How to enable_shared_from_this of both parent and derived - c++

I have simple base and derived class that I want both have shared_from_this().
This simple solution:
class foo : public enable_shared_from_this<foo> {
void foo_do_it()
{
cout<<"foo::do_it\n";
}
public:
virtual function<void()> get_callback()
{
return boost::bind(&foo::foo_do_it,shared_from_this());
}
virtual ~foo() {};
};
class bar1 : public foo , public enable_shared_from_this<bar1> {
using enable_shared_from_this<bar1>::shared_from_this;
void bar1_do_it()
{
cout<<"foo::do_it\n";
}
public:
virtual function<void()> get_callback()
{
return boost::bind(&bar1::bar1_do_it,shared_from_this());
}
};
Causes exception tr1::bad_weak_ptr in following code:
shared_ptr<foo> ptr(shared_ptr<foo>(new bar1));
function<void()> f=ptr->get_callback();
f();
So after "googling" I have found following solution:
class bar2 : public foo {
void bar2_do_it()
{
cout<<"foo::do_it\n";
}
shared_ptr<bar2> shared_from_this()
{
return boost::static_pointer_cast<bar2>(foo::shared_from_this());
}
public:
virtual function<void()> get_callback()
{
return boost::bind(&bar2::bar2_do_it,shared_from_this());
}
};
And now it works.
Is there any better and more convinient and correct way to enable_shared_from_this for both parent and child?
Thanks

The OP solution can be made more convenient by defining the following on the base class.
protected:
template <typename Derived>
std::shared_ptr<Derived> shared_from_base()
{
return std::static_pointer_cast<Derived>(shared_from_this());
}
This can be made more convenient by placing it in a base class (for reuse).
#include <memory>
template <class Base>
class enable_shared_from_base
: public std::enable_shared_from_this<Base>
{
protected:
template <class Derived>
std::shared_ptr<Derived> shared_from_base()
{
return std::static_pointer_cast<Derived>(shared_from_this());
}
};
and then deriving from it as follows.
#include <functional>
#include <iostream>
class foo : public enable_shared_from_base<foo> {
void foo_do_it()
{
std::cout << "foo::do_it\n";
}
public:
virtual std::function<void()> get_callback()
{
return std::bind(&foo::foo_do_it, shared_from_base<foo>());
}
};
class bar1 : public foo {
void bar1_do_it()
{
std::cout << "bar1::do_it\n";
}
public:
virtual std::function<void()> get_callback() override
{
return std::bind(&bar1::bar1_do_it, shared_from_base<bar1>());
}
};

Sorry, but there isn't.
The problem is that shared_ptr<foo> and shared_ptr<bar1> are different types. I don't understand everything that's going on under the hood, but I think that when the constructor returns and is assigned to a shared_ptr<foo>, the internal weak_ptr<bar1> sees that nothing is pointing to it (because only a shared_ptr<bar1> would increment the counter) and resets itself. When you call bar1::shared_from_this in get_callback, you get the exception because the internal weak_ptr isn't pointing to anything.
Essentially, enable_shared_from_this only seems to work transparently from a single class in a hierarchy. If you try implementing it manually, the problem should become obvious.

A similar solution to #evoskuil that reduces boilerplate in derived classes should you want to implement a shared_from_this() function, resulting in the following code at the point of use in the class:
auto shared_from_this() {
return shared_from(this);
}
This uses 'shim' functions outside of the class. By doing it that way it also provides a clean way to do this for classes who's interface can't be modified but derive from enable_shared_from_this - e.g.
auto shared_that = shared_from(that);
Note: Use of auto for return types here will depend upon the age of your compiler.
Shim functions that could be placed in a library header:
template <typename Base>
inline std::shared_ptr<Base>
shared_from_base(std::enable_shared_from_this<Base>* base)
{
return base->shared_from_this();
}
template <typename Base>
inline std::shared_ptr<const Base>
shared_from_base(std::enable_shared_from_this<Base> const* base)
{
return base->shared_from_this();
}
template <typename That>
inline std::shared_ptr<That>
shared_from(That* that)
{
return std::static_pointer_cast<That>(shared_from_base(that));
}
The above code relies on the fact that the type passed to shared_from(...) inherits from std::enable_shared_from_this<Base> at some point in its ancestry.
Calling shared_from_base will figure out what type that ultimately was. Since we know that That inherits from Base, a static downcast can be made.
Probably there are some pathological corner cases with classes having type conversion operators.. but that's unlikely to occur in code not designed to break this.
Example:
struct base : public std::enable_shared_from_this<base> {};
struct derived : public base
{
auto shared_from_this() {
return shared_from(this);
}
// Can also provide a version for const:
auto shared_from_this() const {
return shared_from(this);
}
// Note that it is also possible to use shared_from(...) from
// outside the class, e.g.
// auto sp = shared_from(that);
};
template <typename X>
struct derived_x : public derived
{
auto shared_from_this() {
return shared_from(this);
}
};
Compilation test:
int main()
{
auto pbase = std::make_shared<base>();
auto pderived = std::make_shared<derived>();
auto pderived_x = std::make_shared<derived_x<int> >();
auto const& const_pderived = *pderived;
const_pderived.shared_from_this();
std::shared_ptr<base> test1 = pbase->shared_from_this();
std::shared_ptr<derived> test2 = pderived->shared_from_this();
std::shared_ptr<derived_x<int> > test3 = pderived_x->shared_from_this();
return 0;
}
https://onlinegdb.com/SJWM5CYIG
Prior solution that I posted, kept to make the comments still make sense - this placed the functions in the base class which had some problems - particularly non-uniformity between the required implementation for 'normal' classes and template classes.
Additionally the implementation in the base class would need to be repeated for new class hierarchies which is not all that DRY.
Furthermore the base class function suffered from the possibility of misuse by supplying a base class pointer from a different object. The newer scheme above avoids this entirely and the runtime assert(...) check goes.
Old implementation:
#include <cassert>
#include <memory>
class base : public std::enable_shared_from_this<base>
{
protected:
template <typename T>
std::shared_ptr<T> shared_from(T* derived) {
assert(this == derived);
return std::static_pointer_cast<T>(shared_from_this());
}
};
class derived : public base
{
public:
auto shared_from_this() {
return shared_from(this);
}
};
template <typename X>
class derived_x : public derived
{
public:
auto shared_from_this() {
return this->template shared_from(this);
}
};
int main()
{
auto pbase = std::make_shared<base>();
auto pderived = std::make_shared<derived>();
auto pderived_x = std::make_shared<derived_x<int> >();
std::shared_ptr<base> test1 = pbase->shared_from_this();
std::shared_ptr<derived> test2 = pderived->shared_from_this();
std::shared_ptr<derived_x<int> > test3 = pderived_x->shared_from_this();
return 0;
}

Quite easy; inherit public shared_from_this only in your base class. Implement an accessor in your derived class that casts to the appropriate type;
std::shared_ptr<Derived> shared()
{
return std::dynamic_pointer_cast<Derived>(Base::shared_from_this());
}

With c++23 deducing this, things become much easier. https://godbolt.org/z/j499WK58Y
#include <memory>
#include <iostream>
#include <functional>
using namespace std;
struct new_enable_shared_from_this :
public std::enable_shared_from_this<new_enable_shared_from_this> {
template <typename Self>
auto new_shared_from_this(this Self& self) {
return std::static_pointer_cast<Self>(self.shared_from_this());
}
};
class foo : public new_enable_shared_from_this {
void foo_do_it()
{
cout<<"foo::do_it\n";
}
public:
virtual function<void()> get_callback()
{
return bind(&foo::foo_do_it,new_shared_from_this());
}
virtual ~foo() {};
};
class bar1 : public foo {
void bar1_do_it()
{
cout<<"foo::do_it\n";
}
public:
virtual function<void()> get_callback()
{
return bind(&bar1::bar1_do_it,new_shared_from_this());
}
};
int main() {
auto pf = std::make_shared<foo>();
pf->get_callback()();
auto pb = std::make_shared<bar1>();
pb->get_callback()();
}
This is the previous answer:
Well, I don't like virtual function. Virtual function is just for type erasing, but we don't need type erasing all the time. So, provide a mechanism for type erasing is enough. Here is an example that don't use virtual function:
#include <iostream>
#include <functional>
#include <memory>
using namespace std;
template<typename derived>
class foo_imp {
void foo_do_it()
{
cout<<"foo::do_it\n";
}
public:
function<void()> get_callback()
{
auto&& d = static_cast<derived&>(*this);
return bind(&foo_imp::foo_do_it, d.shared_from_this());
}
};
template<typename derived>
class bar_imp {
void bar_do_it()
{
cout<<"bar::do_it\n";
}
public:
function<void()> get_callback()
{
auto&& d = static_cast<derived&>(*this);
return bind(&bar_imp::bar_do_it, d.shared_from_this());
}
};
struct foo : public foo_imp<foo>, public enable_shared_from_this<foo> {};
struct bar : public bar_imp<bar>, public enable_shared_from_this<bar> {};
struct v_foo {
virtual function<void()> get_callback() = 0;
};
template <typename T>
std::shared_ptr<v_foo> convert(const std::shared_ptr<T>& st) {
struct _ : public v_foo {
_(const std::shared_ptr<T>& st) : _st{st} {}
function<void()> get_callback() override {
return _st->get_callback();
}
std::shared_ptr<T> _st;
};
return std::make_shared<_>(st);
}
int main() {
auto sf = make_shared<bar>();
sf->get_callback()();
auto svf = convert(sf);
svf->get_callback()();
auto sb = make_shared<foo>();
sb->get_callback()();
auto svb = convert(sb);
svb->get_callback()();
}

#include <memory>
template<class T>
class Base : public std::enable_shared_from_this<T> {
};
class Derived : public Base<Derived> {
std::shared_ptr<Derived> getDerived() { return shared_from_this(); }
};

Related

Polymorphism with templated class

I created a Foo class which needs to be used only as a shared pointer, so I made the constructor private to prevent client to use Foo directly:
#include <memory>
class Foo {
public:
static std::shared_ptr<Foo> Create() {
return std::shared_ptr<Foo>(new Foo());
}
std::shared_ptr<Foo> Copy() {
return std::shared_ptr<Foo>(new Foo(*this));
}
private:
Foo() = default;
};
I then updated Foo to use the CRTP pattern so I could have a class Bar inherit from it without having to re-define the Create() and Copy() methods:
#include <memory>
template <class Self>
class Foo {
public:
template <class... Args>
static std::shared_ptr<Self> Create(Args&&... args) {
return std::shared_ptr<Self>(new Self(std::forward<Args>(args)...));
}
virtual std::shared_ptr<Self> Copy() {
return std::shared_ptr<Self>(new Self(*this));
}
private:
Foo() = default;
};
class Bar : public Foo<Bar> {};
Then I needed to provide a non-templated FooBase interface that would provide some functions shared by all derived classes:
#include <memory>
class FooBase {
public:
virtual void DoSomething() =0;
};
template <class Self>
class Foo : public FooBase {
public:
template <class... Args>
static std::shared_ptr<Self> Create(Args&&... args) {
return std::shared_ptr<Self>(new Self(std::forward<Args>(args)...));
}
virtual std::shared_ptr<Self> Copy() {
return std::shared_ptr<Self>(new Self(*this));
}
virtual void DoSomething() override { }
private:
Foo() = default;
};
class Bar : public Foo<Bar> {
public:
virtual void DoSomething() override { }
};
Now I also need to expose the Copy() method to the Foobar interface, but I cannot find any elegant ways to do it without changing the name for the interface (e.g. CopyBase())
#include <memory>
class FooBase {
public:
virtual void DoSomething() =0;
// Expose Copy method by using a different name.
virtual std::shared_ptr<FooBase> CopyBase() const =0;
};
template <class Self>
class Foo : public FooBase {
public:
template <class... Args>
static std::shared_ptr<Self> Create(Args&&... args) {
return std::shared_ptr<Self>(new Self(std::forward<Args>(args)...));
}
virtual std::shared_ptr<FooBase> CopyBase() const override {
return Copy();
}
virtual std::shared_ptr<Self> Copy() {
return std::shared_ptr<Self>(new Self(*this));
}
virtual void DoSomething() override { }
private:
Foo() = default;
};
class Bar : public Foo<Bar> {
public:
virtual void DoSomething() override { }
};
This code works, but I feel that there must be a better way to do this. I exposed my thinking process in details as I suspect that the flaws might be in the design, so I'm wondering if anyone could help me gain a different perspective on this issue.
Thanks for your time!
covariant return type is only possible with regular pointer or reference, not with smart pointer.
Additional issue with CRTP is that class is incomplete, so covariance cannot be used neither.
The traditional way is indeed to split the clone in 2 part, a virtual one (private) and a public (non-virtual) one, something like:
template <typename Derived, typename Base>
class Clonable : public Base
{
public:
template <class... Args>
static std::shared_ptr<Derived> Create(Args&&... args) {
return std::shared_ptr<Derived>(new Derived(std::forward<Args>(args)...));
}
std::shared_ptr<Derived> Clone() const {
return std::shared_ptr<Derived>(static_cast<Derived*>(vclone()));
}
private:
// Cannot use covariant-type `Derived*` in CRTP as Derived is not complete yet
Base* vclone() const override {
return new Derived(static_cast<const Derived&>(*this));
}
};
And then
class FooBase {
public:
virtual ~FooBase() = default;
virtual void DoSomething() = 0;
// Expose Copy method by using a different name.
std::shared_ptr<FooBase> Clone() const { return std::shared_ptr<FooBase>(vclone()); }
private:
virtual FooBase* vclone() const = 0;
};
class Bar : public Clonable<Bar, FooBase> {
public:
void DoSomething() override { }
};
Demo

How to override a templated function from non-templated parent class [duplicate]

Is it possible to declare some type of base class with template methods which i can override in derived classes? Following example:
#include <iostream>
#include <stdexcept>
#include <string>
class Base
{
public:
template<typename T>
std::string method() { return "Base"; }
};
class Derived : public Base
{
public:
template<typename T>
std::string method() override { return "Derived"; }
};
int main()
{
Base *b = new Derived();
std::cout << b->method<bool>() << std::endl;
return 0;
}
I would expect Derived as the output but it is Base. I assume it is necessary to make a templated wrapper class which receives the implementing class as the template parameter. But i want to make sure.
1) Your functions, in order to be polymorphic, should be marked with virtual
2) Templated functions are instantiated at the POI and can't be virtual (what is the signature??How many vtable entries do you reserve?). Templated functions are a compile-time mechanism, virtual functions a runtime one.
Some possible solutions involve:
Change design (recommended)
Follow another approach e.g. multimethod by Andrei Alexandrescu (http://www.icodeguru.com/CPP/ModernCppDesign/0201704315_ch11.html)
Template methods cannot be virtual. One solution is to use static polymorphism to simulate the behavior of "template virtual" methods:
#include <iostream>
#include <stdexcept>
#include <string>
template<typename D>
class Base
{
template<typename T>
std::string _method() { return "Base"; }
public:
template<typename T>
std::string method()
{
return static_cast<D&>(*this).template _method<T>();
}
};
class Derived : public Base<Derived>
{
friend class Base<Derived>;
template<typename T>
std::string _method() { return "Derived"; }
public:
//...
};
int main()
{
Base<Derived> *b = new Derived();
std::cout << b->method<bool>() << std::endl;
return 0;
}
where method is the interface and _method is the implementation. To simulate a pure virtual method, _method would absent from Base.
Unfortunately, this way Base changes to Base<Derived> so you can no longer e.g. have a container of Base*.
Also note that for a const method, static_cast<D&> changes to static_cast<const D&>. Similarly, for an rvalue-reference (&&) method, it changes to static_cast<D&&>.
Another possible aproach to make your example work as you expect is to use std::function:
class Base {
public:
Base() {
virtualFunction = [] () -> string { return {"Base"}; };
}
template <class T> string do_smth() { return virtualFunction(); }
function<string()> virtualFunction;
};
class Derived : public Base {
public:
Derived() {
virtualFunction = [] () -> string { return {"Derived"}; };
}
};
int main() {
auto ptr = unique_ptr<Base>(new Derived);
cout << ptr->do_smth<bool>() << endl;
}
This outputs "Derived". I'm not sure that this is what you realy want, but I hope it will help you..
I had the same problem, but I actually came up with a working solution. The best way to show the solution is by an example:
What we want(doesn't work, since you can't have virtual templates):
class Base
{
template <class T>
virtual T func(T a, T b) {};
}
class Derived
{
template <class T>
T func(T a, T b) { return a + b; };
}
int main()
{
Base* obj = new Derived();
std::cout << obj->func(1, 2) << obj->func(std::string("Hello"), std::string("World")) << obj->func(0.2, 0.1);
return 0;
}
The solution(prints 3HelloWorld0.3):
class BaseType
{
public:
virtual BaseType* add(BaseType* b) { return {}; };
};
template <class T>
class Type : public BaseType
{
public:
Type(T t) : value(t) {};
BaseType* add(BaseType* b)
{
Type<T>* a = new Type<T>(value + ((Type<T>*)b)->value);
return a;
};
T getValue() { return value; };
private:
T value;
};
class Base
{
public:
virtual BaseType* function(BaseType* a, BaseType* b) { return {}; };
template <class T>
T func(T a, T b)
{
BaseType* argA = new Type<T>(a);
BaseType* argB = new Type<T>(b);
BaseType* value = this->function(argA, argB);
T result = ((Type<T>*)value)->getValue();
delete argA;
delete argB;
delete value;
return result;
};
};
class Derived : public Base
{
public:
BaseType* function(BaseType* a, BaseType* b)
{
return a->add(b);
};
};
int main()
{
Base* obj = new Derived();
std::cout << obj->func(1, 2) << obj->func(std::string("Hello"), std::string("World")) << obj->func(0.2, 0.1);
return 0;
}
We use the BaseType class to represent any datatype or class you would usually use in a template. The members(and possibly operators) you would use in a template are described here with the virtual tag. Note that the pointers are necessary in order to get the polymorphism to work.
Type is a template class that extends Derived. This actually represents a specific type, for example Type<int>. This class is very important, since it allows us to convert any type into the BaseType. The definition of the members we described described in BaseType are implemented here.
function is the function we want to override. Instead of using a real template we use pointers to BaseType to represent a typename. The actual template function is in the Base class defined as func. It basically just calls function and converts T to Type<T>. If we now extend from Base and override function, the new overridden function gets called for the derived class.

Iterate over different CRTP Derived class methods

In an example below I have a pretty typical CRTP example, two different derived classes that both have a method bar. The base class has a method foo which just forwards to some derived bar method
#include <iostream>
template<typename Derived>
class Base {
public:
void foo() {
static_cast<Derived*>(this)->bar();
}
};
class DerivedA : public Base<DerivedA> {
public:
void bar() {
::std::cout << "A\n";
}
};
class DerivedB : public Base<DerivedB> {
public:
void bar() {
::std::cout << "B\n";
}
};
int main() {
DerivedA a;
DerivedB b;
a.foo();
b.foo();
}
It doesn't seem like I can have an array / vector / etc. of the base class because it would have to have a type along the lines of Base<T> where T is different
Is there some kind of convention without virtual for being able to iterate over different derived classes assuming they all have the same method (bar in this case)?
You can use Boost.Variant. For example:
typedef boost::variant<DerivedA, DerivedB> Derived;
struct BarCaller : public boost::static_visitor<void> {
template <class T>
void operator()(T& obj) {
obj.bar();
}
};
int main() {
std::vector<Derived> vec{DerivedA(), DerivedB(), DerivedA()};
BarCaller bar;
for (Derived& obj : vec) {
obj.apply_visitor(bar);
}
}
This lets you store heterogeneous types in a vector or other STL container (by using a "discriminated union"), and lets you call a specific function on all of them regardless of their not having a common ancestor or any virtual methods.
It doesn't seem like I can have an array / vector / etc. of the base class because it would have to have a type along the lines of Base<T> where T is different.
You can have a base class of Base<T> for all T, then, you can have a list/vector/array of pointers to the base class, if that works for you.
struct BaseOne
{
virtual void foo() = 0;
virtual ~BaseOne() {}
};
template<typename Derived>
class Base : struct BaseOne {
public:
void foo() {
static_cast<Derived*>(this)->bar();
}
};
and then,
int main() {
std::vector<BaseOne*> v {new DerivedA, new DerivedB };
for ( auto item : v )
item->bar();
for ( auto item : v )
delete item;
}
Is there some kind of convention without virtual for being able to iterate over different derived classes assuming they all have the same method (bar in this case)?
No, there isn't.
As per now, variant has became part of the C++17 standard and the solution to the problem can be solved by std::variant and std::visit as follows.
The template class in the example is Interface<> and use the CRTP idiom to force derived class to implement helloImpl():
#include <iostream>
#include <vector>
#include <variant>
template<typename Implementer>
struct Interface {
void hello() const {
static_cast<Implementer const *>(this)->helloImpl();
}
};
A couple of class examples with different implementations of helloImpl()
struct Hello1 : public Interface<Hello1> {
void helloImpl() const {
std::cout << "Hello1" << std::endl;
}
};
struct Hello2 : public Interface<Hello2> {
void helloImpl() const {
std::cout << "Hello2" << std::endl;
}
};
And here is how to use it to store data in a vector<> container and its traversal:
int main() {
using var_t = std::variant<Hello1, Hello2>;
std::vector<var_t> items{Hello1(), Hello1(), Hello2()};
for(auto &item: items) {
std::visit([](auto &&arg) {
arg.hello();
}, item);
}
return 0;
}

Subclass of class that inherits from enable_shared_from_this returning shared_ptr of self

I'm wondering if there is anyway to do something like this pseudo code:
class A : public std::enable_shared_from_this<A> {
public:
std::shared_ptr<self_t> getPtr(){
return std::static_pointer_cast<self_t>(shared_from_this());
}
};
class B : public A {
std::vector<A> container;
std::shared_ptr<self_t> addChild(A child){
container.push_back(child);
return getPtr();
}
};
class C : public B {
public:
std::shared_ptr<self_t> doSomething(){
// something
return getPtr();
}
};
int main(){
A obja = new A();
C obj = new C();
obj->addChild(obja)->doSomething()
}
My goal is that an object represents a view (as in the V in MVC), and for methods to be able to return itself for chained calling. Eg: ->setTop(0)->addChild(child1)->setBottom(0).
I've read that it may be more approachable to do something like overloading the << operator, but I don't see that working to well or looking very pretty.
One thought I had was to make a macro called VIEW(name,parent) that would use templates to expand out, but I had issue with self-refferental default template arguments.
Any help would be greatly appreciated.
-- edit --
In a nut shell, I'm hoping to have a base class inherit from enable_shared_from_this. The base class would have a method such as doSomething that returns the shared pointer. When a derived class inherits from the base class, I want the doSomething method to return a shared pointer to the derived class. I want to be able to do this without overriding doSomething in the derived class.
This kind of concept would be covered by extension methods which exist outside a class definition, do not violate the class permissions but can be called like a method... which exists in C# but not currently in C++. The code in C# looks like this:
// c# syntax
namespace MyBaseExtensions {
public static class MyBaseExt {
public static shared_ptr<T> getPtr<T>(this T self) where T : MyBase
{
return static_pointer_cast<T>(self.shared_from_this());
}
}
}
This allows for operator chaining because each inheritance of a class line MyBase would have its own definition of the function because the function is not an inherited method but instead applied directly to each related type.
The argument against is that extensions pollute the object with often unneeded functionality and that a standalone template function will do the same thing. The issue is that with that logic:
int main(){
A obja = new A();
C obj = new C();
obj->getPtr()->addChild(obja)->doSomething()
}
ends up looking like
int main(){
A obja = new A();
C obj = new C();
doSomething(addChild(getPtr(obj),obja)); //eyeroll.
}
and you would still be declaring the template functions such like
// C++ syntax
namespace MyBaseExtensions {
template<typename T> std::shared_ptr<T> getPtr<T>(T self)
{
return std::static_pointer_cast<T>(self->shared_from_this());
}
}
As for a simple internal way of applying a template uniquely to each derived type, I am not sure of any. The reason for this is that the functionality you want is not method inheritance but that each future class inherits a template which it automatically specializes(and of which the resulting method is either not inherited or hidden.) For that purpose C++ classes would need to have non-inherited specialized public methods, which are not covered by the current access permissions public, private, and protected or template capabilities.
I would be overjoyed to find a nice way to pull off operator chaining.
And since I have gone and wasted your time I made an attempt at this:
#include <vector>
#include <memory>
// 0 argument, creates an overload method (and hides parent class method)
// from template method func_name
// template method specialization of a parent method does not work
// so we use C++11 automatic type deduction to figure the
// template return type and return what the template returns
#define FUNC_DEF_0(base, cur, func_name) \
auto func_name() \
-> decltype(base().func_name<cur>()) { \
return base::func_name<cur>(); \
}
// 1 argument
#define FUNC_DEF_1(base, cur, func_name, arg1_t) \
auto func_name(arg1_t param1) \
-> decltype(base().func_name<cur>(param1)) { \
return base::func_name<cur>(param1); \
}
// class A
// add to class to hide class A methods
#define HIDE_A(current) \
FUNC_DEF_0(A, current, getPtr)
class A : public std::enable_shared_from_this<A> {
public:
template<typename _T = A>
std::shared_ptr<_T> getPtr(){
return std::static_pointer_cast<_T>(shared_from_this());
}
};
// class B
// add to class to hide class B methods with new methods
#define HIDE_B(current) \
HIDE_A(current) \
FUNC_DEF_1(B, current, addChild, A)
class B : public A {
public:
std::vector<A> container;
template<typename _T = B>
std::shared_ptr<_T> addChild(A child){
container.push_back(child);
return A::getPtr<_T>();
}
HIDE_A(B); // hide A methods with B specialized methods
// Example method hiding
// auto getPtr() -> decltype(A().getPtr<B>()) {
// return base::getPtr<B>();
// }
};
// class C
// add to class to hide class C methods
#define HIDE_C(current) \
HIDE_B(current) \
FUNC_DEF_0(C, current, doSomething)
class C : public B {
public:
template<typename _T = C>
std::shared_ptr<_T> doSomething(){
// something
return A::getPtr<_T>();
}
HIDE_B(C); // hide B methods
};
int main() {
auto obja = std::make_shared<A>();
auto obj = std::make_shared<C>();
obj->addChild(*obja)->doSomething();
}
Edit: Fixed attempt. Compiles for me.
class A;
struct virtual_enable_shared_from_this_base :
std::enable_shared_from_this<virtual_enable_shared_from_this_base> {
virtual ~virtual_enable_shared_from_this_base() {}
};
#define HIDE_AMix(type) \
using type::getPtr;
template<typename _T>
class AMix : public virtual virtual_enable_shared_from_this_base {
public:
std::shared_ptr<_T> getPtr() {
auto sptr = shared_from_this();
return std::dynamic_pointer_cast<_T>(sptr);
}
};
#define HIDE_BMix(type) \
HIDE_AMix(type) \
using type::addChild;
template<typename _T>
class BMix : public AMix<_T>{
public:
std::vector<std::shared_ptr<A>> container;
std::shared_ptr<_T> addChild(A* child){
container.push_back(child->getPtr());
return getPtr();
}
};
#define HIDE_CMix(type) \
HIDE_BMix(type) \
using type::addChild;
template<typename _T>
class CMix : public BMix<_T>{
public:
std::shared_ptr<_T> doSomething(){
// something
return getPtr();
}
};
class A : public AMix<A> {
public:
};
class B : public A, public BMix<B> {
public:
HIDE_AMix(BMix<B>);
//using BMix<B>::getPtr;
//using BMix<B>::addChild;
};
class C : public B, public CMix<C> {
public:
HIDE_BMix(CMix<C>);
//using CMix<C>::getPtr;
//using CMix<C>::addChild;
//using CMix<C>::doSomething;
};
int main() {
auto obja = std::make_shared<B>();
auto obj = std::make_shared<C>();
obja->getPtr();
obj->addChild(obja.get())->doSomething();
}
Edit2: Here is another version from fiddling around with templates.
Here is an example of what you may be trying to accomplish (though I'm not sure I 100% understood your requirements or reasoning for this design). Hope it helps...
#include <iostream>
#include <memory>
#include <vector>
class MyBase;
typedef std::shared_ptr<MyBase> MyBaseSharedPtr;
class MyBase : public std::enable_shared_from_this<MyBase> {
public:
MyBaseSharedPtr getPtr() { return shared_from_this(); }
virtual MyBaseSharedPtr doSomething() { return getPtr(); };
virtual MyBaseSharedPtr addChild(MyBaseSharedPtr child) { return getPtr(); };
};
class MyDerived1 : public MyBase {
private:
std::vector<MyBaseSharedPtr> container;
public:
MyBaseSharedPtr addChild(MyBaseSharedPtr child) {
container.push_back(child);
std::cout << "class MyDerived1: adding child\n";
return getPtr();
};
virtual MyBaseSharedPtr doSomething() {
std::cout << "class MyDerived1: doing something\n";
return getPtr();
}
};
class MyDerived2 : public MyDerived1 {
public:
MyBaseSharedPtr doSomething() {
std::cout << "class MyDerived2: doing something\n";
return getPtr();
}
};
int main(void ) {
MyBaseSharedPtr myBase = std::make_shared<MyBase>();
MyBaseSharedPtr myDerived2 = std::make_shared<MyDerived2>();
myDerived2->addChild(myBase)->doSomething();
return 0;
}
template<typename _T>
shared_ptr<_T> allocate()
{
shared_ptr<_T> ptr(new _T);
// this may need to be changed to
// something like (*typename ptr.get()).weak_this
// if the compiler won't accept a duck-typed _T::weak_this
ptr.get()->weak_this = weak_ptr<_T>(ptr);
return ptr;
}
class A
{
weak_ptr<A> weak_this;
friend shared_ptr<A> allocate<A>();
public:
shared_ptr<A> getPtr(){return weak_this.lock();}
shared_ptr<A> doSomething()
{
// do something
return getPtr();
}
};
Based on your example, if what you really want is to be able to extend functionality without exploding multiple inheritance hierarchies and without overwriting each method everywhere, you could try composed functionality with templates. Something like this:
#include <list>
#include <iostream>
struct Base {
};
template <class Parent>
struct A : Parent {
std::list<Parent*> children;
A* addChild(Parent* child) {
children.push_back(child);
return this;
}
};
template <class Parent>
struct B : Parent {
B* doSomething() {
std::cout << "Something" << std::endl;
return this;
}
};
int main(){
typedef A< B<Base> > Composed;
Composed a;
Composed b;
a.addChild(&b)->doSomething();
}
Note, however, that this has the restriction that forces a use order based on the order you compose the "functionality" (classes).
That is, in this example, you can't do:
a.doSomething()->addChild(&b); //ERROR! B is not a A
But this would work if you declare:
typedef B< A<Base> > Composed; //Note the order of B and A
I don't know if it suits your needs.
Hope this helps, at least, to enable you to think the problem in a different way.

Override template member in Interface

Is it possible to declare some type of base class with template methods which i can override in derived classes? Following example:
#include <iostream>
#include <stdexcept>
#include <string>
class Base
{
public:
template<typename T>
std::string method() { return "Base"; }
};
class Derived : public Base
{
public:
template<typename T>
std::string method() override { return "Derived"; }
};
int main()
{
Base *b = new Derived();
std::cout << b->method<bool>() << std::endl;
return 0;
}
I would expect Derived as the output but it is Base. I assume it is necessary to make a templated wrapper class which receives the implementing class as the template parameter. But i want to make sure.
1) Your functions, in order to be polymorphic, should be marked with virtual
2) Templated functions are instantiated at the POI and can't be virtual (what is the signature??How many vtable entries do you reserve?). Templated functions are a compile-time mechanism, virtual functions a runtime one.
Some possible solutions involve:
Change design (recommended)
Follow another approach e.g. multimethod by Andrei Alexandrescu (http://www.icodeguru.com/CPP/ModernCppDesign/0201704315_ch11.html)
Template methods cannot be virtual. One solution is to use static polymorphism to simulate the behavior of "template virtual" methods:
#include <iostream>
#include <stdexcept>
#include <string>
template<typename D>
class Base
{
template<typename T>
std::string _method() { return "Base"; }
public:
template<typename T>
std::string method()
{
return static_cast<D&>(*this).template _method<T>();
}
};
class Derived : public Base<Derived>
{
friend class Base<Derived>;
template<typename T>
std::string _method() { return "Derived"; }
public:
//...
};
int main()
{
Base<Derived> *b = new Derived();
std::cout << b->method<bool>() << std::endl;
return 0;
}
where method is the interface and _method is the implementation. To simulate a pure virtual method, _method would absent from Base.
Unfortunately, this way Base changes to Base<Derived> so you can no longer e.g. have a container of Base*.
Also note that for a const method, static_cast<D&> changes to static_cast<const D&>. Similarly, for an rvalue-reference (&&) method, it changes to static_cast<D&&>.
Another possible aproach to make your example work as you expect is to use std::function:
class Base {
public:
Base() {
virtualFunction = [] () -> string { return {"Base"}; };
}
template <class T> string do_smth() { return virtualFunction(); }
function<string()> virtualFunction;
};
class Derived : public Base {
public:
Derived() {
virtualFunction = [] () -> string { return {"Derived"}; };
}
};
int main() {
auto ptr = unique_ptr<Base>(new Derived);
cout << ptr->do_smth<bool>() << endl;
}
This outputs "Derived". I'm not sure that this is what you realy want, but I hope it will help you..
I had the same problem, but I actually came up with a working solution. The best way to show the solution is by an example:
What we want(doesn't work, since you can't have virtual templates):
class Base
{
template <class T>
virtual T func(T a, T b) {};
}
class Derived
{
template <class T>
T func(T a, T b) { return a + b; };
}
int main()
{
Base* obj = new Derived();
std::cout << obj->func(1, 2) << obj->func(std::string("Hello"), std::string("World")) << obj->func(0.2, 0.1);
return 0;
}
The solution(prints 3HelloWorld0.3):
class BaseType
{
public:
virtual BaseType* add(BaseType* b) { return {}; };
};
template <class T>
class Type : public BaseType
{
public:
Type(T t) : value(t) {};
BaseType* add(BaseType* b)
{
Type<T>* a = new Type<T>(value + ((Type<T>*)b)->value);
return a;
};
T getValue() { return value; };
private:
T value;
};
class Base
{
public:
virtual BaseType* function(BaseType* a, BaseType* b) { return {}; };
template <class T>
T func(T a, T b)
{
BaseType* argA = new Type<T>(a);
BaseType* argB = new Type<T>(b);
BaseType* value = this->function(argA, argB);
T result = ((Type<T>*)value)->getValue();
delete argA;
delete argB;
delete value;
return result;
};
};
class Derived : public Base
{
public:
BaseType* function(BaseType* a, BaseType* b)
{
return a->add(b);
};
};
int main()
{
Base* obj = new Derived();
std::cout << obj->func(1, 2) << obj->func(std::string("Hello"), std::string("World")) << obj->func(0.2, 0.1);
return 0;
}
We use the BaseType class to represent any datatype or class you would usually use in a template. The members(and possibly operators) you would use in a template are described here with the virtual tag. Note that the pointers are necessary in order to get the polymorphism to work.
Type is a template class that extends Derived. This actually represents a specific type, for example Type<int>. This class is very important, since it allows us to convert any type into the BaseType. The definition of the members we described described in BaseType are implemented here.
function is the function we want to override. Instead of using a real template we use pointers to BaseType to represent a typename. The actual template function is in the Base class defined as func. It basically just calls function and converts T to Type<T>. If we now extend from Base and override function, the new overridden function gets called for the derived class.