"Getting started" questions for NUnit (or NUnitLite) and .NET CF - unit-testing

I have an existing VS 2005 Std .NET Compact Framework application that I want to do some major refactorings on. Currently there is no unit testing in place, but I want to add this before messing with the code. I have no practical experience with unit testing, even though I know the theory (just never got around actually implementing it; I know: shame on me :-))
Here are some questions I am pondering at the moment:
a) As a beginner, should I use NUnit or NUnitLite (which claims to be easier to use)?
b) Should I aim for running the tests on the mobile device or on the desktop (except for device-specific code of course)? Currently the desktop looks more appealing, especially for including the tests in automated builds...
c) How is the class that I want to test usually included in the test project? My application is a .EXE file, i.e. I can not just reference it like a .DLL assembly from the test project (or can I? Never tried this ...). I checked various NUnit tutorials but either found no mention of that, or one tutorial suggested to copy and paste the class that I want to test into the test project (yuk!). Should I link to the original source code file in my test project? What about private methods, or dependencies on other classes?
d) Should I start modifying my original code to allow better testability, e.g. make private methods public, decouple etc.? This is a bit like refactoring before being able to test, which does not sound good to me ... Or is it better practice to not touch the original code at all in the beginning, even if this means less code coverage etc.?
e) Should I look into any other tools or addons that most people use?
Thanks in advance for any answers (I also appreciate answers if they are only to one or some of the above items).

First, I would recommend you a good book on unit testing: Pragmatic Unit Testing in C#.
It will introduce you to NUnit, but what's more important, the author will provide you a lot of advices how to write good unit tests in general. The xUnit test frameworks are not very complex and you'll get used to their API/workflow very quick. Challenging is the actual process of identifying boundary conditions, decrease coupling and design for testability. It's available as an eBook (PDF) or a printed copy.
Regarding your actual questions (the book will give you some answers, too):
#a) I've no experience with NUnit lite, thus I cannot give you any advice on this point.
#b) Unit tests are supposed to be very local in regard of their dependencies. You aim to test classes independent of each other, thus there would be no need to deploy it on a mobile device first. You won't run the full app, just test components in isolation. Hence, I would recommend to use your desktop machine as the target for your unit test environment. You'll get better turn-around times, too.
#c) You have to reference the assembly that contains the classes you want to test in your test project. The test project will be an assembly itself (DLL). A test runner executes this assembly and uses the stored meta information to run the contained test cases.
#d) It depends a lot on the state and design of your software. But in general I would use a divide and conquer strategy: Introduce interfaces between classes and start to refactor step by step. Write unit tests before you start to change the implementation. The interfaces keep the contracts up and running, but you can change the underlying implementation if necessary. Don't make private methods public just to make them testable. Private methods are internal helpers of the class that support public methods in doing their job. Since you test your public methods you'll assert that your private methods do the right thing.
#e) A helpful add in for Visual Studio is TestDriven.Net. It allows you to run NUnit tests directly from the IDE without changing to NUnit's GUI or console runner.

#c) I haven't tried it, but I would think VisualStudio would let you add a project reference from your test assembly to your actual code assembly, even if its an exe.
As for private methods and such, generally I don't test private methods. In theory, all the private stuff should be used by public or internal methods, so testing those should indirectly test the privates.
I do test public and internals though. One thing I find very helpful is the InternalsVisibleTo attribute:
[assembly:InternalsVisibleTo("MyTestAssembly")]
which you can use to make the internals of one assembly visible to another. I use this attribute to expose the internals to my test assembly, so that it can directly reference them.

Related

Learning About Unit Testing Using When and Should and TDD

The tests at my new job are nothing like the tests I have encountered before.
When they're writing their unit tests (presumably before the code), they create a class starting with "When". The name describes the scenario under which the tests will run (the fixture). They'll created subclasses for each branch through the code. All of the tests within the class start with "should" and they test different aspects of the code after running. So, they will have a method for verifying that each mock (DOC) is called correctly and for checking the return value, if applicable. I am a little confused by this method because it means the exact same execution code is being run for each test and this seems wasteful. I was wondering if there is a technique similar to this that they may have adapted. A link explaining the style and how it is supposed to be implemented would be great. I sounds similar to some approaches of BDD I've seen.
I also noticed that they've moved the repeated calls to "execute" the SUT into the setup methods. This causes issues when they are expecting exceptions, because they can't use built-in tools for performing the check (Python unittest's assertRaises). This also means storing the return value as a backing field of the test class. They also have to store many of the mocks as backing fields. Across class hierarchies it becomes difficult to tell the configuration of each mock.
They also test code a little differently. It really comes down to what they consider an integration test. They mock out anything that steals the context away from the function being tested. This can mean private methods within the same class. I have always limited mocking to resources that can affect the results of the test, such as databases, the file system or dates. I can see some value in this approach. However, the way it is being used now, I can see it leading to fragile tests (tests that break with every code change). I get concerned because without an integration test, in this case, you could be using a 3rd party API incorrectly but your unit tests would still pass. I'd like to learn more about this approach as well.
So, any resources about where to learn more about some of these approaches would be nice. I'd hate to pass up a great learning opportunity just because I don't understand they way they are doing things. I would also like to stop focusing on the negatives of these approaches and see where the benefits come in.
If I understood you explanation in the first paragraph correctly, that's quite similar to what I often do. (Depending on whether the testing framework makes it easy or not. Also many mocking frameworks don't support it, but spy frameworks like Mockito do better.)
For example see the stack example here which has a common setup (adding things to the stack) and then a bunch of independent tests which each check one thing. Here's still another example, this time one where none of the tests (#Test) modify the common fixture (#Before), but each of them focuses on checking just one independent thing that should happen. If the tests are very well focused, then it should be possible to change the production code to make any single test fail while all other tests pass (I wrote about that recently in Unit Test Focus Isolation).
The main idea is to have each test check a single feature/behavior, so that when tests fail it's easier to find out why it failed. See this TDD tutorial for more examples and to learn that style.
I'm not worried about the same code paths executed multiple times, when it takes a millisecond to run one test (if it takes more than a couple of seconds to run all unit tests, the tests are probably too big). From your explanation I'm more worried that the tests might be too tightly coupled to the implementation, instead of the feature, if it's systematic that there is one test for each mock. The name of the test would be a good indicator of how well structured or how fragile the tests are - does it describe a feature or how that feature is implemented.
About mocking, a good book to read is Growing Object-Oriented Software Guided by Tests. One should not mock 3rd party APIs (APIs which you don't own and can't modify), for the reason you already mentioned, but one should create an abstraction over it which better fits the needs of the system using it and works the way you want it. That abstraction needs to be integration tested with the 3rd party API, but in all tests using the abstraction you can mock it.
First, the pattern that you are using is based on Cucumber - here's a link. The style is from the BDD (Behavior-driven development) approach. It has two advantages over traditional TDD:
Language - one of the tenants of BDD is that the language you use influences the thoughts you have by forcing you to speak in the language of the end user, you will end up writing different tests than when you write tests from the focus of a programmer
Tests lock code - BDD locks the code at the appropriate level. One problem common in testing is that you write a large number of tests, which makes your codebase more brittle as when you change the code you must also change a large number of tests too. BDD forces you to lock the behavior of your code, rather than the implementation of your code. This way, when a test breaks, it is more likely to be meaningful.
It is worth noting that you do not have to use the Cucumber style of testing to achieve these affects and using it does add an extra layer of overhead. But very few programmers have been successful in keeping the BDD mindset while using traditional xUnit tools (TDD).
It also sounds like you have some scenarios where you would like to say 'When I do , then verify '. Because the current BDD xUnit frameworks only allow you to verify primitives (strings, ints, doubles, booleans....), this usually results in a large number of individual tests (one for each Assert). It is possible to do more complicated verifications using a Golden Master paradigm test tool, such as ApprovalTests. Here's a video example of this.
Finally, here's a link to Dan North's blog - he started it all.

On dependencies in unit testing

I am new to unit testing, but tend to think that I believe in beautifully written code, and properly designed architectures.
My question is. Aren't unit tests focusing too much on dependencies between objects? What do you do when your unit test fails because a dependency your method used to call befor is no longer called (a design decision) or your method calls another method or a dependency (again a design decision) Do you redesign your tests? If that's the case, then unit testing helps very little to reduce couple and improve cohesion between components.
Maybe my opinion is too broad, but in general how do people treat dependencies in properly mannered unit tests. I guess that the best way would be to have no dependencies at all, and every method relied on the parameters that were given to it, but this is hardly the case in reality. In addition, faking every dependency method for every possible call is also a bit subjective and time wasting, because at a future point in time, the class under test may simply no longer need the dependency.
I would suggest that you look at Test Driven Development (TDD) as I believe this technique will help you with your design issues. By writing unit tests before writing the production code, you will need to think about how to make your production code testable. This is better then the test later approach, where you write the production code first and then try to shoe-horn tests around them.
To deal with dependencies, think about what dependencies are causing you problems.
External Dependencies
If your tests use an external resource, such as a file, then you are writing an integration test, not a unit test. I've written many tests that use an external file, and I simply created a copy of the file in my test project. This file copy will contain dummy data required for my tests.
If your test requires a database, then again your writing an integration test. Personally I create a local copy of the database on my PC and run my tests against it.
Object Dependencies
If you are worried about code dependencies (e.g. your test will fail if a private method's signature is changed) then you are testing at the wrong level of abstraction. By that I mean make sure that your tests are calling public API's and not private ones. To cement this point, use interfaces for your objects to ensure an expected contract for an object that implements it.
I would also recommend that you try using a mocking framework such as RhinoMocks, Moq or TypeMock
A mocking framework will help you remove the dependency on, for example, having a database available for your tests. I personally use TypeMock, it's not cheap but it's by far the most powerful tool out there.
If you are talking about Unit testing you have no dependencies, cause a unit test tests only a single class (Java, C++, Ruby, Python). What you are talking about sounds more like integration testing which is different. Furthermore if you have to much dependencies your coupling is to high which is not very good, but of course not always avoidable.
Unit tests shall test the behavior, not the implementation. That way, one can rely on the unit tests when changing the implementation, or when refactoring the code. Removing a dependency (via inlining the class for instance), does not break the test.
Testing the implementation leads to brittle tests, that gets in the way when refactoring.

Unit testing programs that mostly interact with external resources

I would like to start doing more unit testing in my applications, but it seems to me that most of the stuff I do is just no suitable to be unit tested. I know how unit tests are supposed to work in textbook examples, but in real world applications they do not seem of much use.
Some applications I write have very simple logic and complex interactions with things that are outside my control. For instance I would like to write a daemon which reacts to signals sent by some applications, and changes some user settings in the OS. I can see three difficulties:
first I have to be able to talk with the applications and be notified of their events;
then I need to interact with OS whenever I receive a signal, in order to change the appropriate user settings;
finally all of this should work as a daemon.
All these things are potentially delicate: I will have to browse possibly complex APIs and I may introduce bugs, say by misinterpreting some parameters. What can unit testing do for me? I can mock both the external application and the OS, and check that given a signal from the application, I will call the appropriate API method on the OS. This is... well, the trivial part of the application.
Actually most of the things I do involve interaction with databases, the filesystem or other applications, and these are the most delicate parts.
For another example look at my build tool PHPmake. I would like to refactor it, as it is not very well-written, but I fear to do this as I have no tests. So I would like to add some. The point is that the things which may be broken by refactoring may not be caught by unit tests:
One of things to do is deciding which things are to be built and which one are already up to date, and this depends on the time of last modification of the files. This time is actually changed by external processes, when some build command is fired.
I want to be sure that the output of external processes is displayed correctly. Sometimes the buikd commands require some input, and that should be also managed correctly. But I do not know a priori which processes will be ran - it may be anything.
Some logic is involved in pattern matching, and this may seem to be testable part. But the functions which do the pattern matching use (ni addition to their own logic) the PHP function glob, which works with the filesystem. If I just mock a tree in place of the actual filesystem, glob will not work.
I could go on with more examples, but the point is the following. Unless I have some delicate algorithms, most of what I do involves interaction with external resources, and this is not suitable for unit testing. More that this, often this interaction is actually the non-trivial part. Still many people see unit testing as a basic tool. What am I missing? How can I learn be a better tester?
I think you open a number of issues in your question.
Firstly, when your application integrates with external environments such as OS, other threads, etc. then you have to separate (1) the logic that is tied in with the external enviroment and (2) your business-code.. that is, the stuff your application does. This is no different to how you would separate GUI and SERVER in an application (or web application).
Secondly, you ask if you should test simple logic. I'd say, it depends. Often simple fetch/store functionality is nice to have tests for. It's like the foundation of your application.. hence its important. Other business stuff built upon your foundation that is very simple, you may easily find yourself both feeling that you are wasting your time, and mostly you are :-)
Thirdly, refactory an existing program and testing it in its existing state may be a problem. If your PHP program produces a set of files on the basis of some input, well, maybe thats your entry point to tests are. Sure the tests may be high-level, but it's an easy way to ensure that after the refactoring, your program produces the same output. Hence, aim for higher-level tests in that situation in the start phase of your refactoring efforts.
I'd like to recommend some literature, but I can only come up with one title. "Working Effectively with Legacy Code" By Micheal Feathers. It's a good start. Another would be "xUnit Test Patterns: Refactoring Test Code" by Gerard Meszaros (although that book is much more sloppy and FULL of copy paste text).
As regards your issue about existing code bases that aren't currently covered by tests in which you would like to start refactoring, I would suggest reading:
Working Effectively with Legacy Code By Micheal Feathers.
That book gives you techniques on how to deal with the issues you might be facing with PHPMake. It provides ways to introduce seams for testing, where there previously weren't any.
Additionally, with code that touches say the file systems, you can abstract the file system calls behind a thin wrapper, using the Adapter Pattern. The unit tests would be against a fake implementation of the abstract interface that the wrapping class implements.
At some point you get to a low enough level where a unit of code can't be isolated for unit testing as these depend on library or API calls (such as in the production implementation of the wrapper). Once this happens integration tests are really the only automated developer tests you can write.
I recommend this google tech-talk on unit testing.
The video boils down to
write your code so that it knows as little about how it will be used as possible. The less assumptions your code makes, the easier it is to test. Avoid complex logic in constructors, the use of singletons, static class members, and so on.
isolate your code from the external world (comms, databases, real time), and make sure that your code only talks to your isolation layer. Otherwise, writing tests will be a nightmare in terms of 'fake environment' setup.
unit tests should test stories; that is what we really understand and care for; given a class with a method foo(), testFoo() is uninformative. They actually recommend test names like itShouldCloseConnectionEvenWhenExceptionThrown(). Ideally, your stories should cover enough functionality that you can rebuild the spec from the stories.
NOTE: the video and this post use Java as an example; however, the main points stand for any language.
"Unit tests" tests one unit of your code. No external tools should be involved. This seems to be complicated for your first app (without knowing to much about it ;)) but the phpMake is unit-testable - I'm sure ... because ant, gradle and maven are unit-testable too ;)!
But of course you can test your first application automated too. There are several different layers one could test an application.
So the task for you is to find an automated way to test your app - be it integration testing or whatever.
E.g. you could write shell scripts, which asserts some output! With that you make sure your application behaves correctly ...
Tests of interactions with external resources are integration tests, not unit tests.
Tests of your code to see how it would behave if particular external interactions had occurred can be unit tests. These should be done by writing your code to use dependency injection, and then, in the unit test, injecting mock objects as dependencies.
For example, consider a piece of code that adds the results of a call to one service to the results of a call to another service:
public int AddResults(IService1 svc1, IService2 svc2, int parameter)
{
return svc1.Call(parameter) + svc2.Call(parameter);
}
You can test this by passing in mock objects for the two services:
private class Service1Returns1 : IService1
{
public int Call(int parameter){return 1;}
}
private class Service2Returns1 : IService2
{
public int Call(int parameter){return 1;}
}
public void Test1And1()
{
Assert.AreEqual(2, AddResults(new Service1Returns1(), new Service2Returns1(), 0));
}
First of all, if unit testing doesn't seem like it would be much use in your applications, why do you even want to start doing more of it? What is motivating you to care about it? It is definitely a waste of time if a) you do everything perfect the first time and nothing ever changes or b) you decide it's a waste of time and do it poorly.
If you do think that you really want to do unit testing, the answer to your questions are all the same: encapsulation. In your daemon example, you could create a ApplcationEventObeservationProxy with a very narrow interface that just implements pass through methods. The purpose of this class is to do nothing but completely encapsulate the rest of your code from the third-party event observing library (nothing means nothing -- no logic here). Do the same thing for OS settings. Then you can completely unit test the class that does actions based on events. I'd recommend have a separate class for the daemon-ness that just wraps your main class -- it will make the testing easier.
There are a couple of benefits to this approach outside of unit testing. One is that if you encapsulate the code that interacts directly with the OS, it's easier to switch it out. This kind of code is particularly prone to breakage outside of your control (i.e., MS patchsets). You will also probably want to support more than one OS, and if the OS specific logic is not tangled with the rest of your logic, it will be easier. The other benefit is that you'll be forced to realize that there is more business logic in your app than you think. :)
Finally, don't forget that unit testing is a foundation for a good product, but not the only ingredient. Having a set of tests that explore and verify the OS API calls you'll be using is a good strategy for the "hard" parts of this problem. You should also have end to end tests that ensure the events in your applications cause the OS setting changes.
As other answers suggested Working Effectively with Legacy Code By Micheal Feathers is a good read. If you have to deal with legacy code, and you want to make sure that the systems interaction work as expected, try writing integration tests first. And then it is more appropriate to write Unit Tests to test the behaviour of methods that are valued from the requirements point of view. You Tests serve a whole different purpose than the integration tests. Unit Tests are more likely to improve the design of your system than testing how everything hangs to gather.

Yet another unit testing / code coverage question. Is my approach sane?

This is yet another Unit Testing question. I'm trying to draw knowledge from a number of places regarding how to proceed, and I wanted to bounce my current understanding off of the collection of experts here.
assume a project for which all dependencies except opengl funkiness are statically linked (except the c run time)
My current understandings so far:
It is ok to make unit tests that only test the public interface of classes because ultimately the class is the unit that is most sane to test. Problems can be hunted down from there (inside the offending class), and a class that is too complicated to debug, requiring unit testing of its internal structures, is a good candidate for having it broken up.
This practice makes it possible to write unit tests in its own project, from a Visual studio perspective.
A code coverage tool, like CoverageMeter, is installed in the main project, and given its own build configuration, like test instead of debug. This will place the metrics inside the object code for the external "viewer" tool to get metrics.
At the same time, the main application is built as a library in the Test configuration, so that the external Unit Test project uses the object code to run its tests. At the same time further, the CoverageMeter code is included in the library that the Unit Test project uses for its run, making the coverage metrics measure how much code is being exercised in unit tests.
With a testing configuration made separate from release or debug, placeholder libraries can be used to break dependencies like opengl.
My questions really are:
Is this pie in the sky stuff?
Do I have my understandings right?
can I actually do the first sentence of 3, is that how I would get the Unit test code to run the object code build in the main app project, or is there another way?
Am I insane?
I am open to any criticism.
Thanks in advance for your time.
UPDATE: So it looks like I have the right idea of what to exercise in my unit tests, but I'm concerned about 3. Is my understanding of those components correct?
Thanks for your responses. Its good to get feedback! This will be my first big project, and I'm trying to understand all of the pieces involved. I appreciate the pointers!
Josh
I test everything but private methods, since anything else can be called from outside the class, and it would be helpful to ensure that if someone else calls my function it won't cause problems for them.
If they are also testing calling my code then if they make an assumption that is wrong, we can know quickly that a recent change broke something.
Update: I would distribute any tests for public functions with the distribution and internally the rest of the tests. If people are going to write against my API then unit tests serve as a good source of documentation, to show what I expect to happen, and how I expect to treat invalid parameters.

Why do I need a mocking framework for my unittests?

Recently there has been quite some hype around all the different mocking frameworks in the .NET world. I still haven't quite grasped what is so great about them. It doesn't seem to be to hard to write the mocking objects I need myself. Especially with the help of Visual Studio I quickly can write a class that implements the interface I want to mock (it auto-generates almost everything for me) and then write an implementation for the method(s) I need for my test. Done! Why going through the hassle of understanding a mocking framework for the sole purpose of saving a few lines of code. Or is a mocking framework not only about saving lines of code?
Once I finally got the hang of mock objects, I realized that they're essential for unit testing for the same reason that double blind testing or control groups are essential for scientific trials: they isolate what you're actually testing.
If you're testing a class which has quite a bit of interaction via other interfaces, you not only save the lines of code on having to mock each and every interface, but you also gain the ability to do things like "throw an exception if an unexpected method is called" or "exception if these methods are called out of order". You can get remarkably sophisticated with mock frameworks, and though I'll quickly admit there's a large learning curve, when you get up to speed they'll help make your unit tests more thorough without being bloated.
You actually identified one of the key points of a mock framework in your question. The fact that you code the mocks yourself is not something the developer should be concerned with. The mocking frameworks give you implementations of interfaces programatically, plus they are functional (based on your setup of the mock).
What do you do if you are testing an ICustomerDAO, for example, and you want to test some method 14 times each with different outcomes? Implement 14 different classes manually? I doubt that anyone would want to do that.
Mocks give you the power to define what will happen with parts of your classes when you are not concerned with whether or not they will actually work, like throwing exceptions whenever you want them to, returning zero results and making sure you handle that correctly, etc...
They are a great unit testing tool.
Previous questions that may help:
What is a mock and when should you use it?
Mockist vs classical TDD
I find that using a mocking framework allows me to generate tests a lot faster and with better verification that what I expect to happen in the test actually is happengin. I have in the past implemented stubs or fakes myself. I found that I needed to generate stubs specific to the test that I wanted and this took a lot of time. I can create the same test much faster using a mocking framework. The good ones support the generation of fakes, stubs or mocks with straightforward syntax.
It takes a while to get the hang of it, I avoided it for a while but now wouldn't try to work without a mocking framework for the reasons #Chamelaeon states.
Roy Osherove had a poll about Mock Frameworks and down in the comment section, there is a discussion (albeit brief) about whether one needs a Mock Framework or not.
I personally have been manually doing exactly as you stated and it has worked well enough, but this has mainly been out of habit rather than a closely-held opinion on mock frameworks in general.
Well I certainly don't think that you NEED a mocking framework. It's a framework like any other, and it's ultimately designed to save you some time and effort. You can also do things like roll your own common data structures like stacks and queues, but isn't it generally easier to just use the ones built into the class libraries that ship with the compiler/IDE of your language of choice?
I'm sure there are other compelling reasons for using mocking frameworks, though I'd leave it to the TDD and unit testing gurus to answer.
For the same reason you wouldn't try to write unit tests without NUnit. A mocking framework will assist you in verifying state and behavior over hundreds of unit tests. It's worth the 2 weeks or so of pain to get up to speed and really helps you focus on what needs to be tested.
One thing that troubles me about a mocking framework is that "what a function should o/p given an i/p" via
when(mock.someMethod("some arg")).thenReturn("something");
statement is spread across many unit test classes.
Let me elaborate with an example. Lets say there was a DAO Interface function getEmp(int EmpID) which was returning an Employee Object when passed an Employee ID as a parameter. Assume that this function was being mocked by 10 different unit test classes. Now if in the future, this function were changed to return a newer version of the Employee Object, one would have to go to each of the 10 different classes to update this change.
The disadvantages are as follows...
a) I don't know how to figure out all the classes which mock this function so that I can go update this change.
b) My existing test cases which consumes the mock DAO object continue to be blissfully unaware of the changes that have happened to the DAO Interface because the mock has not changed and hence continue to be green.
Ideally, if I were to have coded a single mock class myself and consumed it everywhere, I would have just one place to update for the newer version of the Employee object. Also, once I update at this one place, all my existing test cases which consume the mock would break and I would then know exactly what places I need to go and do an update for the new Employee Object.
Any thoughts on my views..
One of the good things about a mocking framework is that it allows setting expectations on the objects being mocked. With the expectations I can then set up all sorts of conditions to exercise the code thats being tested.
An isolation framework or mocking framework allows you to test the code you want, without its dependencies. It makes for short running tests, allows you to debug quickly, and easily build a safety net of tests around the code. Different frameworks have different features, and as said before - it's a tool, and you should select the right tool for the job.
I've use rhino mocks for a mocking framework. I and 5 other developers used it on a large enterprise application that was an 8 month project. We used tdd on the project. Was it worth it? I guess. Was there such a massive huge selling point to using mocks that I have to use it on every project? In my opinion, no. It is not something that is necessary, it is just a tool that you can use if you want to try it out. Some projects you can roll out your own mock classes as some here say they prefer - it is easier. Other projects are larger and may require a mocking framework. The key word (in my opinion) is MAY require... how much code coverage do you require? To me, that is another consideration to using mocks. The project I did with tdd/rhino mocks we were required to have 80% code coverage so the mocks helped us attain that. If our code coverage requirements were less, for example 40%, we probably would have not used a mocking framework and just wrote our own mock classes as others mention they do.