Compiler-Programming: What are the most fundamental ingredients? - c++

I am interested in writing a very minimalistic compiler.
I want to write a small piece of software (in C/C++) that fulfills the following criteria:
output in ELF format (*nix)
input is a single textfile
C-like grammar and syntax
no linker
no preprocessor
very small (max. 1-2 KLOC)
Language features:
native data types: char, int and floats
arrays (for all native data types)
variables
control structures (if-else)
functions
loops (would be nice)
simple algebra (div, add, sub, mul, boolean expressions, bit-shift, etc.)
inline asm (for system calls)
Can anybody tell me how to start? I don't know what parts a compiler consists of (at least not in the sense that I just could start right off the shelf) and how to program them. Thank you for your ideas.

With all that you hope to accomplish, the most challenging requirement might be "very small (max. 1-2 KLOC)". I think your first requirement alone (generating ELF output) might take well over a thousand lines of code by itself.
One way to simplify the problem, at least to start with, is to generate code in assembly language text that you then feed into an existing assembler (nasm would be a good choice). The assembler would take care of generating the actual machine code, as well as all the ELF specific code required to build an actual runnable executable. Then your job is reduced to language parsing and assembly code generation. When your project matures to the point where you want to remove the dependency on an assembler, you can rewrite this part yourself and plug it in at any time.
If I were you, I might start with an assembler and build pieces on top of it. The simplest "compiler" might take a language with just a few very simple possible statements:
print "hello"
a = 5
print a
and translate that to assembly language. Once you get that working, then you can build a lexer and parser and abstract syntax tree and code generator, which are most of the parts you'll need for a modern block structured language.
Good luck!

Firstly, you need to decide whether you are going to make a compiler or an interpreter. A compiler translates your code into something that can be run either directly on hardware, in an interpreter, or get compiled into another language which then is interpreted in some way. Both types of languages are turing complete so they have the same expressive capabilities. I would suggest that you create a compiler which compiles your code into either .net or Java bytecode, as it gives you a very optimized interpreter to run on as well as a lot of standard libraries.
Once you made your decision there are some common steps to follow
Language definition Firstly, you have to define how your language should look syntactically.
Lexer The second step is to create the keywords of your code, known as tokens. Here, we are talking about very basic elements such as numbers, addition sign, and strings.
Parsing The next step is to create a grammar that matches your list of tokens. You can define your grammar using e.g. a context-free grammar. A number of tools can be fed with one of these grammars and create the parser for you. Usually, the parsed tokens are organized into a parse tree. A parse tree is the representation of your grammar as a data structure which you can move around in.
Compiling or Interpreting The last step is to run some logic on your parse tree. A simple way to make your own interpreter is to create some logic associated to each node type in your tree and walk through the tree either bottom-up or top-down. If you want to compile to another language you can insert the logic of how to translate the code in the nodes instead.
Wikipedia is great for learning more, you might want to start here.
Concerning real-world reading material I would suggest "Programming language processors in JAVA" by David A Watt & Deryck F Brown. I used that book in my compilers course and learning by example is great in this field.

These are the absolutely essential parts:
Scanner: This breaks the input file into tokens
Parser: This constructs an abstract syntax tree (AST) from the tokens identified by the scanner.
Code generation: This produces the output from the AST.
You'll also probably want:
Error handling: This tells the parser what to do if it encounters an unexpected token
Optimization: This will enable the compiler to produce more efficient machine code
Edit: Have you already designed the language? If not, you'll want to look into language design, too.

I don't know what you hope to get out of this, but if it is learning, and looking at existing code works for you, there is always tcc.

The number one essential is a book on compiler writing. A lot of people will tell you to read the "Dragon Book" by Aho et al, but the best book I've read on compilers is "Brinch Hansen on Pascal Compilers". I suspect it's out of print (Amazon is your friend), but it takes you through all the steps of designing and writing a compiler using recursive descent, which is the easiest method for compiler newbies to understand.
Although the book uses Pascal as the implementation and target languages, the lessons and techniques presented apply equally to all other languages.

The examples are all in Perl, but Exploring Programming Language Architecture in Perl is a good book (and free).

A really good set of free references, IMHO, are:
Overall compiler tutorial: Let's Build a Compiler by Jack Crenshaw (http://compilers.iecc.com/crenshaw/) It's wordy, but I like it.
Assembler: NASM (nasm.us) good for Linux and Windows/DOS, and most importantly lots of doco and examples/tutorials. (FASM is also good but less documentation/tutorials out there)
Other sources
The PC Assembly book (http://www.drpaulcarter.com/pcasm/index.php)
I'm trying to write a LISP, so I'm using the Lisp 1.5 Manual. You may want to get the language spec for whatever language you're writing.
As far as 1-2KLOC, assuming you use a high level language (like Py or Rb) you should be close if you're not too ambitious.

I always recommend flex and bison for this kind of work as a beginner. You can always learn the ins and outs of writing your own scanner and parser later, although they may increase the code size at least they will be generated for you by tools. :)

Related

Cleanest data structure to use when interpreting data from neatly-structured user commands (in C++) [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
I would like to write a simple in-house program that parses user commands written in a language of our team's own invention (but based closely on another program we are already familiar with). The command parser that I am working on now will simply be the UI through which the user can run the other algorithms I have already written. (Those other algorithms, by the way, are used to generate the input files for a molecular dynamic simulation package called LAMMPS.) The only thing I really have left to do is just write this UI, but as it turns out, writing your own scripting language is almost an intractable challenge for a non software engineer to tackle on his own.
According to the answers I received, what I am try to make would be considered a Domain Specific Language, and it is not advisable to try to make one's own DSL due to the enormous amount of work required to make it useful and bug-free.
The best option then would actually be to use an existing scripting language like Lua or Python, and embed it in the program.
To do this, I will most likely use Lua because it seems most fitting for our needs. So at this point, the rest of this question is no longer relevant since the answer would be: "Don't do it yourself." But I'm still going to keep part of it here for other users to be able read and learn from the wonderful answers below.
Thanks again to everyone who replied!
Old Question:
I would like to write a program that parses a user text input and then
runs a function corresponding to that input. To do this I would need
to parse the string for relevant keywords. I believe there will be
less than 15 keywords when I'm done, so ideally I'd like this code
to be simple and short.
The problem is that I am currently using if-statements to parse the
strings. This is an extremely inconvenient way to parse commands
because even for a short 3 word commands the code explodes into nested-ifs
3 layers deep. So longer 8+ word sentences will become nested-ifs more than
8 layers deep.
This kind of programing approach quickly becomes unmanageable, especially
when I need to make any significant changes to a command.
My question is whether or not there exists a data structure in C++ that
can help me better manage my giant nested-ifs, or if anyone could suggest
a better way to parse a string for lots of different data types (i.e.
substings, ints, and floats) and output an error message when the expected
type is not found?
Here is an example of a short user session to show the kinds of commands
I would like to interpret:
load "Basis.Silicon" as material 1
add material 1 to layer 1
rotate layer 1 about x-axis by 45 degrees
translate layer 1 in x-axis by 10 nm
generate crystal
These commands are based on an already-existing program that our team
uses, but unfortunately the source code for this program has never been
publicly released so I am left guessing as to how it was actually
implemented.
One final note, unlike natural language processors, I know exactly what
the format of each line will be. So my issue isn't so much how to interpret
the text, but rather how to code the logic in a concise and manageable way.
Thanks everyone!
Your question is not clear. And your goals are more difficult than what you believe.
Either you consider that you want to somehow process human language sentences (e.g. in English). Then you want to study natural language processing, and you can find some libraries related to that field.
Or you consider that you want to interpret some formal programming or scripting language. Then you want to study interpreters and compilers. BTW, in that case, you might just embed an existing interpreter (like Lua, Guile, Python, etc....) in your program.
You could also think in terms of expert systems with a knowledge base made of rules (this approach could be viewed as in the middle between NLP and scripting language) You'll then need some inference engine (perhaps CLIPS). See also J.Pitrat's blog.
Notice that even coding a simple interpreter is more difficult than you believe. You absolutely need to represent abstract syntax trees, which you construct from textual input with a parsing phase.
BTW, All of NLP, expert systems, and interpreter design and implementation are difficult fields. You could get a PhD in all 3 fields (but you have to choose which).
If you go the embedded interpreter way: study the interpreters I mentioned (Guile, Lua, Python, Neko, etc...) and choose which one you want, to embed.
If for whatever reason, you want to make an interpreter from scratch: Learn several programming languages first (including scripting languages like Ruby, Python, Ocaml, Scheme, Lua, Neko, ...). Read books on Programming Language Pragmatics (by M.Scott) and Lisp In Small Pieces (by Queinnec). Read also text books on compilation and parsing, and on Garbage Collection and formal (e.g. denotational) semantics. All this may need a dozen years of work.
Notice that by experience embedding a software in an interpreter is a very structuring design. If you did not thought of that at the beginning you probably need to redesign and refactor a lot your existing application. For instance, when embedding a software in an interpreter, you cannot afford that bad input crashes the program. So error handling and memory management (interfacing to the GC of the interpreter) is challenging and gives new constraints. Hence you'll need to re-think your application.
If all this is new (and even if you don't choose e.g. Guile as the embedding interpreter): learn and practice a bit of Scheme -e.g. with Guile or PltScheme- (e.g. reading SICP), read a little bit about λ-calculus and closures, then read Queinnec's Lisp In Small Pieces book. Remember the halting problem (which is partly why interpreters are difficult to code).
BTW the syntax you are proposing (e.g. rotate mat 1 by x 90) is not very readable and looks COBOL-like. If possible, have a language which looks familiar to existing ones. Make it easy to read !
Start by reading all the wikipages I am referencing here.
FWIW, I am the main author of MELT, a domain specific language (inspired a lot by Scheme) to extend the GCC compiler. Some of the papers / documentations I wrote might inspire you (and contain valuable references).
Addenda (after question was reformulated)
You seems to invent some formal syntax like
add material 1 to layer 1
rotate layer 1 about x-axis by 90 degrees
translate layer 1 in x-axis by 10 inches
I can't guess what kind of language is it? Are you implementing a 3D printer? If yes, you should stick to some existing standard formal language in that domain.
I believe that such a COBOL-like syntax is really wrong. The point is that it is too verbose, and that you are wishing to implement some domain specific language. I find your example very bad-looking.
Is that syntax your invention, or is there some document specifying (and many thousands already existing lines coded in) your domain specific language. If you are just inventing it, please reconsider the syntax and the semantics.
First, you need to specify on paper the full syntax and semantics of your DSL.
Is your DSL Turing complete? (I guess that yes, because Turing completeness is reached very quickly - e.g. with variables and loops....). If yes, you are inventing a scripting language. Please don't invent scripting language without knowing several programming & scripting languages (then read Programming Language Pragmatics...). The point is that, if your scripting language will become successful, advanced users will soon or later write important programs in it (e.g. many thousand lines). Then, these advanced users will be programmers. In that case, it is very important (for social & economic reasons) to have a DSL well founded and looking familiar (if possible, an extension of some existing scripting language).
If your DSL already exists, stick to its specification on paper. If that specification is not good enough, improve it with formalization (e.g. by writing some BNF syntax, and some formal (e.g. denotational) semantics for it). Publish and discuss that formalization with existing users.
Several industries got some ad-hoc DSLs which became widely used but was ill designed
(e.g., in the French nuclear industry, the Gibiane DSL designed in the 1970s by nuclear physicists, not computer scientists; the US Boeing corporation is also rumored to have made similar mistakes). Then, maintaining and improving the many hundred thousands lines of DSL scripts is becoming a nightmare (and may means losing millions of dollars or euros). So you better stick to some existing scripting language. The advantages are that there exist some culture on it (e.g. you can find dozens of books on Python or Lua, and many trained engineers familiar with them), that the interpreter is widely used and tested, that the community working on them is improving the interpreters, so it has quite few uncorrected bugs.
You should not attempt to design and implement your own DSL if you are not a trained computer scientist. Stick to some existing scripting language (of course their syntax is not like you want it to be), and leverage on existing implementations and experiment.
As a counter-example, J.Ousterhout has invented the widely used Tcl scripting language, with the claim that scripts are always small (e.g. hundreds of line only) and won't grow to big code base; unfortunately, some of them did, and Tcl is known as a bad language to code many dozens of thousands of lines (even if Tcl is an easy and convenient language for tiny scripts). The moral of the story is that if a (turing complete) scripting language is becoming successful, some "crazy" advanced user will code hundred of thousands of script code. So you need that scripting language to be well designed from the start. Hence, you should adopt and adapt a good existing scripting language (and avoid inventing an unfamiliar syntax without having a good knowledge of several existing scripting languages)
later additions
PS: my criticism of Tcl is not entirely subjective: the point is that Tcl was designed for small scripts in mind (read J.Ousterhout's first papers about Tcl), but my point is that when you offer a Turing-complete scripting language, some "crazy" user will eventually write huge scripts for it. Hence, you need to anticipate such "crazy" usage by offering a scripting language which "scales up" to big scripts, so is built according to software engineering practices for large software code base.
NB. Lua is probably a good choice as a language to embed. It is small, has a nice implementation, is well documented, and has good performance. But be careful about memory management issues (and this advice holds for any scripting language).
EDIT: To be more clear, I would like to have a short list of key words
(<15). The order/presence of which would determine which function will
be run.
You can build a small ruleset engine (e.g. something that processes lists of words). You write that engine/function once and just pass the data structures to it.
As an alternative, a solution using regular expressions would be probably the fastest to code (the engine is ready for you), assuming you're familiar with the regexp syntax (if not, it's still a good investment).
You could build a table of keywords and function pointers:
typedef void (*Function_Pointer)(void);
struct table_entry
{
const char * keyword;
Function_Pointer p_function;
};
table_entry function_table[] =
{
{"car", Process_Car},
{"bike", Process_Bike},
};
Search the table for a keyword. If the keyword is found, dereference the function pointer.
The following snippet will execute the function for processing the word "car":
(function_table[0].p_function)();
There is a famous program, called Eliza, which parses sentences for keywords.
Examples can be found at: Eliza C++ examples

Unknown type of macro in C++

I noticed something when looking the kind of language of a software (openFOAM) which is written in C++. It was something like,
field value;
For example,
temperature 25;
I wonder how this works. I mean how temperature is set to 25 without using equality sign. Any idea?
Because openFOAM has a parser that understands that format.
Such a parser is not hard to make, and C++ (with the help of a parser-generator tool like yacc, bison) is a popular choice for parsers because it can be very fast.
C++ is a Turing-complete language, therefore it can do anything that any other language can. Specifically, it can process data that doesn't look like C++ code.
Programming languages are typically context free. If the language is context free it can be parsed (I won't say it's trivial but it's a problem that has been solved so many times before and if you take a compilers class you'll have to do it for simple langauges).
The parser is simply looking for a declarations of the format field value;. It appears there is no type check happening so it is simply splitting on semi colon then on the space. Read about parsing context-free langauges, push down automata, and context free grammars if you're interested in learning about parsing source code.

How to write a C or C++ program to detect modules in another C program, using a syntax tree

I'm working on a project where I have to divide a C program into modules and find the time taken for the execution of each module. I have to use C or C++ to do this.
For example: the first module will be main() then inside you may have other modules like for, or while or if etc.
It's actually like generating a syntax tree for the program, in a textual form.
So what I'm looking for is a way to do this, or any framework which can assist me with this, or any suggestions, anything would be great!
Thanks in advance :)
EDIT:
and ok, il make it more clear, by giving the sample input and the expected output as mentioned by our institute,
Input:
void main() {
int h=2,j=5,k=1;
while (h>j) {
h++;
for (k=100;k>0;k/=2) {
if (i<=5) {
d=n*10;
p=n/10;
}
}
}
}
Output:
main
begin
h=2
j=5
k=1
*************
while
h>j
0.2087
*************
begin
h++
*************
for
k=100
k>0
k/2
0.8956
*************
begin
if i<=5
*************
begin
d=n*10
p=n/10
0.1153
end
*************
end
end
sorry for the output, its vertical, i think it gives every1 a clear idea ! :) –
Being less than 100 lines doesn't help you much; people can write a program that uses every feature of C language (and the compiler extensions!) in a program that size. So you are saying you have to deal with the entire C language (statements, expressions, functions, structures, typedefs, macros, preprocessor conditionals, ...). If this is a school project, I think that's too hard; you will need to limit your project to a interesting subset, say, functions, assignments, while statements and function calls.
What you need to do this straightforwardly is
A parser for the C language
The ability to climb over the AST
The ability to patch the AST
The ability to emit the AST as source text
Program transformations system are nearly ideal engines to accomplish this kind of work.
These allow you to additionally do pattern-directed changes to the AST, which makes this much easier to implement.
You can probably do this with TXL or Stratego; I'm sure both have C parsers that will handle the limited subset of C that you should be willing to do.
You could do with this our DMS Software Reengineering Toolkit, although this is probably not suited for student use in short period of time. (TXL and Stratego are free, but might have steep learning curves, too).
But you will find this document on instrumenting code to build test coverage tools probably an ideal introduction to what you need to do to accomplish your task with a transformation system.
EDIT: I transcribed Hari's comment with an example into his question.
I think he wants a tracer not a profiler.
He can do that using instrumentation, but he'll have a lot of instrumentation to insert because it looks like the goal is tracing every action.
In that case, it would be easier if he had an interpreter, but he needs one that keeps the code structure around so that he can report the code structure as it runs (so CINT which compiles to a pcode wouldn't be the right answer).
What he needs is full C parsing to AST with symbol tables, an interpreter that executes the ASTs, and a prettyprinter so that he can convert appropriate parts of the AST he is currently executing back into text to report as progress.
DMS is still a very good foundation for this, as it has all the machinery needed to support this task too.
Parse the C text, build the symbol table (all built into DMS for C) and then run a custom interpreter.
This is easily coded as an interpreter over the AST; a big case statement over the tree node types would be the interpreter core, with node-type specific cases carrying out the action implied by the AST node (including climbing up or down the tree, updating symbol table entries with new values, computing expression intermediate results, and of course reporting progress.
ANTLR might work; it has a C parser but I'm not so sure about a prettyprinter. The interpreter would work pretty much the same way.
TXL and Stratego would likely be awkward for this, as it isn't clear how you'd use their pure-transformational style to alternatate interpreting and printing trace data.
What you're describing is a profiler. Which one is suitable very much depends on the platform which you're using.
For Window and Visual C++ I've found LTProf to be lightweight, inexpensive and usable http://www.lw-tech.com/index.php?option=com_content&task=view&id=25&Itemid=65. Alternatively the higher end Visual Studio products include a profiler and Intel sell various profilers.
Alternatively are you trying to write your own profiler? That's quite a tricky piece of code to write and very platform dependent. You may find open source examples to use as starting points.
EDIT:
NB: Using ltprof may require you to turn off compiler optimization to get reliable profiling results. Be aware that this can potentially change the results.

How much time would it take to write a C++ compiler using flex/yacc?

How much time would it take to write a C++ compiler using lex/yacc?
Where can I get started with it?
There are many parsing rules that cannot be parsed by a bison/yacc parser (for example, distinguishing between a declaration and a function call in some circumstances). Additionally sometimes the interpretation of tokens requires input from the parser, particularly in C++0x. The handling of the character sequence >> for example is crucially dependent on parsing context.
Those two tools are very poor choices for parsing C++ and you would have to put in a lot of special cases that escaped the basic framework those tools rely on in order to correctly parse C++. It would take you a long time, and even then your parser would likely have weird bugs.
yacc and bison are LALR(1) parser generators, which are not sophisticated enough to handle C++ effectively. As other people have pointed out, most C++ compilers now use a recursive descent parser, and several other answers have pointed at good solutions for writing your own.
C++ templates are no good for handling strings, even constant ones (though this may be fixed in C++0x, I haven't researched carefully), but if they were, you could pretty easily write a recursive descent parser in the C++ template language. I find that rather amusing.
It sounds like you're pretty new to parsing/compiler creation. If that's the case, I'd highly recommend not starting with C++. It's a monster of a language.
Either invent a trivial toy language of your own, or do something modeled on something much smaller and simpler. I saw a lua parser where the grammar definition was about a page long. That'd be much more reasonable as a starting point.
It will probably take you years, and you'll probably switch to some other parser generator in the process.
Parsing C++ is notoriously error-prone. The grammar is not fully LR-parsable, as many parts are context-sensitive. You won't be able to get it working right in flex/yacc, or at least it'll be really awkward to implement. There are only two front-ends I know of that get it right. Your best bet is to use one of these and focus on writing the back-end. That's where the interesting stuff is anyway :-).
Existing C++ Front Ends:
The EDG front-end is used by most of the commercial vendors (Intel, Portland Group, etc.) in their compilers. It costs money, but it's very thorough. People pay big bucks for it because they don't want to deal with the pain of writing their own C++ parser.
GCC's C++ front-end is thorough enough for production code, but you'd have to figure out how to integrate this into your project. I believe it's fairly involved to separate it from GCC. This would also be GPL, but I'm not sure whether that's a problem for you. You can use the GCC front-end in your project via gcc_xml, but this will only give you XML for classes, functions, namespaces, and typedefs. It won't give you a syntax tree for the code.
Another possibility is to use clang, but their C++ support is currently spotty. It'll be nice to see them get all the bugs out, but if you look at their C++ status page you'll notice there are more than a few test cases that still break. Take heed -- clang is a big project. If it's taking these guys years to implement a C++ front-end, it's going to take you longer.
Others have mentioned ANTLR, and there is a C++ grammar available for it, but I'm skeptical. I haven't heard of an ANTLR front end being used in any major compilers, though I do believe it's used in the NetBeans IDE. It might be suitable for an IDE, but I'm skeptical that you'd be able to use it on production code.
A long time, and lex and yacc won't help
If you have the skills to write a compiler for such a large language, you will not need the small amount of help that lex and yacc give you. In fact, while lex is OK it may take longer to use yacc, as it's not really quite powerful enough for C or C++, and you can end up spending far more time getting it to work right than it would take to just write a recursive descent parser.
I believe lex and yacc are best used for simple grammars, or when it is worth the extra effort to have a nicely readable grammar file, perhaps because the grammar is experimental and subject to change.
For that matter, the entire parser is possibly not the major part of your job, depending on exactly what goals you have for the code generator.
As others have already said, yacc is a poor choice for implementing a C++ parser. One can do it; the orginal GCC did so, before the GCC team got disgusted with how hard it was to maintain and extend. (Flex might be OK as a lexer).
Some say recursive descent parsers are best, because Bjarne Stroustrop said so. Our experience is the GLR parsing is the right answer for this, and our GLR-based C++ front end is a nice proof, as is the Elsa front end. Our front end has been used in anger on millions of lines of C++ (including Microsoft and GCC dialects) to carry out program analyses and massive source code transformation.
But what is not emphasized enough is that parsing is just a very small portion of what it takes to build a compiler, especially for C++. You need to also build symbol tables ("what does this identifier mean in this context?") and to do that you need to encode essentially most of several hundred pages of the C++ standard. We believe that the foundation on which we build compiler-like tools, DMS, is extremely good for doing this, and it took us over a man-year to get just this part right.
But then you have the rest of the compiler to consider:
Preprocessor
AST construction
Semantic analysis and type checking
Control, Data flow, and pointer analysis
Basic code generation
Optimizations
Register allocation
Final Code Generation
Debugging support
I keep saying this: building a parser (the BNF part) for a language is like climbing the foothills of the Himalayas. Building a full compiler is like climbing Everest. Pretty much any clod can do the former (although C++ is right at the edge). Only the really serious do the latter, and only when extremely well prepared.
Expect building a C++ compiler to take you years.
(The SD C++ front end handles lexing, parsing, AST generation, symbol tables, some type checking, and regeneration of compilable source text from the AST, including the original comments, for the major C++ dialects. It has been developed over a period of some 6 years).
EDIT: May, 2015. The original answer was written in 2010; we now have 11 years invested, taking us up through C++14. The point is that it is an endless, big effort to build one of these.
Firstly, the "flex" tag on SO is about Adobe's product, not the lexer generator. Secondly, Bjarne Stroustrup is on record as saying he wished he had implemented Cfront (the first C++ compiler) using recursive descent rather than a table driven tool. And thirdly, to answer your question directly - lots. If you feel you need to write one, take a look at ANTLR - not my favourite tool, but there are already C++ parsers for it.
This is a non-trivial problem, and would quite a lot of time to do correctly. For one thing, the grammar for C++ is not completely parseable by a LALR parser such as yacc. You can do subsets of the language, but getting the entire language specification correct is tricky.
You're not the first person to think that this is fun. Here's a nice blog-style article on the topic:
Parsing C++
Here's an important quote from the article:
"After lots of investigation, I
decided that writing a
parser/analysis-tool for C++ is
sufficiently difficult that it's
beyond what I want to do as a hobby."
The problem with that article is that it's a bit old, and several of the links are broken. Here are some links to some other resources on the topic of writing C++ parsers:
ANTLR Grammars (contain several grammars for C++)
A YACC-able C++ 2.1 Grammar and the resulting ambiguities
Parsing and Processing C++ Code (Wikipedia)
Lex,yacc will not be enough. You need a linker, assembler too.., c preprocessor.
It depends on how you do it.
How much pre-made components do you plan to use?
You need to get the description of the syntax and its token from somewhere.
For example, if you use LLVM, you can proceed faster. It already provides a lot of tools, assembler, linker, optimiser....
You can get a c preprocessor from boost project..
You need to create a test suite to test your compiler automatically.
It can take a year if you work on it each day or much less you have more talent and motivation.
Unless you have already written several other compilers; C++ is not a language you even want to start writing a compiler from scratch for, the language has a lot of places were the meaning requires a lot of context before the situation can be disambiguated.
Even if you have lots of experience writing compilers you are looking at several years for a team of developers. This is just to parse the code correctly into an intermediate format. Writing the backend to generate code is yet another specialized task (though you could steal the gcc backend).
If you do a google for "C++ grammars" there are a couple around to get you started.
C++ LEX Tokens: http://www.computing.surrey.ac.uk/research/dsrg/fog/CxxLexer.l
C++ YACC Grammer: http://www.computing.surrey.ac.uk/research/dsrg/fog/CxxGrammar.y
http://www.computing.surrey.ac.uk/research/dsrg/fog/CxxTester.y
A few years - if you can get research grant to re-write new lex/yacc :-)
People keep chasing their tails on this a lot - starting with Stroustrup who was always fancied being a language "designer" rather than actual compiler writer (remember that his C++ was a mere codegen for ages andwould still be there if it wasn't for gcc and other folks).
The core issue is that real research on parser generators pretty much ceased to exist ever since CPU-s became fast enough to handle functional languages and brute-force recursive descent. Recursive descent is the last resort when you don't know what to do - it does exhaustive search till it nabs one "rule" that fires. Once you are content with that you kind of loose interest in researching how to do it efficiently.
What you'd essentially need is a reasonable middle-ground - like LALR(2) with fixed, limited backtraching (plus static checker to yell if "desiogner" splurges into a nondeterministic tree) and also limited and partitioned symbol table feedback (modern parser need to be concurrency-friendly).
Sounds like a research grant proposal, doesn't it :-) Now if we'd find someone to actually fund it, that would be something :-))
A C++ compiler is very complicated. To implement enough of C++ to be compatible with most C++ code out there would take several developers a couple of years full time. clang is a compiler project being funded by Apple to develop a new compiler for C, C++, and Objective-C, with several full-time developers, and the C++ support is still very far from being complete after a couple of years of development.
Recursive decent is a good choice to parse C++. GCC and clang use it.
The Elsa parser (and my ellcc compiler) use the Elkhound GLR compiler generator.
In either case, writing a C++ compiler is a BIG job.
Well, what do you mean by write a compiler?
I doubt any one guy has made a true C++ compiler that took it down all the way to assembly code, but I have used lex and yacc to make a C compiler and I have done it without.
Using both you can make a compiler that leaves out the semantics in a couple days, but figuring out how to use them can take weeks or months easily. Figuring out how to make a compiler at all will take weeks or months no matter what, but the figure I remember is once you know how it works it took a few days with lex and yacc and a few weeks without but the second had better results and fewer bugs so really it's questionable whether they are worth using at all.
The 'semantics' is the actual code production. That can be very simple code that's just enough to work and might not take long at all, or you could spend your whole life doing optimization on it.
With C++ the big issue is templates, but there's so many little issues and rules I can't imagine someone ever wanting to do this. Even if you DO finish, the problem is you won't necessarily have binary compatibility ie be able to be recognized as a runnable program by a linker or the OS because there's more to it than just C++ and its hard to pin down standard but there's also yet more standards to worry about which are even less widely available.

References Needed for Implementing an Interpreter in C/C++

I find myself attached to a project to integerate an interpreter into an existing application. The language to be interpreted is a derivative of Lisp, with application-specific builtins. Individual 'programs' will be run batch-style in the application.
I'm surprised that over the years I've written a couple of compilers, and several data-language translators/parsers, but I've never actually written an interpreter before. The prototype is pretty far along, implemented as a syntax tree walker, in C++. I can probably influence the architecture beyond the prototype, but not the implementation language (C++). So, constraints:
implementation will be in C++
parsing will probably be handled with a yacc/bison grammar (it is now)
suggestions of full VM/Interpreter ecologies like NekoVM and LLVM are probably not practical for this project. Self-contained is better, even if this sounds like NIH.
What I'm really looking for is reading material on the fundamentals of implementing interpreters. I did some browsing of SO, and another site known as Lambda the Ultimate, though they are more oriented toward programming language theory.
Some of the tidbits I've gathered so far:
Lisp in Small Pieces, by Christian Queinnec. The person recommending it said it "goes from the trivial interpreter to more advanced techniques and finishes presenting bytecode and 'Scheme to C' compilers."
NekoVM. As I've mentioned above, I doubt that we'd be allowed to incorporate an entire VM framework to support this project.
Structure and Interpretation of Computer Programs. Originally I suggested that this might be overkill, but having worked through a healthy chunk, I agree with #JBF. Very informative, and mind-expanding.
On Lisp by Paul Graham. I've read this, and while it is an informative introduction to Lisp principles, is not enough to jump-start constructing an interpreter.
Parrot Implementation. This seems like a fun read. Not sure it will provide me with the fundamentals.
Scheme from Scratch. Peter Michaux is attacking various implementations of Scheme, from a quick-and-dirty Scheme interpreter written in C (for use as a bootstrap in later projects) to compiled Scheme code. Very interesting so far.
Language Implementation Patterns: Create Your Own Domain-Specific and General Programming Languages, recommended in the comment thread for Books On Creating Interpreted Languages. The book contains two chapters devoted to the practice of building interpreters, so I'm adding it to my reading queue.
New (and yet Old, i.e. 1979): Writing Interactive Compilers and Interpreters by P. J. Brown. This is long out of print, but is interesting in providing an outline of the various tasks associated with the implementation of a Basic interpreter. I've seen mixed reviews for this one but as it is cheap (I have it on order used for around $3.50) I'll give it a spin.
So how about it? Is there a good book that takes the neophyte by the hand and shows how to build an interpreter in C/C++ for a Lisp-like language? Do you have a preference for syntax-tree walkers or bytecode interpreters?
To answer #JBF:
the current prototype is an interpreter, and it makes sense to me as we're accepting a path to an arbitrary code file and executing it in our application environment. The builtins are used to affect our in-memory data representation.
it should not be hideously slow. The current tree walker seems acceptable.
The language is based on Lisp, but is not Lisp, so no standards compliance required.
As mentioned above, it's unlikely that we'll be allowed to add a full external VM/interpreter project to solve this problem.
To the other posters, I'll be checking out your citations as well. Thanks, all!
Short answer:
The fundamental reading list for a lisp interpreter is SICP. I would not at all call it overkill, if you feel you are overqualified for the first parts of the book jump to chapter 4 and start interpreting away (although I feel this would be a loss since chapters 1-3 really are that good!).
Add LISP in Small Pieces (LISP from now on), chapters 1-3. Especially chapter 3 if you need to implement any non-trivial control forms.
See this post by Jens Axel Søgaard on a minimal self-hosting Scheme: http://www.scheme.dk/blog/2006/12/self-evaluating-evaluator.html .
A slightly longer answer:
It is hard to give advice without knowing what you require from your interpreter.
does it really really need to be an interpreter, or do you actually need to be able to execute lisp code?
does it need to be fast?
does it need standards compliance? Common Lisp? R5RS? R6RS? Any SFRIs you need?
If you need anything more fancy than a simple syntax tree walker I would strongly recommend embedding a fast scheme subsystem. Gambit scheme comes to mind: http://dynamo.iro.umontreal.ca/~gambit/wiki/index.php/Main_Page .
If that is not an option chapter 5 in SICP and chapters 5-- in LISP target compilation for faster execution.
For faster interpretation I would take a look at the most recent JavaScript interpreters/compilers. There seem to be a lot of thought going into fast JavaScript execution, and you can probably learn from them. V8 cites two important papers: http://code.google.com/apis/v8/design.html and squirrelfish cites a couple: http://webkit.org/blog/189/announcing-squirrelfish/ .
There is also the canonical scheme papers: http://library.readscheme.org/page1.html for the RABBIT compiler.
If I engage in a bit of premature speculation, memory management might be the tough nut to crack. Nils M Holm has published a book "Scheme 9 from empty space" http://www.t3x.org/s9fes/ which includes a simple stop-the-world mark and sweep garbage collector. Source included.
John Rose (of newer JVM fame) has written a paper on integrating Scheme to C: http://library.readscheme.org/servlets/cite.ss?pattern=AcmDL-Ros-92 .
Yes on SICP.
I've done this task several times and here's what I'd do if I were you:
Design your memory model first. You'll want a GC system of some kind. It's WAAAAY easier to do this first than to bolt it on later.
Design your data structures. In my implementations, I've had a basic cons box with a number of base types: atom, string, number, list, bool, primitive-function.
Design your VM and be sure to keep the API clean. My last implementation had this as a top-level API (forgive the formatting - SO is pooching my preview)
ConsBoxFactory &GetConsBoxFactory() { return mConsFactory; }
AtomFactory &GetAtomFactory() { return mAtomFactory; }
Environment &GetEnvironment() { return mEnvironment; }
t_ConsBox *Read(iostream &stm);
t_ConsBox *Eval(t_ConsBox *box);
void Print(basic_ostream<char> &stm, t_ConsBox *box);
void RunProgram(char *program);
void RunProgram(iostream &stm);
RunProgram isn't needed - it's implemented in terms of Read, Eval, and Print. REPL is a common pattern for interpreters, especially LISP.
A ConsBoxFactory is available to make new cons boxes and to operate on them. An AtomFactory is used so that equivalent symbolic atoms map to exactly one object. An Environment is used to maintain the binding of symbols to cons boxes.
Most of your work should go into these three steps. Then you will find that your client code and support code starts to look very much like LISP too:
t_ConsBox *ConsBoxFactory::Cadr(t_ConsBox *list)
{
return Car(Cdr(list));
}
You can write the parser in yacc/lex, but why bother? Lisp is an incredibly simple grammar and scanner/recursive-descent parser pair for it is about two hours of work. The worst part is writing predicates to identify the tokens (ie, IsString, IsNumber, IsQuotedExpr, etc) and then writing routines to convert the tokens into cons boxes.
Make it easy to write glue into and out of C code and make it easy to debug issues when things go wrong.
The Kamin Interpreters from Samuel Kamin's book Programming Languages, An Interpreter-Based Approach, translated to C++ by Timothy Budd. I'm not sure how useful the bare source code will be, as it was meant to go with the book, but it's a fine book that covers the basics of implementing Lisp in a lower-level language, including garbage collection, etc. (That's not the focus of the book, which is programming languages in general, but it is covered.)
Lisp in Small Pieces goes into more depth, but that's both good and bad for your case. There's a lot of material on compiling and such that won't be relevant to you, and its simpler interpreters are in Scheme, not C++.
SICP is good, definitely. Not overkill, but of course writing interpreters is only a small fraction of the book.
The JScheme suggestion is a good one, too (and it incorporates some code by me), but won't help you with things like GC.
I might flesh this out with more suggestions later.
Edit: A few people have said they learned from my awklisp. This is admittedly kind of a weird suggestion, but it's very small, readable, actually usable, and unlike other tiny-yet-readable toy Lisps it implements its own garbage collector and data representation instead of relying on an underlying high-level implementation language to provide them.
Check out JScheme from Peter Norvig. I found this amazingly simple to understand and port to C++. Uh, dunno about using scheme as a scripting language though - teaching it to jnrs is cumbersome and feels dated (helloooo 1980's).
I would like to extend my recommendation for Programming Languages: Application and Interpretation. If you want to write an interpreter, that book takes you there in a very short path. If you read through writing the code you read and doing the exercise you end up with a bunch of similar interpreters but different (one is eager, the other is lazy, one is dynamic, the other has some typing, one has dynamic scope, the other has lexical scope, etc).