I did used snippet found from Internet for this kind of linking, and it works. Now I would like to gain more understanding on this topic, i.e. what should I pay attention to if my C++ code is going to be export/linked by non-C++ code. Could somebody points me to any resources useful for this? Thanks.
The key concepts in native code interoperability are name mangling, and calling conventions.
But the real point here is that in general, if you want your code to be callable from other languages (you don't specify any in your question), you have to adopt a lowest-common-denominator approach. Usually that means avoiding objects and thinking functionally, wrapping your code in DLLs and using a C-style interface. You'll probably have to define your DLL's api functions using the STDCALL calling convention.
Also, if you use structures in your interface, you have to worry about structure packing. To get proper interop with Delphi using packed records, for instance, I think you'd have to set the struct member alignment to 1 byte in your C compiler.
use extern "C" functionality... see here. This allows interfacing at the "C" level which is probably much more "cross-platform/language".
This should pretty much explain it all: http://en.wikipedia.org/wiki/Compatibility_of_C_and_C++
Also.... In conjunction with Bob Moore's answer...you can prevent name mangling by using #ifdef
#ifdef __cplusplus
extern "C" {
#endif
/* function prototypes and global variable declarations */
#ifdef __cplusplus
}
#endif
That __cplusplus directive, found in <stddef.h> is defined as standard to the best of my knowledge...
Hope this helps,
Best regards,
Tom.
Related
I am using CppUTest in eclipse-cdt(ubuntu 14.0).
For inherits of C function in CppUTest I should write,
extern "C" {
}
Is any alternative to inherit all C project into Cpp for CppUTest ?
What is the disadvantages of extern in CppUTest?
Well, one "alternative" is of course to move the extern "C" declarations into your C-project's headers, protected by #if defined __cplusplus of course. That will, however, mean that you have to go through the entire project and fix it. It sounds as if just doing the above in your test code, which is where you're using C++, would be easier.
Many people do that, as a way to make their C code usable from C++. Personally I think it's a bit "dirty", since you're mixing languages ("don't cross the streams!"), but it's still very common.
See this question for lots of discussion about this.
I would like to be able to use C/C++ functions from python using ctypes python module.
I have a function int doit() in the .c / .cpp file. When I try to load the shared library:
Frr=CDLL("/path/FoCpy2/libFrr.so")
Frr.doit(c_int(5))
i find it working really well when the .c variant is used. When C++ is called the good way to call this function is (found out using nm libFrr.so using nm -gC libFrr.so produces just plain doit()):
Frr._Z4doitv(c_int(5))
I have read on Stackexchange that there is no standard way to call C++ from python, and there is "nonstandard name mangling" issue. Is the "Z4" a part of that issue? I guess the nonstandard name mangling would appear for more advanced language features such as class methods, templates, but also for such basic functions? Is it possible to force using simple C function names in simple cases for the C++ code?
You can use extern "C" to make the functions "look like" C functions to the outside world (i.e., disable name-mangling). And yes, you are correct, name-mangling is needed mostly for the more complicated features and types of functions that C++ has, and the name-mangling scheme has never been standardized (nor the binary compatibility) and so it varies from compiler to compiler and between versions (but most main-stream compilers have settled to something permanent now, but still different between compiler-vendors). And the reason that mangling is also required for plain old free functions is because C++ supports overloading (same function names but with different parameters), and thus, the compilers will encode the parameter specification (e.g., types) into the mangled names. Of course, if you use extern "C" you lose all features for which name-mangling is needed, so, it more or less boils down to C functions only.
You can use extern "C" either on a per-function basis, like so:
extern "C" int doit();
Or for the overall header:
extern "C" {
// all the function declarations here ...
};
However, for Python specifically, I highly recommend that you use a library that allows you to construct Python classes and functions that are a reflection of your C++ classes and functions, that makes life a lot easier and hides away all this extern "C" business. I recommend using Boost.Python, see this getting started page, it makes exporting functions and classes to Python a breeze. I guess others would also recommend SWIG, but I have never used it.
Calling c++ library functions is always a mess, actually even if you're using C++ you have to use the same compiler, etc. to make sure it works.
The only general solution is to define your c++ functions as extern "C" and make sure you follow the involved limitations - see here for an explanation of it.
I'm trying to create a abstraction layer for platforms such as win32, mac os, linux, iOs etc.
I want this to be dynamically linked. On platforms that don't support this it shouldn't be a problem since from what I've seen everything that can be compiled as a dynamic library can be compiled as a static one as well with minimum impact on the code.
Now, to get to the point of this:
I created a interface named IThread and a class named CThread. I use a function named CreateThread that's defined with extern "C" to be able to export it and call it outside the library. The problem here is that in win32 for example there already is a function named CreateThread and thus I get a linker error. I understand the error and why it's appearing but I'm not sure of a good way to avoid this. I don't really like to use weird naming as qt uses like CreateQtThread.
Another idea I have would be is to create a thread manager/factory that creates instances of CThread but I'm not sure this would be a great idea.
What do you guys think about this? I'm asking because I don't want to rush on important organizing problems like this.
Thank you very much
I use a function named CreateThread that's defined with extern "C" to be able to export it and call it outside the library.
This is bad. I can't talk for other platforms, but on windows it's perfectly fine to export C++ functions. They are just get mangled, and you get some sanity checking in case someone changes the declaration. In fact, it's the only correct way to export a function that is C++. If you declare it as extern "C" you get no namespaces, no overloading, and someone who compiles with /EHsc will be in trouble if an exception escapes from your function.
Preferred solution: Do not declare them as extern "C", and put them in a namespace.
The only other solution: well, guess why all those C libraries prefix their functions with their_lib_prefix_function...
Your decision to use extern "C" is sound in my view because it allows access from other languages, compilers etc. But doing so means you can't use namespaces so you simply must prefix your functions with something to identify them as being from your library, a poor man's namespace if you will.
This is the compromise you must make if you want to use extern "C".
Well, I don't know whether you will like this as I know the C developers I worked with found it unaesthetic. But, it's very simple and prevents collisions like this. (More or less mentioned in this answer with the "their_lib_prefix_function" comment.)
So, whenever I was using C code, I used to basically 'namespace' my functions using an underscore. So, let's say your namespace is MegaAbstraction, then something like CreateThread becomes MegaAbstraction_CreateThread. Easy peasy. And no collisions, unless someone else has a namespace called MegaAbstraction in which case I recommend finding a namespace that's unlikely to be used by anyone else. ;)
Does your CreateThread use the stdcall calling convention (aka WINAPI)? If you use the cdecl calling convention, it should export the function name as _CreateThread and avoid the linkage conflict with the Win32 CreateThread function.
extern "C" _declspec(export) int _cdecl CreateThread(...
There is no "CreateQtThread" function in Qt, not even something similar. There's a QThread class, and it has constructors. If needed, you can put everything in a namespace.
I wanted to know how I would make my C++ program work across compilers. I wanted to make the program so if it's being compiled with borland it will use the clrscr() function otherwise it'd use system("CLS"). I've seen code that has done something similar but I couldn't find an explanation of what it does or how it works. Any help would be appreciated.
In general, to make a C or C++ program work across multiple compilers you want to confine yourself to standard C or C++ as much as possible. Sometimes you have to use compiler/platform specific functionality, though, and one way to handle that is via the preprocessor.
The predef project on SourceForge lists a bunch a preprocessor symbols that are defined automatically by various compilers, for various platforms, et cetera. You can use that information to implement what you need, for example:
void clearScreen() {
// __BORLANDC__ is defined by the Borland C++ compiler.
#ifdef __BORLANDC__
clrscr();
#else
system("cls");
#endif
}
One easy answer from the top of the head is define your own function calls and then translate it into real calls depending on the compiling parameters (with #ifdef preprocessing definitions - look which values are corresponding to which compiler).
example:
#if defined(__COMPILER_ONE__)
#define ClearScreen() clrscr()
#elif defined(__COMPILER_TWO__)
#define ClearScreen() system("CLS")
#else
#error "I do not know what to do!"
#endif
You would have to create a dedicated header file for this and to include it everywhere, of course.
(Of course you have to substitute COMPILER_ONE and COMPILER_TWO with relevant definitions :) )
How to make something work across different compilers is simple question which is very complex to answer! Your specific query about clearing the screen;
I would attempt it like this, first you have your own function say
void clear_screen();
And define it like this:
void clear_screen()
{
#ifdef LINUX
...
#eleif MS_WIN
...
#endif
}
Please note I have just guessed what the #define 's are. This is know as conditional complication, generally regarded as evil, but containing it in a function reduces the harm a little.
The way it's typically done is through the magic of the preprocessor or makefiles. Either way, you hide the implementation details behind a common interface in a header file, such as void clearscreen(). Then in a single source file you can hide the Borland implementation behind #ifdef BORLAND, and similarly for other implementations. Alternatively, you can put each implementation in a separate source file, and only compile the proper one based on a variable in a makefile.
You can do this by checking compiler macros with the #ifdef compiler macro:
#ifdef BORLAND
borland();
#else
otherCompiler();
#endif
I have a C++ library that provides various classes for managing data. I have the source code for the library.
I want to extend the C++ API to support C function calls so that the library can be used with C code and C++ code at the same time.
I'm using GNU tool chain (gcc, glibc, etc), so language and architecture support are not an issue.
Are there any reasons why this is technically not possible?
Are there any gotcha's that I need to watch out for?
Are there resources, example code and/or documentation available regarding this?
Some other things that I have found out:
Use the following to wrap your C++ headers that need to be used by C code.
#ifdef __cplusplus
extern "C" {
#endif
//
// Code goes here ...
//
#ifdef __cplusplus
} // extern "C"
#endif
Keep "real" C++ interfaces in separate header files that are not included by C. Think PIMPL principle here. Using #ifndef __cplusplus #error stuff helps here to detect any craziness.
Careful of C++ identifiers as names in C code
Enums varying in size between C and C++ compilers. Probably not an issue if you're using GNU tool chain, but still, be careful.
For structs follow the following form so that C does not get confused.
typedef struct X { ... } X
Then use pointers for passing around C++ objects, they just have to be declared in C as struct X where X is the C++ object.
All of this is courtesy of a friend who's a wizard at C++.
Yes, this is certainly possible. You will need to write an interface layer in C++ that declares functions with extern "C":
extern "C" int foo(char *bar)
{
return realFoo(std::string(bar));
}
Then, you will call foo() from your C module, which will pass the call on to the realFoo() function which is implemented in C++.
If you need to expose a full C++ class with data members and methods, then you may need to do more work than this simple function example.
C++ FAQ Lite: "How to mix C and C++ code".
Some gotchas are described in answers to these questions:
[32.8] How can I pass an object of a C++ class to/from a C function?
[32.9] Can my C function directly access data in an object of a C++ class?
Main gotcha: exceptions can not be caught in C. If there is the possibility of an exception rising in the C++ code, either write your C code or your C++ wrappers very carefully. Conversely, exception like mechanisms (i.e., longjump) in the C code (as found in various scripting languages) are not required to invoke destructors for C++ objects on the stack.
you can mix C/C++ code. If your main() function in in C++, then you just need to make sure your c functions are declared
extern "C"
If your main is C, then you are probably OK except for static variables. Any constructors with your static variables are supposed to be called before main() start. This won't happen if C is your main. I you have a lot of static variables, the best thing to do is to replace static variables with singletons.