Tracing write access to class instance/memory range in gdb - c++

I am trying to debug a small operating system I have written in an university course in C++. At runtime somewhere one of my objects is getting corrupted. It seems like this happens due to accidentally writing to the wrong memory address. As I am unable to find the place where this happens from pure looking at the code, I need another way.
As this is an operating system, I cannot attach tools like valgrind to it, but I can run it in emulators (bochs/qemu) with gdb attached.
Is there a way in gdb to trace write access to a class instance or more general a specific memory range? I would like to break as soon as write access happens, so I can verify if this is valid or not.

You can put a watchpoint:
watch x
This will break when x is modified. x can be any type of variable. If you have:
class A;
A x;
Then gdb will break whenever x is modified.
You can actually put a watchpoint on any expression, and gdb will break when the expression changes. Be careful with this, though, because if the expression isn't something that the underlying hardware supports, gdb will have to evaluate this after every instruction, which leads to awful performance. For example, if A above is a class with many members then gdb can watch the entire instance x, but the way it'll work is:
execute an instruction
jump to the debug breakpoint
check if x has changed
return to the program
Naturally, this is very slow. If x is an int then gdb can use a hardware breakpoint.
If you have a specific memory address you can watch it too:
watch *0x1234
This will break when the contents of [0x1234] changes.
You can also set a read breakpoint using rwatch, or awatch to set a read/write breakpoint.

If you know at least approximately where it happens you can also just use "display" instead of watch and manually step line by line until you see when the change happens. Watching an address using "watch" is just too painfully slow.

Related

Is ref-copying a compiler optimization, and can I avoid it?

I dislike pointers, and generally try to write as much code as I can using refs instead.
I've written a very rudimentary "vertical layout" system for a small Win32 app. Most of the Layout methods look like this:
void Control::DoLayout(int availableWidth, int &consumedYAmt)
{
textYPosition = consumedYAmt;
consumedYAmt += measureText(font, availableWidth);
}
They are looped through like so:
int innerYValue = 0;
foreach(control in controls) {
control->DoLayout(availableWidth, innerYValue);
}
int heightOfControl = innerYValue;
It's not drawing its content here, just calculating exactly how much space this control will require (usually it's adding padding too, etc). This has worked great for me.......in debug mode.
I found that in Release mode, I could suddenly see tangible, loggable issues where, when I'm looping through controls and calling DoLayout(), the consumedYAmt variable actually stays at 0 in the outside loop. The most annoying part is that if I put in breakpoints and walk through the code line by line, this stops happening and parts of it are properly updated by the inside "add" methods.
I'm kind of thinking about whether this would be some compiler optimization where they think I'm simply adding the ref flag to ints as a way to optimize memory; or if there's any possibility this actually works in a way different from how it seems.
I would give a minimum reproducible example, but I wasn't able to do so with a tiny commandline app. I get the sense that if this is an optimization, it only kicks in for larger code blocks and indirections.
EDIT: Again sorry for generally low information, but I'm now getting hints that this might be some kind of linker issue. I skipped one part of the inheritance model in my pseudocode: The calling class actually calls "Layout()", which is a non-virtual function on the root definition of the class. This function performs some implementation-neutral logic, and then calls DoLayout() with the same arguments. However, I'm now noticing that if I try adding a breakpoint to Layout(), Visual Studio claims that "The breakpoint will not be hit. No executable code of the debugger's target code type is associated with this line." I am able to add breakpoints to certain other lines, but I'm beginning to notice weird stepping logic where it refuses to go inside certain functions, like Layout. Already tried completely clearing the build folders and rebuilding. I'm going to have to keep looking, since I have to admit this isn't a lot to go on.
Also, random addition: The "controls" list is a vector containing shared_ptr objects. I hadn't suspected the looping mechanism previously but now I'm looking more closely.
"the consumedYAmt variable actually stays at 0"
The behavior you describe is typical for a specific optimization that's more due to the CPU than the compiler. I suspect you're logging consumedYAmt from another thread. The updates to consumedYAmt simply don't make it to that other thread.
This is legal for the CPU, because the C++ compiler didn't put in memory fences. And the CPU compiler didn't put in fences because the variable isn't atomic.
In a small program without threads, this simply doesn't show up, nor does it show in debug mode.
Written by OP
Okay, eventually figured this one out. As simple as the issue was, pinning it down became difficult because of Release mode's debugger seemingly acting in inconsistent ways. When I changed tactic to adding Logging statements in lots of places, I found that my Control class had an "mShowing" variable that was uninitialized in its constructor. In debug mode, it apparently retained uninitialized memory which I guess made it "true" - but in release mode, my best analysis is that memory protections made it default to "false", which as it turns out skipped the main body of the DoLayout method most of the time.
Since through the process, responders were low on information to work with (certainly could've been easier if I posted a longer example), I instead simply upvoted each comment that mentioned uninitialized variables.

Understanding gdb output

I am trying to use the push_back function for a vector in c++.
I am getting a seg fault and when I ran the gdb to find the exact reason.
I get the following.
$1={px = 0xbfffe9c4, pn = { pi_ = 0x8049c0b}}
I do not have much experience with gdb and cannot find anything related to this specific issue online.
My magic ball tells me you crashed while dereferencing a shared_ptr. Follow the px member, since that is the actual pointer value of interest to you. For example, you can try:
print $1.px
and if the pointer points to a valid memory area:
print *$1.px
The gdb debugger will provide you with a lot of information, but some of the more useful things: backtrace, up, down, info locals, and if you are multi-threaded, thread apply all backtrace. If you are debugging live, then of course you will need breakpoint, next, step and continue. You should be able to use gdb's help for more information, and the gdb manual is readily available online.

Accessing direct memory addresses and obtaining the values in C++

I was wondering if it was possible to access a direct block of memory using C/C++ and grab the value. For example:
int i = 15;
int *p = &i;
cout << &i;
If I took the printed value here, that would give me the address of the variable i, which contains the value 15. I will just say it printed out 0x0ff9c1 for this example. If I have a separate program which declares a pointer like so...
int *p = 0x0ff9c1;
cout << *p;
Would it be possible to print out that 15 that the other application placed in the memory block 0x0ff9c1? I know my pointer declaration with the memory address is incorrect, I am unsure how to do it otherwise. I have tried using memcopy but I have not been able to get that to work either. I know this is possible somehow as I have a program called Cheat Engine which modifies game memory address values to gain unfair advantages. I have been successful in placing the printed memory location and obtaining the value (15) though Cheat Engine. My goal is to do this using C++.
If this is too confusing, basically I would like to access a variable that another application stored using its memory address and print out the value. I am using Windows 7 x64 with MinGW compiler if that matters. Thanks!
PS: I'll post a picture of what Cheat Engine does to give a better idea.
The two processes have separate address spaces. One process cannot access another processses memory unless it is explicily shared memory.
You can't do it in a platform-agnostic way in C++. While I haven't used this "cheat engine" specifically, it almost certainly is using the same special API that a debugger uses. The code will be specific to Windows, and you will require a certain privilege level on the running process.
(For instance, if you are using Visual Studio and execute a program from it in a Debug Mode, Visual Studio can look at and modify values in that program.)
I haven't written a debugger in a while, so I don't know where a good place to get started on the Debug API is, but you can search around the web for things like this article:
http://www.woodmann.com/fravia/iceman1.htm
If you want to change the memory used by another process, one way would be to inject your code into the other process. From that point, you can do whatever you want to the other program's memory as if it were your owns.
Search around for remote thread creation or hooking. There are more than a few questions about it here (and here, for starters).
In general, it's not usually possible for one program to modify the memory of another. The system goes to great lengths to ensure this. If it did not, no program would be safe. This is particularly true in all the Unix variants I've worked on, though not on all proprietary OSes I've seen.
Note that none of these rules apply to the kernel ...
There is also a programming paradigm called shared memory, but you have to explicitly set that up.
Short answer: you can't usually do that. I believe you mentioned windows. I know nothing about Windows, so your mileage may vary.
A bit late, but you still could this through a DLL injection. Here is a link to a tutorial: http://resources.infosecinstitute.com/using-createremotethread-for-dll-injection-on-windows/

In my c++ program I want to examine value of some of the variables at every line of execution.

While executing program i find some unexpected values(not garbage values)...so I need a way to examine variables value at every line of execution.please give a detail description of how do same.
Generally, this would be done with a memory breakpoint. But since you didn't tell us what kind of debugger you were using, I can't give you specifics on how to set one of those up in your debugging tool of choice.
A "watch list" or "expression" (or "stack" or "locals" for local variables) in your debugger should tell you the value of a variable or expression at every breakpoint. If you do a "trace", after every source line is a breakpoint.
This is a perfect example of hurting you by giving what you want. What you actually need is a what #Nicol Bolas said, a memory breakpoint telling when the value of a variable changes.

Debugging a memory error with GDB and C++

I'm running my C++ program in gdb. I'm not real experienced with gdb, but I'm getting messages like:
warning: HEAP[test.exe]:
warning: Heap block at 064EA560 modified at 064EA569 past requested size of 1
How can I track down where this is happening at? Viewing the memory doesn't give me any clues.
Thanks!
So you're busting your heap. Here's a nice GDB tutorial to keep in mind.
My normal practice is to set a break in known good part of the code. Once it gets there step through until you error out. Normally you can determine the problem that way.
Because you're getting a heap error I'd assume it has to do with something you're putting on the heap so pay special attention to variables (I think you can use print in GDB to determine it's memory address and that may be able to sync you with where your erroring out). You should also remember that entering functions and returning from functions play with the heap so they may be where your problem lies (especially if you messed your heap before returning from a function).
You can probably use a feature called a "watch point". This is like a break point but the debugger stops when the memory is modified.
I gave a rough idea on how to use this in an answer to a different question.
If you can use other tools, I highly recommend trying out Valgrind. It is an instrumentation framework, that can run your code in a manner that allows it to, typically, stop at the exact instruction that causes the error. Heap errors are usually easy to find, this way.
One thing you can try, as this is the same sort of thing as the standard libc, with the MALLOC_CHECK_ envronment variable configured (man libc).
If you keep from exiting gdb (if your application quit's, just use "r" to re-run it), you can setup a memory breakpoint at that address, "hbreak 0x64EA569", also use "help hbreak" to configure condition's or other breakpoitn enable/disable options to prevent excessively entering that breakpoint....
You can just configure a log file, set log ... setup a stack trace on every break, "display/bt -4", then hit r, and just hold down the enter key and let it scroll by
"or use c ## to continue x times... etc..", eventually you will see that same assertion, then you will now have (due to the display/bt) a stacktrace which you can corolate to what code was modifying on that address...
I had similar problem when I was trying to realloc array of pointers to my structures, but instead I was reallocating as array of ints (because I got the code from tutorial and forgot to change it). The compiler wasnt correcting me because it cannot be checked whats in size argument.
My variable was:
itemsetList_t ** iteration_isets;
So in realloc instead of having:
iteration_isets = realloc(iteration_isets, sizeof(itemsetList_t *) * max_elem);
I had:
iteration_isets = realloc(iteration_isets, sizeof(int) * max_elem);
And this caused my heap problem.