Generating contour lines from regularly spaced data - c++

I am currently working on a data visualization project.My aim is to produce contour lines ,in other words iso-lines, from gridded data.Data can be temperature, weather data or any kind of other environmental parameters but only condition is it must be regularly spaced.
I searched in internet , however i could not find a good algorithm, pseudo-code or source code for producing contour lines from grids.
Does anybody knows a library, source code or an algorithm for producing contour lines from gridded data?
it will be good if your suggestion has a good run time performance, i don't want to wait my users so much :)
Edit: thanks for response but isolines have some constrains like they should not intersects
so just generating bezier curves does not accomplish my goal.

See this question: How to approximate a vector contour from an elevation raster?
It's a near duplicate, but uses quite different terminology. You'll find that cartography and computer graphics solve many of the same problems, but use different terminology for them.

there's some reasonably good contouring available in GNUplot - if you're able to use GPL code that may help.

If your data is placed at regular intervals, this can be done fairly easily (assuming I understand your problem correctly). First you need to determine at what interval you want your contours. Next create the grid you are going to use to store the contour information (i'm assuming just a simple on/off or elevation at this contour level type of data), which should be one interval smaller than the source data.
Now the trick here is to offset the 2 grids by 1/2 an interval (won't actually show up in code like this, but its the concept I'm dealing with here) and compare the 4 coordinates surrounding the current point in the contour data grid you are calculating. If any of the 4 points are in a different interval range, then that 'pixel' in the contour grid should be set to true (or the value of the contour range being crossed).
With this method, there will be a problem when the interval is too fine which will cause several contours to overlap onto each other.

As the link from Paul Tomblin suggests, Bezier curves (which are a subset of B-splines) are a ripe solution for your problem. If runtime performance is an issue, Bezier curves have the added benefit of being constructable via the very fast de Casteljau algorithm, instead of drawing them according to the parametric equations. On the off chance you're working with DirectX, it has a library function for the de Casteljau, but it should not be challenging to brew one yourself using the 1001 web pages that describe it.

Related

Averaging SIFT features to do pose estimation

I have created a point cloud of an irregular (non-planar) complex object using SfM. Each one of those 3D points was viewed in more than one image, so it has multiple (SIFT) features associated with it.
Now, I want to solve for the pose of this object in a new, different set of images using a PnP algorithm matching the features detected in the new images with the features associated with the 3D points in the point cloud.
So my question is: which descriptor do I associate with the 3D point to get the best results?
So far I've come up with a number of possible solutions...
Average all of the descriptors associated with the 3D point (taken from the SfM pipeline) and use that "mean descriptor" to do the matching in PnP. This approach seems a bit far-fetched to me - I don't know enough about feature descriptors (specifically SIFT) to comment on the merits and downfalls of this approach.
"Pin" all of the descriptors calculated during the SfM pipeline to their associated 3D point. During PnP, you would essentially have duplicate points to match with (one duplicate for each descriptor). This is obviously intensive.
Find the "central" viewpoint that the feature appears in (from the SfM pipeline) and use the descriptor from this view for PnP matching. So if the feature appears in images taken at -30, 10, and 40 degrees ( from surface normal), use the descriptor from the 10 degree image. This, to me, seems like the most promising solution.
Is there a standard way of doing this? I haven't been able to find any research or advice online regarding this question, so I'm really just curious if there is a best solution, or if it is dependent on the object/situation.
The descriptors that are used for matching in most SLAM or SFM systems are rotation and scale invariant (and to some extent, robust to intensity changes). That is why we are able to match them from different view points in the first place. So, in general it doesn't make much sense to try to use them all, average them, or use the ones from a particular image. If the matching in your SFM was done correctly, the descriptors of the reprojection of a 3d point from your point cloud in any of its observations should be very close, so you can use any of them 1.
Also, it seems to me that you are trying to directly match the 2d points to the 3d points. From a computational point of view, I think this is not a very good idea, because by matching 2d points with 3d ones, you lose the spatial information of the images and have to search for matches in a brute force manner. This in turn can introduce noise. But, if you do your matching from image to image and then propagate the results to the 3d points, you will be able to enforce priors (if you roughly know where you are, i.e. from an IMU, or if you know that your images are close), you can determine the neighborhood where you look for matches in your images, etc. Additionally, once you have computed your pose and refined it, you will need to add more points, no? How will you do it if you haven't done any 2d/2d matching, but just 2d/3d matching?
Now, the way to implement that usually depends on your application (how much covisibility or baseline you have between the poses from you SFM, etc). As an example, let's note your candidate image I_0, and let's note the images from your SFM I_1, ..., I_n. First, match between I_0 and I_1. Now, assume q_0 is a 2d point from I_0 that has successfully been matched to q_1 from I_1, which corresponds to some 3d point Q. Now, to ensure consistency, consider the reprojection of Q in I_2, and call it q_2. Match I_0 and I_2. Does the point to which q_0 is match in I_2 fall close to q_2? If yes, keep the 2d/3d match between q_0 and Q, and so on.
I don't have enough information about your data and your application, but I think that depending on your constraints (real-time or not, etc), you could come up with some variation of the above. The key idea anyway is, as I said previously, to try to match from frame to frame and then propagate to the 3d case.
Edit: Thank you for your clarifications in the comments. Here are a few thoughts (feel free to correct me):
Let's consider a SIFT descriptor s_0 from I_0, and let's note F(s_1,...,s_n) your aggregated descriptor (that can be an average or a concatenation of the SIFT descriptors s_i in their corresponding I_i, etc). Then when matching s_0 with F, you will only want to use a subset of the s_i that belong to images that have close viewpoints to I_0 (because of the 30deg problem that you mention, although I think it should be 50deg). That means that you have to attribute a weight to each s_i that depends on the pose of your query I_0. You obviously can't do that when constructing F, so you have to do it when matching. However, you don't have a strong prior on the pose (otherwise, I assume you wouldn't be needing PnP). As a result, you can't really determine this weight. Therefore I think there are two conclusions/options here:
SIFT descriptors are not adapted to the task. You can try coming up with a perspective-invariant descriptor. There is some literature on the subject.
Try to keep some visual information in the form of "Key-frames", as in many SLAM systems. It wouldn't make sense to keep all of your images anyway, just keep a few that are well distributed (pose-wise) in each area, and use those to propagate 2d matches to the 3d case.
If you only match between the 2d point of your query and 3d descriptors without any form of consistency check (as the one I proposed earlier), you will introduce a lot of noise...
tl;dr I would keep some images.
1 Since you say that you obtain your 3d reconstruction from an SFM pipline, some of them are probably considered inliers and some are outliers (indicated by a boolean flag). If they are outliers, just ignore them, if they are inliers, then they are the result of matching and triangulation, and their position has been refined multiple times, so you can trust any of their descriptors.

how to detect the coordinates of certain points on image

I'm using the ORB algorithm to detect and get the coordinates of the crossings of rope shown in the image, which is represented by the red dot. I want to detect the coordinates of the four points surrounding the crossing represented by the blue dots. All the four points have the same distance from the red spot.
Any idea how to get their coordinates by getting use of the red spot coordinate.
Thank you in Advance
Although you're using ORB, you're still going to need an algorithm to segment the rope from the background, or at least some technique to identify image chunks that belong to the rope and that are equidistant from the red dot. There are a number of options to explore.
It's important to consider your lighting & imaging as separate problems to be solved if this is meant to be a real-world application. This looks a bit like a problem for a class rather than for a application you'll sell and support, but you should still consider lighting:
Will your algorithm(s) still work when light level is reduced?
How will detection be affected by changes in camera pose relative to the surface where the rope will be located?
If you'll be detecting "black" rope, will the algorithm also be required to detect rope of different colors? dirty rope? rope on different backgrounds?
Since you're object of interest is rope, you have to consider a class of algorithms suitable for detection of non-rigid objects. Always consider the simplest solution first!
Connected Components
Connected components labeling is a traditional image processing algorithm and still suitable as the starting point for many applications. The last I knew, this was implemented in OpenCV as findContours(). This can also be called "blob finding" or some variant thereof.
https://en.wikipedia.org/wiki/Connected-component_labeling
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcontours
Depending on lighting, you may have to take different steps to binarize the image before running connected components. As a start, convert the color image to grayscale, which will simplify the task significantly.
Try a manual threshold since you can quickly test a number of values to see the effect. Don't be too discouraged if the binarization isn't quite right--this can often be fixed with preprocessing.
If a range of manual thresholds works (e.g. 52 - 76 in an 8-bit grayscale range), then use an algorithm that will automatically calculate the threshold for you: Otsu, entropy-based methods, etc., will all offer comparable performance. Whichever technique works best, the code/algorithm can be tweaked further to optimize for your rope application.
If thresholding and binarization don't work--which for your rope application seems unlikely, at least how you've presented it--then switch to thinking in terms of gradient-based (edge-based, energy-based) techniques.
But assuming you can separate the rope from the background, you're still going to need a method to start at the red dot [within the rope] and move equal distances out to the blue points. More about that later after a discussion of other rope segmentation methods.
Note: connected components labeling can work in scenarios beyond just binarizing black & white images. If you can create a texture field or some other 2D representation of the image that makes it possible to distinguish the black rope from the relatively light background, you may be able to use a connected components algorithm. (Finding a "more complicated" or "more modern" algorithm isn't necessarily going to be the right approach.)
In a binarized image, blobs can be nested: on a white background you can have several black blobs, inside of one or more of which are white blobs, inside of which are black blobs, etc. An earlier version of OpenCV handled this reasonably well. (OpenCV is a nice starting point, and a touchpoint for many, but for a number of reasons it doesn't always compare favorably to other open source and commercial packages; popularity notwithstanding, OpenCV has some issues.)
Once you have a "blob" (a 4-connected region of pixels) in a 2D digital image, you can treat the blob as an object, at which point you have a number of options:
Edge tracing: trace around the inside and outside edges of the blob. From what I recall, OpenCV does (or at least should) have some relatively straightforward method to get the edges.
Split the blob into component blobs, each of which can be treated separately
Convert the blob to a polygon
...
A connected components algorithm should be high on the list of techniques to try if you have a non-rigid object.
Boolean Operations
Once you have the rope as a connected component (and possibly even without this), you can use boolean image operations to find the spots at the blue dots in your image:
Create a circular region in data, or even in the image
Find the intersection of the circle (an annulus) and the black region representing the rope. Using your original image, you should have four regions.
Find the center point of the intersection regions.
You could even try this without using connected components at all, but using connected components as part of the solution could make it more robust.
Polygon Simplification
If you have a blob, which in your application would be a connected set of black pixels representing the rope on the floor, then you can consider converting this blob to one or more polygons for further processing. There are advantages to working with polygons.
If you consider only the outside boundary of the rope, then you can see that the set of pixels defining the boundary represents a polygon. It's a polygon with a lot of points, and not a convex polygon, but a polygon nonetheless.
To simplify the polygon, you can use an algorithm such as Ramer-Douglas-Puecker:
https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
Once you have a simplified polygon, you can try a few techniques to render useful data from the polygon
Angle Bisector Network
Triangulation (e.g. using ear clipping)
Triangulation is typically dependent on initial conditions, so the resulting triangulation for slighting different polygons (that is, rope -> blob -> polygon -> simplified polygon). So in your application it might be useful to triangulate the dark rope region, and then to connect the center of one triangle to the center of the next nearest triangle. You'll also have to deal with crossings, such as the rope overlap. Ultimately this can yield a "skeletonization" of the rope. Speaking of which...
Skeletonization
If the rope problem was posed to you as a class exercise, then it may have been a prompt to try skeletonization. You can read about it here:
https://en.wikipedia.org/wiki/Topological_skeleton
Skeletonization and thinning have their own problems to solve, but you should dig into them a bit and see those problems themselves.
The Medial Axis Transform (MAT) is a related concept. Long story there.
Edge-based techniques
There are a number of techniques to generate "edge images" based on edge strength, energy, entropy, etc. Making them robust takes a little effort. If you've had academic training in image processing you've likely heard of Harris, Sobel, Canny, and similar processing methods--none are magic bullets, but they're simple and dependable and will yield data you need.
An "edge image" consists of pixels representing the image gradient strength [and sometimes the gradient direction]. People may call this edge image something else, but it's the concept that matters.
What you then do with the edge data is another subject altogether. But one reason to think of edge images (or at least object borders) is that it reduces the amount of information your algorithm(s) will need to process.
Mean Shift (and related)
To get back to segmentation mentioned in the section on connected components, there are other methods for segmenting figures from a background: K-means, mean shift, and so on. You probably won't need any of those, but they're neat and worth studying.
Stroke Width Transform
This is an intriguing technique used to extract text from noisy backgrounds. Although it's intended for OCR, it could work for rope since the rope width is relatively constant, the rope shape varies, there are crossings, etc.
In short, and simplifying quite a bit, you can think of SWT as a means to find "strokes" (thick lines) by finding gradients antiparallel to each other. On either side of a stroke (or line), the edge gradient points normal to the object edge. The normal on one side of the stroke points opposite the direction of the normal on the other side of the stroke. By filtering for pixel-gradient pairs within a certain distance of each other, you can isolate certain strokes--even automatically. For your example the collection of points representing edge pairs for the rope would be much more common than other point pairs.
Non-Rigid Matching
There are techniques for matching non-rigid shapes, but they would not be worth exploring. If any of the techniques I mentioned above is unfamiliar to you, explore some of those first before you try any fancier algorithms.
CNNs, machine learning, etc.
Just don't even think of these methods as a starting point.
Other Considerations
If this were an application for industry, security, or whatnot, you'd have to determine how well your image processing worked under all environmental considerations. That's not an easy task, and can make all the difference between a setup that "works" in the lab and a setup that actually works in practice.
I hope that's of some help. Feel free to post a reply if I've confused more than helped, or if you want to explore some idea in more detail. Though I tried to touch on some common(ish) techniques, I didn't mention all the different ways of addressing this problem.
And briefly: once you have a skeleton, point network, or whatever representing a reduced data set for the rope and the red dot (the identified feature), a few techniques to find the items at the blue dots:
For a skeleton, trace along each "branch" of the rope outward from the know until the geodesic distance or straight-line 2D distance is the distance D that you want.
To use geometry, create a circle of width 1 - 2 pixels. Find the intersection of that circle and the rope. Find the center point of the intersections of circle and rope. (Also described above.)
Good luck!

How to use marching squares for multiple contours?

how to make marching squares proceed after it finds the first contour?
the contours in the image am working on are going to change quite often and because am in an embedded environment(android/ios) i would like a fast performance solution above all.
and using an external library isn't an option.
i tried connected component labeling but never got it to work as i have a PNG which isn't black and white (isn't thresholded) and if am not mistaken the CCL only works on black and white (binary) images.
i thought about saving the blob information to another vector and check if the newly found pixels fall within the earlier found blobs but i don't think that's fast enough as the vector gets filled with more and more blobs it gets more and more expensive to check every blob inside the vector.
which leaves me with my almost finished current approach which is erasing the contours i find and repeat until there's nothing left? but that's my currently used approach which seems expensive too.
and if there is no fast solution then can anyone suggest a different approach...even if that means a different algorithm.
Mark1: i chose marching squares because i only need the outline of the contours even if there are holes in theme.
i solved my problem by using an implementation of the marching squares algorithm that i found in the chipmunk2d physics library.

Target Detection - Algorithm suggestions

I am trying to do image detection in C++. I have two images:
Image Scene: 1024x786
Person: 36x49
And I need to identify this particular person from the scene. I've tried to use Correlation but the image is too noisy and therefore doesn't give correct/accurate results.
I've been thinking/researching methods that would best solve this task and these seem the most logical:
Gaussian filters
Convolution
FFT
Basically, I would like to move the noise around the images, so then I can use Correlation to find the person more effectively.
I understand that an FFT will be hard to implement and/or may be slow especially with the size of the image I'm using.
Could anyone offer any pointers to solving this? What would the best technique/algorithm be?
In Andrew Ng's Machine Learning class we did this exact problem using neural networks and a sliding window:
train a neural network to recognize the particular feature you're looking for using data with tags for what the images are, using a 36x49 window (or whatever other size you want).
for recognizing a new image, take the 36x49 rectangle and slide it across the image, testing at each location. When you move to a new location, move the window right by a certain number of pixels, call it the jump_size (say 5 pixels). When you reach the right-hand side of the image, go back to 0 and increment the y of your window by jump_size.
Neural networks are good for this because the noise isn't a huge issue: you don't need to remove it. It's also good because it can recognize images similar to ones it has seen before, but are slightly different (the face is at a different angle, the lighting is slightly different, etc.).
Of course, the downside is that you need the training data to do it. If you don't have a set of pre-tagged images then you might be out of luck - although if you have a Facebook account you can probably write a script to pull all of yours and your friends' tagged photos and use that.
A FFT does only make sense when you already have sort the image with kd-tree or a hierarchical tree. I would suggest to map the image 2d rgb values to a 1d curve and reducing some complexity before a frequency analysis.
I do not have an exact algorithm to propose because I have found that target detection method depend greatly on the specific situation. Instead, I have some tips and advices. Here is what I would suggest: find a specific characteristic of your target and design your code around it.
For example, if you have access to the color image, use the fact that Wally doesn't have much green and blue color. Subtract the average of blue and green from the red image, you'll have a much better starting point. (Apply the same operation on both the image and the target.) This will not work, though, if the noise is color-dependent (ie: is different on each color).
You could then use correlation on the transformed images with better result. The negative point of correlation is that it will work only with an exact cut-out of the first image... Not very useful if you need to find the target to help you find the target! Instead, I suppose that an averaged version of your target (a combination of many Wally pictures) would work up to some point.
My final advice: In my personal experience of working with noisy images, spectral analysis is usually a good thing because the noise tend to contaminate only one particular scale (which would hopefully be a different scale than Wally's!) In addition, correlation is mathematically equivalent to comparing the spectral characteristic of your image and the target.

Detecting curves in OpenCV

I am just starting to use OpenCV to detect specific curves in an image. First, I want to verify if there is a curve, and next, I would like to identify the type of curve according to vertical or horizontal convex or concave curve. Is there an available function in OpenCV? If not, can you give me some ideas about how can I possibly write such a function? Thanks! By the way, I'm using C++.
Template matching is not a robust way to solve this problem (its like looking at an object from a small pinhole) and edge detectors don't necessarily return you the true edges in the image; false edges such as those due to shadows are returned too. Further, you have to deal with the problem of incomplete edges and other problems that scales up with the complexity of the scene in your image.
The problem you posed, in general, is a very challenging one and, except for toy examples, there are no good solutions.
A rough attempt could be to first try to detect plausible edges using an edge detector (e.g. the canny edge detector suggested). Next, use RANSAC to try to fit a subset of the points in the detected edges to your curve model.
For e.g. let's say you are trying to detect a curve of the following form f(x) = ax^2 + bx + c. RANSAC will basically try to find from among the points in the detected edges, a subset of them that would best fit this curve model. To detect different curves, change f(x) accordingly and run RANSAC for each of them. You can then try to determine if the curve represented by f(x) really exists in your image using some heuristic applied to from the points that were assigned to it by RANSAC (e.g. if too few points were fitted to the model it is likely that the curve is not there. But how to determine a good threshold for the number of points?). You model will get more complex when you have to account for allowable transformation such as rotation etc.
The problem with this approach is you are basically trying fit what you think should be in the image to the points and sometimes, even if what you are looking for is not there, it will return you the "best possible" fit. For e.g. you have a whole bunch of points detected from a concentric circle. If you try to detect straight lines from these points, RANSAC will return you the best fit line! In fact, it could give you many different lines from different runs depending on which points it selected during its random initialization stage.
For more details on how to use RANSAC on this sort of problem, have a look at RANSAC for Dummies by Marco Zuliani. He also has a nice MATLAB toolbox to accompany this tech report, which you can probably port to the language of your choice.
Unless you know what you background looks like, or if you are in control of it e.g. by forcing a clean background, this is a very difficult problem to solve.