 and C++20), the constexpr keyword was added to the language, letting you mark functions, methods, statements, templates, variables (pretty much everything) as absolutely and completely constant, allowing for nice optimization from the compiler.
constevel and constinit were also added in C++20 to further expand the compile-time capabilities of the language.

Determining 32 vs 64 bit in C++

I'm looking for a way to reliably determine whether C++ code is being compiled in 32 vs 64 bit. We've come up with what we think is a reasonable solution using macros, but was curious to know if people could think of cases where this might fail or if there is a better way to do this. Please note we are trying to do this in a cross-platform, multiple compiler environment.
#if ((ULONG_MAX) == (UINT_MAX))
# define IS32BIT
#else
# define IS64BIT
#endif
#ifdef IS64BIT
DoMy64BitOperation()
#else
DoMy32BitOperation()
#endif
Thanks.
Unfortunately there is no cross platform macro which defines 32 / 64 bit across the major compilers. I've found the most effective way to do this is the following.
First I pick my own representation. I prefer ENVIRONMENT64 / ENVIRONMENT32. Then I find out what all of the major compilers use for determining if it's a 64 bit environment or not and use that to set my variables.
// Check windows
#if _WIN32 || _WIN64
#if _WIN64
#define ENVIRONMENT64
#else
#define ENVIRONMENT32
#endif
#endif
// Check GCC
#if __GNUC__
#if __x86_64__ || __ppc64__
#define ENVIRONMENT64
#else
#define ENVIRONMENT32
#endif
#endif
Another easier route is to simply set these variables from the compiler command line.
template<int> void DoMyOperationHelper();
template<> void DoMyOperationHelper<4>()
{
// do 32-bits operations
}
template<> void DoMyOperationHelper<8>()
{
// do 64-bits operations
}
// helper function just to hide clumsy syntax
inline void DoMyOperation() { DoMyOperationHelper<sizeof(size_t)>(); }
int main()
{
// appropriate function will be selected at compile time
DoMyOperation();
return 0;
}
Unfortunately, in a cross platform, cross compiler environment, there is no single reliable method to do this purely at compile time.
Both _WIN32 and _WIN64 can sometimes both be undefined, if the project settings are flawed or corrupted (particularly on Visual Studio 2008 SP1).
A project labelled "Win32" could be set to 64-bit, due to a project configuration error.
On Visual Studio 2008 SP1, sometimes the intellisense does not grey out the correct parts of the code, according to the current #define. This makes it difficult to see exactly which #define is being used at compile time.
Therefore, the only reliable method is to combine 3 simple checks:
1) Compile time setting, and;
2) Runtime check, and;
3) Robust compile time checking.
Simple check 1/3: Compile time setting
Choose any method to set the required #define variable. I suggest the method from #JaredPar:
// Check windows
#if _WIN32 || _WIN64
#if _WIN64
#define ENV64BIT
#else
#define ENV32BIT
#endif
#endif
// Check GCC
#if __GNUC__
#if __x86_64__ || __ppc64__
#define ENV64BIT
#else
#define ENV32BIT
#endif
#endif
Simple check 2/3: Runtime check
In main(), double check to see if sizeof() makes sense:
#if defined(ENV64BIT)
if (sizeof(void*) != 8)
{
wprintf(L"ENV64BIT: Error: pointer should be 8 bytes. Exiting.");
exit(0);
}
wprintf(L"Diagnostics: we are running in 64-bit mode.\n");
#elif defined (ENV32BIT)
if (sizeof(void*) != 4)
{
wprintf(L"ENV32BIT: Error: pointer should be 4 bytes. Exiting.");
exit(0);
}
wprintf(L"Diagnostics: we are running in 32-bit mode.\n");
#else
#error "Must define either ENV32BIT or ENV64BIT".
#endif
Simple check 3/3: Robust compile time checking
The general rule is "every #define must end in a #else which generates an error".
#if defined(ENV64BIT)
// 64-bit code here.
#elif defined (ENV32BIT)
// 32-bit code here.
#else
// INCREASE ROBUSTNESS. ALWAYS THROW AN ERROR ON THE ELSE.
// - What if I made a typo and checked for ENV6BIT instead of ENV64BIT?
// - What if both ENV64BIT and ENV32BIT are not defined?
// - What if project is corrupted, and _WIN64 and _WIN32 are not defined?
// - What if I didn't include the required header file?
// - What if I checked for _WIN32 first instead of second?
// (in Windows, both are defined in 64-bit, so this will break codebase)
// - What if the code has just been ported to a different OS?
// - What if there is an unknown unknown, not mentioned in this list so far?
// I'm only human, and the mistakes above would break the *entire* codebase.
#error "Must define either ENV32BIT or ENV64BIT"
#endif
Update 2017-01-17
Comment from #AI.G:
4 years later (don't know if it was possible before) you can convert
the run-time check to compile-time one using static assert:
static_assert(sizeof(void*) == 4);. Now it's all done at compile time
:)
Appendix A
Incidentially, the rules above can be adapted to make your entire codebase more reliable:
Every if() statement ends in an "else" which generates a warning or error.
Every switch() statement ends in a "default:" which generates a warning or error.
The reason why this works well is that it forces you to think of every single case in advance, and not rely on (sometimes flawed) logic in the "else" part to execute the correct code.
I used this technique (among many others) to write a 30,000 line project that worked flawlessly from the day it was first deployed into production (that was 12 months ago).
You should be able to use the macros defined in stdint.h. In particular INTPTR_MAX is exactly the value you need.
#include <cstdint>
#if INTPTR_MAX == INT32_MAX
#define THIS_IS_32_BIT_ENVIRONMENT
#elif INTPTR_MAX == INT64_MAX
#define THIS_IS_64_BIT_ENVIRONMENT
#else
#error "Environment not 32 or 64-bit."
#endif
Some (all?) versions of Microsoft's compiler don't come with stdint.h. Not sure why, since it's a standard file. Here's a version you can use: http://msinttypes.googlecode.com/svn/trunk/stdint.h
That won't work on Windows for a start. Longs and ints are both 32 bits whether you're compiling for 32 bit or 64 bit windows. I would think checking if the size of a pointer is 8 bytes is probably a more reliable route.
You could do this:
#if __WORDSIZE == 64
char *size = "64bits";
#else
char *size = "32bits";
#endif
Try this:
#ifdef _WIN64
// 64 bit code
#elif _WIN32
// 32 bit code
#else
if(sizeof(void*)==4)
// 32 bit code
else
// 64 bit code
#endif
Below code works fine for most current environments:
#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
#define IS64BIT 1
#else
#define IS32BIT 1
#endif
"Compiled in 64 bit" is not well defined in C++.
C++ sets only lower limits for sizes such as int, long and void *. There is no guarantee that int is 64 bit even when compiled for a 64 bit platform. The model allows for e.g. 23 bit ints and sizeof(int *) != sizeof(char *)
There are different programming models for 64 bit platforms.
Your best bet is a platform specific test. Your second best, portable decision must be more specific in what is 64 bit.
Your approach was not too far off, but you are only checking whether long and int are of the same size. Theoretically, they could both be 64 bits, in which case your check would fail, assuming both to be 32 bits. Here is a check that actually checks the size of the types themselves, not their relative size:
#if ((UINT_MAX) == 0xffffffffu)
#define INT_IS32BIT
#else
#define INT_IS64BIT
#endif
#if ((ULONG_MAX) == 0xfffffffful)
#define LONG_IS32BIT
#else
#define LONG_IS64BIT
#endif
In principle, you can do this for any type for which you have a system defined macro with the maximal value.
Note, that the standard requires long long to be at least 64 bits even on 32 bit systems.
People already suggested methods that will try to determine if the program is being compiled in 32-bit or 64-bit.
And I want to add that you can use the c++11 feature static_assert to make sure that the architecture is what you think it is ("to relax").
So in the place where you define the macros:
#if ...
# define IS32BIT
static_assert(sizeof(void *) == 4, "Error: The Arch is not what I think it is")
#elif ...
# define IS64BIT
static_assert(sizeof(void *) == 8, "Error: The Arch is not what I think it is")
#else
# error "Cannot determine the Arch"
#endif
Borrowing from Contango's excellent answer above and combining it with "Better Macros, Better Flags" from Fluent C++, you can do:
// Macro for checking bitness (safer macros borrowed from
// https://www.fluentcpp.com/2019/05/28/better-macros-better-flags/)
#define MYPROJ_IS_BITNESS( X ) MYPROJ_IS_BITNESS_PRIVATE_DEFINITION_##X()
// Bitness checks borrowed from https://stackoverflow.com/a/12338526/201787
#if _WIN64 || ( __GNUC__ && __x86_64__ )
# define MYPROJ_IS_BITNESS_PRIVATE_DEFINITION_64() 1
# define MYPROJ_IS_BITNESS_PRIVATE_DEFINITION_32() 0
# define MYPROJ_IF_64_BIT_ELSE( x64, x86 ) (x64)
static_assert( sizeof( void* ) == 8, "Pointer size is unexpected for this bitness" );
#elif _WIN32 || __GNUC__
# define MYPROJ_IS_BITNESS_PRIVATE_DEFINITION_64() 0
# define MYPROJ_IS_BITNESS_PRIVATE_DEFINITION_32() 1
# define MYPROJ_IF_64_BIT_ELSE( x64, x86 ) (x86)
static_assert( sizeof( void* ) == 4, "Pointer size is unexpected for this bitness" );
#else
# error "Unknown bitness!"
#endif
Then you can use it like:
#if MYPROJ_IS_BITNESS( 64 )
DoMy64BitOperation()
#else
DoMy32BitOperation()
#endif
Or using the extra macro I added:
MYPROJ_IF_64_BIT_ELSE( DoMy64BitOperation(), DoMy32BitOperation() );
Here are a few more ways to do what you want in modern C++.
You can create a variable that defines the number of system bits:
static constexpr size_t sysbits = (CHAR_BIT * sizeof(void*));
And then in C++17 you can do something like:
void DoMy64BitOperation() {
std::cout << "64-bit!\n";
}
void DoMy32BitOperation() {
std::cout << "32-bit!\n";
}
inline void DoMySysBitOperation()
{
if constexpr(sysbits == 32)
DoMy32BitOperation();
else if constexpr(sysbits == 64)
DoMy64BitOperation();
/*else - other systems. */
}
Or in C++20:
template<void* = nullptr>
// template<int = 32> // May be clearer, pick whatever you like.
void DoMySysBitOperation()
requires(sysbits == 32)
{
std::cout << "32-bit!\n";
}
template<void* = nullptr>
// template<int = 64>
void DoMySysBitOperation()
requires(sysbits == 64)
{
std::cout << "64-bit!\n";
}
template<void* = nullptr>
void DoMySysBitOperation()
/* requires(sysbits == OtherSystem) */
{
std::cout << "Unknown System!\n";
}
The template<...> is usually not needed, but since those functions will have the same mangling name, we must enforce the compiler to pick the correct ones. Also, template<void* = nullptr> may be confusing ( The other template may be better and more logically correct ), I only used it as a workaround to satisfy the compiler name mangling.
If you can use project configurations in all your environments, that would make defining a 64- and 32-bit symbol easy. So you'd have project configurations like this:
32-bit Debug
32-bit Release
64-bit Debug
64-bit Release
EDIT: These are generic configurations, not targetted configurations. Call them whatever you want.
If you can't do that, I like Jared's idea.
I'd place 32-bit and 64-bit sources in different files and then select appropriate source files using the build system.
I'm adding this answer as a use case and complete example for the runtime-check described in another answer.
This is the approach I've been taking for conveying to the end-user whether the program was compiled as 64-bit or 32-bit (or other, for that matter):
version.h
#ifndef MY_VERSION
#define MY_VERSION
#include <string>
const std::string version = "0.09";
const std::string arch = (std::to_string(sizeof(void*) * 8) + "-bit");
#endif
test.cc
#include <iostream>
#include "version.h"
int main()
{
std::cerr << "My App v" << version << " [" << arch << "]" << std::endl;
}
Compile and Test
g++ -g test.cc
./a.out
My App v0.09 [64-bit]

Is it safe to use fastcall in a shared library?

For example, let's say I have a function that will swap bytes in a 32 bit value for you:
uint32_t byte_swap(uint32_t in);
Well it seems silly to push that 32-bit value onto the stack and pop it off again, especially if we're going to be calling this function a lot, so let's pass it in through ECX:
#if __FASTCALL_SUPPORTED_ /* Whatever this may be */
#define FASTCALL __attribute__((fastcall))
#else
#define FASTCALL
#endif
uint32_t FASTCALL byte_swap(uint32_t in);
Now my question is, is it safe to compile that function into a shared library for distribution? If the user uses a different compiler to compile their program and links against this, will the function still be called properly?
__attribute__((fastcall)) is a gcc extension; as such, it may not be usable if the caller is not using gcc as well. Moreover, in the sample you gave, if __FASTCALL_SUPPORTED_ is not defined, you'll end up with a call with the wrong calling convention - bad idea.
One way to deal with this may be using a fallback wrapper. In your .c file:
#include "foo.h"
uint32_t FASTCALL byte_swap(uint32_t in) {
/* code ... */
}
uint32_t byte_swap__slowcall(uint32_t in) {
return byte_swap(in);
}
And in your .h file:
#if __FASTCALL_SUPPORTED_ /* Whatever this may be */
#define FASTCALL __attribute__((fastcall))
#else
#define FASTCALL
#define byte_swap byte_swap__slowcall
#endif
uint32_t FASTCALL byte_swap(uint32_t in);
Also, note that on Linux, a fast byteswap implementation is available in <byteswap.h> as bswap_32. On x86 machines, it will compile down to inline assembler, and a single instruction on high enough -march= settings.