I have a C program that I need to interface with a C++ library (ROS). Normally, it's not too difficult to interface C code with C++ code with a wrapper using extern "C" and using the C++ compiler to link, but I've never had to do it where main was in the C portion.
The C++ FAQ indicates that this is a bad thing:
Here are some high points (though some compiler-vendors might not require all these; check with your compiler-vendor’s documentation):
You must use your C++ compiler when compiling main() (e.g., for static initialization)
But I see another source saying it should be okay these days:
At one time, most C++ compilers required that function main be compiled by the C++ compiler. That requirement is not common today, ...
Why would it matter whether main is in the C portion or the C++ portion? How much trouble would I be in if I try to link code where it's in the C portion using common linkers today (mainly GCC's and Clang's)?
One easy way to work around this is to rename your C main() and call it from a new C++ main()
As in:
// in ypur current C main module
int my_c_main(int argc, char* argv[]) /* renamed, was main() */
{
/* ... */
]
// in a c++ module...
int main(int argc, char* argv[])
{
extern "C" int my_c_main(int argc, char* argv[]);
// if your c main() requires environment variables passed in envp,
// You can allocate space for strings and an array here and pass
// the environment variables you'll need, as the third parameter
// to my_c_main(), or pass environ, if your system has
// it defined in unistd.h
return my_c_main(argc, argv);
}
I have code
#include <stdlib.h>
void *gg = malloc(55);
int main(int argc, char **argv)
{
return 0;
}
gcc fail to compile but g++ works.
So, I just want to make sure that the malloc calling happens before main is exectued.
What you do is allowed in C++. The C++ standard has a whole section on "Dynamic initialization of non-local variables".
Looking at the assembly generated by GCC for your code is instructive:
Here the initializers are called through two generated functions, _GLOBAL__sub_I_gg (which is called before main) which in turn calls __static_initialization_and_destruction_0.
It is within the body of the latter function you will find the call to malloc.
I'm writing a cross-platform application and need to pass across argc and argv from Objective-C in Xcode to my generic argument handler class in C++. I have a global pointer to this handler class which I set with a new command, but because I can't do new in Objective-C I'm trying the following:
I have a header file called MacCommandLineArgs.h which contains only the following:
static int cmdlArgc = 0;
static const char** cmdlArgv = NULL;
I then set these from within main.m:
int main(int argc, char *argv[])
{
cmdlArgc = argc;
cmdlArgv = (const char**)argv;
return NSApplicationMain(argc, (const char **)argv);
}
Once the Objective-C++ section of the application has been entered, I try to read back these global variables in order to pass them to the pure-C++ class:
int argc = cmdlArgc;
const char** argv = cmdlArgv;
globalCommandLineArgs = new CCommandLineArgs(argc, argv);
When stepping through with the debugger, cmdlArgc and cmdlArgv show up as valid data but argc and argv are still 0 and NULL after the assignment. What am I doing wrong here?
You don't show how cmdlArgc and cmdlArgv are declared; it's surely in a header file, but what does it look like?.
Nothing outside of main.m will have access to those variables as they have been defined static, which leads me to wonder why you aren't getting linker errors. I have concluded that the declaration of the of cmdlArgc and cmdArgv is something like this:
int cmdlArgc;
const char** cmdlArgv;
rather than this:
extern int cmdlArgc;
extern const char** cmdlArgv;
So every implementation file that includes the header will get their own copy, which is why it's 0/NULL.
The solution is to drop the use of static in main.m and start using extern in the header.
However it's still an ugly pattern and I would think the very best solution is to rename main.m to main.mm and initialise CCommandLineArgs in main(), which is both clean and simple.
What's wrong with this one? The compiler says: Declaration syntax error.
Source File:
#include<iostream>
using namespace std;
int main(int argc, char **argv) {
void printBinary(const unsigned char val) {
//printBinary() func. outputs byte in binary
for(int i=7;i>=0;i--)
if(val & (1<<i)) //generates a single bit with offset position
std::cout<<"1";
else
std::cout<<"0"
}
return 0;
}///:~
Header file:
void printBinary(const unsigned char val);
///:~
You are trying to define one function inside another function. This is illegal. Why did you place the definition of printBinary into the body of main?
Aside from the lambda functions in C++11, C++ has no such feature as local functions. All functions "live" in namespace scope.
The only workaround for this rule is inline member function definitions for local classes, although it does not produce a local function either.
You can't define a function in another function's (in this case, main) body.
//EDIT: Unless, of course, it's lambda.
In order to ensure that some initialization code runs before main (using Arduino/avr-gcc) I have code such as the following:
class Init {
public:
Init() { initialize(); }
};
Init init;
Ideally I'd like to be able to simply write:
initialize();
but this doesn't compile...
Is there a less verbose way to achieve the same effect?
Note: the code is part of an Arduino sketch so the main function is automatically generated and cannot be modified (for example to call initialize before any other code).
Update: ideally the initialization would be performed in the setup function, but in this case there is other code depending on it which occurs before main.
You can use GCC's constructor attribute to ensure that it gets called before main():
void Init(void) __attribute__((constructor));
void Init(void) { /* code */ } // This will always run before main()
You can make the above very slightly shorter by giving "initialize" a return type, and using that to initialize a global variable:
int initialize();
int dummy = initialize();
However, you need to be careful with this, the standard does not guarantee that the above initialization (or the one for your init object) takes place before main is run (3.6.2/3):
It is implementation-defined whether or not the dynamic initialization (8.5, 9.4, 12.1, 12.6.1) of an object of namespace scope is done before the first statement of main.
The only thing that is guaranteed is that the initialization will take place before 'dummy' is ever used.
A more intrusive option (if it's possible) might be to use "-D main=avr_main" in your makefile. You could then add your own main as follows:
// Add a declaration for the main declared by the avr compiler.
int avr_main (int argc, const char * argv[]); // Needs to match exactly
#undef main
int main (int argc, const char * argv[])
{
initialize ();
return avr_main (argc, argv);
}
At least here you're guaranteed that the initialization will take place when you expect.
Here's a somewhat evil method of achieving this:
#include <stdio.h>
static int bar = 0;
int __real_main(int argc, char **argv);
int __wrap_main(int argc, char **argv)
{
bar = 1;
return __real_main(argc, argv);
}
int main(int argc, char **argv)
{
printf("bar %d\n",bar);
return 0;
}
Add the following to the linker flags: --wrap main
eg.
gcc -Xlinker --wrap -Xlinker main a.c
The linker will replace all calls to main with calls to __wrap_main, see the ld man page on --wrap
Your solution in simple and clean. What you can additionally do is to put your code in anonymous namespace. I don't see any need to make it better than that :)
If you are using the Arduino environment, is there any reason you can't place it in the setup method?
Of course, this is after the Arduino-specific hardware setup, so if you have such low-level stuff that it really has to go before main, then you need some constructor magic.
UPDATE:
Ok, if it has to be done before the main I think the only way is to use a constructor like you already do.
You can always make a preprocessor macro of it:
#define RUN_EARLY(code) \
namespace { \
class Init { \
Init() { code; } \
}; \
Init init; \
}
Now this should work:
RUN_EARLY(initialize())
But it's not really making things shorter, just moving the verbose code around.
You can use the ".init*" sections to add C code to be run before main() (and even the C runtime). These sections are linked into the executable at the end and called up at specific time during program initialization. You can get the list here:
http://www.nongnu.org/avr-libc/user-manual/mem_sections.html
.init1 for example is weakly bound to __init(), so if you define __init(), it will be linked and called first thing. However, the stack hasn't been setup, so you have to be careful in what you do (only use register8_t variable, not call any functions).
Use static members of classes. They are initialized before entering to main. The disadvantage is that you can't control the order of the initialization of the static class members.
Here is your example transformed:
class Init {
private:
// Made the constructor private, so to avoid calling it in other situation
// than for the initialization of the static member.
Init() { initialize(); }
private:
static Init INIT;
};
Init Init::INIT;
Sure, you put this in one of your your header files, say preinit.h:
class Init { public: Init() { initialize(); } }; Init init;
and then, in one of your compilation units, put:
void initialize(void) {
// weave your magic here.
}
#include "preinit.h"
I know that's a kludge but I'm not aware of any portable way to do pre-main initialization without using a class constructor executed at file scope.
You should also be careful of including more than one of these initialization functions since I don't believe C++ dictates the order - it could be random.
I'm not sure of this "sketch" of which you speak but would it be possible to transform the main compilation unit with a script before having it passed to the compiler, something like:
awk '{print;if (substr($0,0,11) == "int main (") {print "initialize();"};}'
You can see how this would affect your program because:
echo '#include <stdio.h>
int main (void) {
int x = 1;
return 0;
}' | awk '{
print;
if (substr($0,0,11) == "int main (") {
print " initialize();"
}
}'
generates the following with the initialize() call added:
#include <stdio.h>
int main (void) {
initialize();
int x = 1;
return 0;
}
It may be that you can't post-process the generated file in which case you should ignore that final option, but that's what I'd be looking at first.
There is how I perform pre-main coding.
There are sever init sections executed before main, refers to http://www.nongnu.org/avr-libc/user-manual/mem_sections.html initN sections.
Anyhow, this only works on -O0 optimization for some reason. I still try to find out which option "optimized" my pre-main assembly code away.
static void
__attribute__ ((naked))
__attribute__ ((section (".init8"))) /* run this right before main */
__attribute__ ((unused)) /* Kill the unused function warning */
stack_init(void) {assembly stuff}
Update, it turns out I claimed this function is unused, leading to optimize the routine away. I was intended to kill function unused warning. It is fixed to used used attribute instead.