I want to draw a ring (circle with big border) with the shaperenderer.
I tried two different solutions:
Solution: draw n-circles, each with 1 pixel width and 1 pixel bigger than the one before. Problem with that: it produces a graphic glitch. (also with different Multisample Anti-Aliasing values)
Solution: draw one big filled circle and then draw a smaller one with the backgroundcolor. Problem: I can't realize overlapping ring shapes. Everything else works fine.
I can't use a ring texture, because I have to increase/decrease the ring radius dynamic. The border-width should always have the same value.
How can I draw smooth rings with the shaperenderer?
EDIT:
Increasing the line-width doesn't help:
MeshBuilder has the option to create a ring using the ellipse method. It allows you to specify the inner and outer size of the ring. Normally this would result in a Mesh, which you would need to render yourself. But because of a recent change it is also possible to use in conjunction with PolygonSpriteBatch (an implementation of Batch that allows more flexible shapes, while SpriteBatch only allows quads). You can use PolygonSpriteBatch instead of where you normally would use a SpriteBatch (e.g. for your Stage or Sprite class).
Here is an example how to use it: https://gist.github.com/xoppa/2978633678fa1c19cc47, but keep in mind that you do need the latest nightly (or at least release 1.6.4) for this.
Maybe you can try making a ring some other way, such as using triangles. I'm not familiar with LibGDX, so here's some
pseudocode.
// number of sectors in the ring, you may need
// to adapt this value based on the desired size of
// the ring
int sectors=32;
float outer=0.8; // distance to outer edge
float inner=1.2; // distance to inner edge
glBegin(GL_TRIANGLES)
glNormal3f(0,0,1)
for(int i=0;i<sectors;i++){
// define each section of the ring
float angle=(i/sectors)*Math.PI*2
float nextangle=((i+1)/sectors)*Math.PI*2
float s=Math.sin(angle)
float c=Math.cos(angle)
float sn=Math.sin(nextangle)
float cn=Math.cos(nextangle)
glVertex3f(inner*c,inner*s,0)
glVertex3f(outer*cn,outer*sn,0)
glVertex3f(outer*c,outer*s,0)
glVertex3f(inner*c,inner*s,0)
glVertex3f(inner*cn,inner*sn,0)
glVertex3f(outer*cn,outer*sn,0)
}
glEnd()
Alternatively, divide the ring into four polygons, each of which consists of one quarter of the whole ring. Then use ShapeRenderer to fill each of these polygons.
Here's an illustration of how you would divide the ring:
if I understand your question,
maybe, using glLineWidth(); help you.
example pseudo code:
size = 5;
Gdx.gl.glLineWidth(size);
mShapeRenderer.begin(....);
..//
mShapeRenderer.end();
I want to fill space inside lines in this code.
Main parts of code:
struct point { float x; float y; };
point a = { 100, 100 };
point b = { 0, 200 };
point c = { 0, 0 };
point d = { 100, 0 };
void displayCB(void){
glClear(GL_COLOR_BUFFER_BIT);
DeCasteljau();
b.x = 200;
c.x = 200;
DeCasteljau();
glFlush();
}
How to fill this heart with red color (for example) ?
There's no flood fill if that's what you're looking for, and no way to write one since the frame buffer isn't generally read/write and you don't get to pass state between fragments.
What you'd normally do is tesselate your shape — convert from its outline to geometry that covers the internal area, then draw the geometry.
Tesselation is described by Wikipedia here. Ear clipping isn't that hard to implement; monotone polygons are quite a bit more efficient but the code is more tricky. Luckily the OpenGL Utility Library (GLU) implements it for you and a free version can be found via MESA — they've even unbundled it from the rest of their OpenGL reimplementation. A description of how to use it is here.
EDIT: see also the comments. If you're willing to do this per-pixel you can use a triangle fan with reverse face removal disabled that increments the stencil. Assuming the shape is closed that'll cause every point inside the shape to be painted an odd number of times and every point outside the shape to be painted an even number of times (indeed, possibly zero). You can then paint any shape you know to at least cover every required pixel with a stencil test on the least significant bit to test for odd/even.
(note my original suggestion of increment/decrement and test for zero makes an assumption that your shape is simple, i.e. no holes, the edge doesn't intersect itself, essentially it assumes that a straight line segment from anywhere inside to infinity will cross the boundary exactly once; Reto's improvement applies the rule that any odd number of crossings will do)
Setup for the stencil approach will be a lot cheaper, and simpler, but the actual cost of drawing will be a lot more expensive. So it depends how often you expect your shape to change and/or whether a pixel cache is appropriate.
Ok so I have a 2d vector of chars that I call a grid. Lets just say its 70 x 30. When the grid is created, it automatically fills each position with 'x'
I have a function that displays the grid. So I call this function and a 70x30 grid of x's is displayed to the console.
I have another function that I want to call to essentially replace the char at certain x,y coordinates of the grid with a different char. The points aren't exactly random/scattered. I'm basically starting from a point on the edge of the grid, and drawing zigzagged lines to another edge. All points are predetermined. Theres a lot of points to plot, so manually doing it seems inefficient.
Here's how I was thinking to do it:
Create a double for loop, width and height, calling them i and j
If i = (a || b || c || d...) && j = (e || f || g..)
And essentially do that tedious process for each possible scenario..
Surely there is a much easier and simpler way lol. Any suggestions will be greatly appreciated. Thanks!
If the points can be pre-determined by having a map (as in for a level editor or otherwised fixed pattern), then make a dictionary of x/y co-ordinates to what the tile becomes. Iterate over the dictionary and do each replacement.
If the points aren't pre-determined but follow a pattern, such as lines or blobs, then write a method that draws the line/blob/whatever and call it over and over. The method decides which tiles to replace and replaces those.
Btw, there's a trick when doing 2D checking and processing like this which is called having a 'delta', for instance xdelta=-1, ydelta=0 is west and xdelta=1, ydelta=1 is northeast. By having a delta you can run a function two, four or eight times with different deltas and it'll move in different directions by just using the delta's directions instead of needing to try all eight directions on its own - the delta can also be used to drive the bounds checking if you want, as you can't go out of bounds in a direction you're not proceeding in for example. Then you can go further and have an enumeration of all directions, functions that invert a direction, that turn a direction 90/45 degrees (if it's enumerated it's very simple, you just add 2 or 1 to the enumeration and return the new direction), etc, making processing very easy now.
So I might have something like
function drawLine(int xstart, int ystart, int xdelta, intydelta)
that starts at xstart,ystart, replaces the tile with O, adds xdelta to x, adds ydelta to y, replaces the tile with O, etc until it falls off the edge.
i need help.. I'm making a function that imitates the bucket in paint.. the problem comes when half the image is colored this error occurs "NTVM has encounter an illegal instruction"
here is my "bucket" code:
void bucket(int x, int y, int fillColor)
{
if(getpixel(x,y)==getpixel(x,y+1)){
putpixel(x,y,fillColor);
bucket(x,y+1,fillColor);
}
if(getpixel(x,y)==getpixel(x+1,y)){
putpixel(x,y,fillColor);
bucket(x+1,y,fillColor);
}
if(getpixel(x,y)==getpixel(x,y-1)){
putpixel(x,y,fillColor);
bucket(x,y-1,fillColor);
}
if(getpixel(x,y)==getpixel(x-1,y)){
putpixel(x,y,fillColor);
bucket(x-1,y,fillColor);
}
}
supposedly the problems with "fills" algorithms is that your stack of recursion doesn't support all the calls ... at least half the drawing is colored..
PS: I'm running it on Borland c++ v3.1 using the
I would guess dollars to donuts, you are blowing up your stack. NTVM is a dos emulator for windows. I would guess it has a limited stack. Attempting to address memory outside of the stack(Addressable range) would cause an illegal instruction. This would also explain why you only get it for large pictures.
In the code you're running the recursion never ends... you should stop the recursion when the bucket gets to the border of image (top, bottom, left or right).
There is also another problem: each call of function calls four other functions. That means the recursion will never end even if you add special if for image borders, because for example bucket on pixel (x,y) calls bucket(x+1,y) and bucket on pixel (x+1,y) calls bucket(x-1,y) which is in fact pixel (x,y) again!
My advice for you is to add special function arguments like ,,direction''. Consider four directions: N,E,W and S. First call of bucket calls 4 buckets, but this time with direction. The function with direction==N doesn't color in S direction. You can use integer values from 0 (no direction on first call) up to 4 for direction symbols.
Of course my idea needs further development to optimize the code (the conditions should be better stated so we will not access the same pixels multiple times).
I'm trying to get the hang of moving objects (in general) and line strips (in particular) most efficiently in opengl and therefore I'm writing an application where multiple line segments are traveling with a constant speed from right to left. At every time point the left most point will be removed, the entire line will be shifted to the left, and a new point will be added at the very right of the line (this new data point is streamed / received / calculated on the fly, every 10ms or so). To illustrate what I mean, see this image:
Because I want to work with many objects, I decided to use vertex buffer objects in order to minimize the amount of gl* calls. My current code looks something like this:
A) setup initial vertices:
# calculate my_func(x) in range [0, n]
# (could also be random data)
data = my_func(0, n)
# create & bind buffer
vbo_id = GLuint()
glGenBuffers(1, vbo_id);
glBindBuffer(GL_ARRAY_BUFFER, vbo_id)
# allocate memory & transfer data to GPU
glBufferData(GL_ARRAY_BUFFER, sizeof(data), data, GL_DYNAMIC_DRAW)
B) update vertices:
draw():
# get new data and update offset
data = my_func(n+dx, n+2*dx)
# update offset 'n' which is the current absolute value of x.
n = n + 2*dx
# upload data
glBindBuffer(GL_ARRAY_BUFFER, vbo_id)
glBufferSubData(GL_ARRAY_BUFFER, n, sizeof(data), data)
# translate scene so it looks like line strip has moved to the left.
glTranslatef(-local_shift, 0.0, 0.0)
# draw all points from offset
glVertexPointer(2, GL_FLOAT, 0, n)
glDrawArrays(GL_LINE_STRIP, 0, points_per_vbo)
where my_func would do something like this:
my_func(start_x, end_x):
# generate the correct x locations.
x_values = range(start_x, end_x, STEP_SIZE)
# generate the y values. We could be getting these values from a sensor.
y_values = []
for j in x_values:
y_values.append(random())
data = []
for i, j in zip(x_values, y_values):
data.extend([i, j])
return data
This works just fine, however if I have let's say 20 of those line strips that span the entire screen, then things slow down considerably.
Therefore my questions:
1) should I use glMapBuffer to bind the buffer on the GPU and fill the data directly (instead of using glBufferSubData)? Or will this make no difference performance wise?
2) should I use a shader for moving objects (here line strip) instead of calling glTranslatef? If so, how would such a shader look like? (I suspect that a shader is the wrong way to go, since my line strip is NOT a period function but rather contains random data).
3) what happens if the window get's resized? how do I keep aspect ratio and scale vertices accordingly? glViewport() only helps scaling in y direction, not in x direction. If the window is rescaled in x-direction, then in my current implementation I would have to recalculate the position of the entire line strip (calling my_func to get the new x coordinates) and upload it to the GPU. I guess this could be done more elegantly? How would I do that?
4) I noticed that when I use glTranslatef with a non integral value, the screen starts to flicker if the line strip consists of thousands of points. This is most probably because the fine resolution that I use to calculate the line strip does not match the pixel resolution of the screen and therefore sometimes some points appear in front and sometimes behind other points (this is particularly annoying when you don't render a sine wave but some 'random' data). How can I prevent this from happening (besides the obvious solution of translating by a integer multiple of 1 pixel)? If a window get re-sized from let's say originally 800x800 pixels to 100x100 pixels and I still want to visualize a line strip of 20 seconds, then shifting in x direction must work flicker free somehow with sub pixel precision, right?
5) as you can see I always call glTranslatef(-local_shift, 0.0, 0.0) - without ever doing the opposite. Therefore I keep shifting the entire view to the right. And that's why I need to keep track of the absolute x position (in order to place new data at the correct location). This problem will eventually lead to an artifact, where the line is overlapping with the edges of the window. I guess there must be a better way for doing this, right? Like keeping the x values fixed and just moving & updating the y values?
EDIT I've removed the sine wave example and replaced it with a better example. My question is generally about how to move line strips in space most efficiently (while adding new values to them). Therefore any suggestions like "precompute the values for t -> infinity" don't help here (I could also just be drawing the current temperature measured in front of my house).
EDIT2
Consider this toy example where after each time step, the first point is removed and a new one is added to the end:
t = 0
*
* * *
* **** *
1234567890
t = 1
*
* * * *
**** *
2345678901
t = 2
* *
* * *
**** *
3456789012
I don't think I can use a shader here, can I?
EDIT 3: example with two line strips.
EDIT 4: based on Tim's answer I'm using now the following code, which works nicely, but breaks the line into two (since I have two calls of glDrawArrays), see also the following two screenshots.
# calculate the difference
diff_first = x[1] - x[0]
''' first part of the line '''
# push the matrix
glPushMatrix()
move_to = -(diff_first * c)
print 'going to %d ' % (move_to)
glTranslatef(move_to, 0, 0)
# format of glVertexPointer: nbr points per vertex, data type, stride, byte offset
# calculate the offset into the Vertex
offset_bytes = c * BYTES_PER_POINT
stride = 0
glVertexPointer(2, GL_FLOAT, stride, offset_bytes)
# format of glDrawArrays: mode, Specifies the starting index in the enabled arrays, nbr of points
nbr_points_to_render = (nbr_points - c)
starting_point_in_above_selected_Vertex = 0
glDrawArrays(GL_POINTS, starting_point_in_above_selected_Vertex, nbr_points_to_render)
# pop the matrix
glPopMatrix()
''' second part of the line '''
# push the matrix
glPushMatrix()
move_to = (nbr_points - c) * diff_first
print 'moving to %d ' %(move_to)
glTranslatef(move_to, 0, 0)
# select the vertex
offset_bytes = 0
stride = 0
glVertexPointer(2, GL_FLOAT, stride, offset_bytes)
# draw the line
nbr_points_to_render = c
starting_point_in_above_selected_Vertex = 0
glDrawArrays(GL_POINTS, starting_point_in_above_selected_Vertex, nbr_points_to_render)
# pop the matrix
glPopMatrix()
# update counter
c += 1
if c == nbr_points:
c = 0
EDIT5 the resulting solution must obviously render one line across the screen - and no two lines that are missing a connection. The circular buffer solution by Tim provides a solution on how to move the plot, but I end up with two lines, instead of one.
Here's my thoughts to the revised question:
1) should I use glMapBuffer to bind the buffer on the GPU and fill the
data directly (instead of using glBufferSubData)? Or will this make no
difference performance wise?
I'm not aware that there is any significant performance between the two, though I would probably prefer glBufferSubData.
What I might suggest in your case is to create a VBO with N floats, and then use it similar to a circular buffer. Keep an index locally to where the 'end' of the buffer is, then every update replace the value under 'end' with the new value, and increment the pointer. This way you only have to update a single float each cycle.
Having done that, you can draw this buffer using 2x translates and 2x glDrawArrays/Elements:
Imagine that you've got an array of 10 elements, and the buffer end pointer is at element 4. Your array will contain the following 10 values, where x is a constant value, and f(n-d) is the random sample from d cycles ago:
0: (0, f(n-4) )
1: (1, f(n-3) )
2: (2, f(n-2) )
3: (3, f(n-1) )
4: (4, f(n) ) <-- end of buffer
5: (5, f(n-9) ) <-- start of buffer
6: (6, f(n-8) )
7: (7, f(n-7) )
8: (8, f(n-6) )
9: (9, f(n-5) )
To draw this (pseudo-guess code, might not be exactly correct):
glTranslatef( -end, 0, 0);
glDrawArrays( LINE_STRIP, end+1, (10-end)); //draw elems 5-9 shifted left by 4
glPopMatrix();
glTranslatef( end+1, 0, 0);
glDrawArrays(LINE_STRIP, 0, end); // draw elems 0-4 shifted right by 5
Then in the next cycle, replace the oldest value with the new random value,and shift the circular buffer pointer forward.
2) should I use a shader for moving objects (here line strip) instead
of calling glTranslatef? If so, how would such a shader look like? (I
suspect that a shader is the wrong way to go, since my line strip is
NOT a period function but rather contains random data).
Probably optional, if you use the method that I've described in #1. There's not a particular advantage to using one here.
3) what happens if the window get's resized? how do I keep aspect
ratio and scale vertices accordingly? glViewport() only helps scaling
in y direction, not in x direction. If the window is rescaled in
x-direction, then in my current implementation I would have to
recalculate the position of the entire line strip (calling my_func to
get the new x coordinates) and upload it to the GPU. I guess this
could be done more elegantly? How would I do that?
You shouldn't have to recalculate any data. Just define all your data in some fixed coordinate system that makes sense to you, and then use projection matrix to map this range to the window. Without more specifics its hard to answer.
4) I noticed that when I use glTranslatef with a non integral value,
the screen starts to flicker if the line strip consists of thousands
of points. This is most probably because the fine resolution that I
use to calculate the line strip does not match the pixel resolution of
the screen and therefore sometimes some points appear in front and
sometimes behind other points (this is particularly annoying when you
don't render a sine wave but some 'random' data). How can I prevent
this from happening (besides the obvious solution of translating by a
integer multiple of 1 pixel)? If a window get re-sized from let's say
originally 800x800 pixels to 100x100 pixels and I still want to
visualize a line strip of 20 seconds, then shifting in x direction
must work flicker free somehow with sub pixel precision, right?
Your assumption seems correct. I think the thing to do here would either to enable some kind of antialiasing (you can read other posts for how to do that), or make the lines wider.
There are a number of things that could be at work here.
glBindBuffer is one of the slowest OpenGL operations (along with similar call for shaders, textures, etc.)
glTranslate adjusts the modelview matrix, which the vertex unit multiplies all points by. So, it simply changes what matrix you multiply by. If you were to instead use a vertex shader, then you'd have to translate it for each vertex individually. In short: glTranslate is faster. In practice, this shouldn't matter too much, though.
If you're recalculating the sine function on a lot of points every time you draw, you're going to have performance issues (especially since, by looking at your source, it looks like you might be using Python).
You're updating your VBO every time you draw it, so it's not any faster than a vertex array. Vertex arrays are faster than intermediate mode (glVertex, etc.) but nowhere near as fast as display lists or static VBOs.
There could be coding errors or redundant calls somewhere.
My verdict:
You're calculating a sine wave and an offset on the CPU. I strongly suspect that most of your overhead comes from calculating and uploading different data every time you draw it. This is coupled with unnecessary OpenGL calls and possibly unnecessary local calls.
My recommendation:
This is an opportunity for the GPU to shine. Calculating function values on parallel data is (literally) what the GPU does best.
I suggest you make a display list representing your function, but set all the y-coordinates to 0 (so it's a series of points all along the line y=0). Then, draw this exact same display list once for every sine wave you want to draw. Ordinarily, this would just produce a flat graph, but, you write a vertex shader that transforms the points vertically into your sine wave. The shader takes a uniform for the sine wave's offset ("sin(x-offset)"), and just changes each vertex's y.
I estimate this will make your code at least ten times faster. Furthermore, because the vertices' x coordinates are all at integral points (the shader does the "translation" in the function's space by computing "sin(x-offset)"), you won't experience jittering when offsetting with floating point values.
You've got a lot here, so I'll cover what I can. Hopefully this will give you some areas to research.
1) should I use glMapBuffer to bind the buffer on the GPU and fill the data directly (instead of using glBufferSubData)? Or will this make no difference performance wise?
I would expect glBufferSubData to have better performance. If the data is stored on the GPU then mapping it will either
Copy the data back into host memory so you can modify it, and the copy it back when you unmap it.
or, give you a pointer to the GPU's memory directly which the CPU will access over PCI-Express. This isn't anywhere near as slow as it used to be to access GPU memory when we were on AGP or PCI, but it's still slower and not as well cached, etc, as host memory.
glSubBufferData will send the update of the buffer to the GPU and it will modify the buffer. No copying the back and fore. All data transferred in one burst. It should be able to do it as an asynchronous update of the buffer as well.
Once you get into "is this faster than that?" type comparisons you need to start measuring how long things take. A simple frame timer is normally sufficient (but report time per frame, not frames per second - it makes numbers easier to compare). If you go finer-grained than that, just be aware that because of the asynchronous nature of OpenGL, you often see time being consumed away from the call that caused the work. This is because after you give the GPU a load of work, it's only when you have to wait for it to finish something that you notice how long it's taking. That normally only happens when you're waiting for front/back buffers to swap.
2) should I use a shader for moving objects (here line strip) instead of calling glTranslatef? If so, how would such a shader look like?
No difference. glTranslate modifies a matrix (normally the Model-View) which is then applied to all vertices. If you have a shader you'd apply a translation matrix to all your vertices. In fact the driver is probably building a small shader for you already.
Be aware that the older APIs like glTranslate() are depreciated from OpenGL 3.0 onwards, and in modern OpenGL everything is done with shaders.
3) what happens if the window get's resized? how do I keep aspect ratio and scale vertices accordingly? glViewport() only helps scaling in y direction, not in x direction.
glViewport() sets the size and shape of the screen area that is rendered to. Quite often it's called on window resizing to set the viewport to the size and shape of the window. Doing just this will cause any image rendered by OpenGL to change aspect ratio with the window. To keep things looking the same you also have to control the projection matrix to counteract the effect of changing the viewport.
Something along the lines of:
glViewport(0,0, width, height);
glMatrixMode(GL_PROJECTION_MATRIX);
glLoadIdentity();
glScale2f(1.0f, width / height); // Keeps X scale the same, but scales Y to compensate for aspect ratio
That's written from memory, and I might not have the maths right, but hopefully you get the idea.
4) I noticed that when I use glTranslatef with a non integral value, the screen starts to flicker if the line strip consists of thousands of points.
I think you're seeing a form of aliasing which is due to the lines moving under the sampling grid of the pixels. There are various anti-aliasing techniques you can use to reduce the problem. OpenGL has anti-aliased lines (glEnable(GL_SMOOTH_LINE)), but a lot of consumer cards didn't support it, or only did it in software. You can try it, but you may get no effect or run very slowly.
Alternatively you can look into Multi-sample anti-aliasing (MSAA), or other types that your card may support through extensions.
Another option is rendering to a high resolution texture (via Frame Buffer Objects - FBOs) and then filtering it down when you render it to the screen as a textured quad. This would also allow you to do a trick where you move the rendered texture slightly to the left each time, and rendered the new strip on the right each frame.
1 1
1 1 1 Frame 1
11
1
1 1 1 Frame 1 is copied left, and a new line segment is added to make frame 2
11 2
1
1 1 3 Frame 2 is copied left, and a new line segment is added to make frame 3
11 2
It's not a simple change, but it might help you out with your problem (5).