How to define an object whose address is null? - c++

I am wondering how I can define an object in C whose reference will be null?
// definition of foo
...
void * bar = &foo; // bar must be null
There is some ways I could find to do it, but none fit my needs.
__attribute__((weak)) extern int foo; //not working with cygwin/gcc 3.4
__attribute__((at(0))) int foo; //only with rvds
#define foo (*(int*) 0) //cannot be embedded in a macro
Actually, I would prefer a standard compliant solution (c99), but anything working
will be ok.
Edited: The reason to do this is that bar will not always be null. Here is a more relevant example:
// macro that will define foo to a real object or to *null
DECL(foo);
int * bar = &foo;
if(bar) {
// we can call func
func(bar);
} else {
// bar undefined
exit(-1);
}
Of course this is still not very relevant, because I can use #if in my condition. The project involves in fact big structures, a lot of files, a few compilers, some cpu targets, and many programmers who generate bugs with a probability exponential to the complexity of the syntax they use. It is why I would like a simple macro to declare my foo object.

I've got to be missing something, but what doesn't work about void * bar = NULL?

In your class, you can override the & operator:
class MyClass
{
public:
MyClass() :
m_isNull(true)
{
}
MyClass(int value) :
m_isNull(),
m_value(value)
{
}
int value() const
{
/* If null, throw exception, maybe? */
return m_value;
}
bool isNull() const
{
return m_isNull;
}
/////////////////////////
// Here's the "magic". //
/////////////////////////
MyClass *operator&()
{
if(m_isNull)
return 0;
return this;
}
private:
bool m_isNull;
int m_value;
};
This produces behavior a user of MyClass would probably not expect. I'm not sure where this "feature" would be required or even wanted.
If you want to take the real address of a MyClass instance, you can use boost (as suggested in the comments to this answer):
MyClass foo;
MyClass *fooptr = &foo; // fooptr == NULL
fooptr = boost::addressof(foo); // fooptr = &foo (the real address)
Or you can use casting, so MyClass::operator&() isn't called:
struct DummyStruct {};
MyClass foo;
MyClass *fooptr = &foo; // fooptr == NULL
fooptr = &reinterpret_cast<DummyStruct>(foo); // fooptr = &foo (the real address)

What you want is a reference that holds a null address. This is extremely bad practice, but here goes:
#ifdef NON_NULL
Foo realFoo;
Foo &foo = realFoo;
#else
Foo &foo = *(Foo*)NULL;
#endif
Please, don't do it this way. auto_ptr may be a better option.

You are trying to create a symbol with an address of zero. Your last example is probably the only way of doing this within the C compiler / language.
The approach that is most likely to solve your problem is to look at the input file to the linker program. Most linkers allow you to define the label foo as zero.
In a unix ld script this is just:
foo = 0 ;

Okay, it's got to be the question, but you want to have a pointer with a value of 0?
how about
void * bar = (void*) 0;
You don't have to do all that messing about: a pointer is just a number with which the compiler associates a type; if you want the number to be 0, assign 0.
Oh, and answering another question, it's not that the language has anything to do with it, it's just you don't necessarily know what is in location 0. We had a lot of trouble with BSD code back in the day because on early BSD unices, *0 == 0 was reliably true. So people would write things like
while(*c) doSomething();
because when they dereferenced the 0x00 at the end of a string, it looked at LOCATION 0 which had the VALUE 0. Unfortunately, that wasn't necessarily true on other platforms.

I really doubt there is a way to do this in standard C99. In standard C++, you'd be hard put to reference the object once created, if you could create it, as dereferencing a null pointer constant is undefined, and a constant integral 0 in pointer constant is a null pointer constant. (Yes, you could try int i; i = 0; foo * p = reinterpret_cast<foo *>i; p->doSomething(); but the standard doesn't specify what reinterpret_cast<> does, other than in a vague and implementation-dependent way.)
So, my next question is what you're trying to accomplish here. If you're trying to twist the language in odd and interesting ways, it doesn't twist that way according to the Standard. If you've got a legitimate use for this, what would it be?

I think you're close, just a step of pointer indirection away.
Judging by your code sample, there's no need to take the address of foo.
You can accomplish what you want by creating a function that allocates and instantiates bar.
So instead of:
DECL(foo);
int * bar = &foo;
you could have:
#define FOO_IS_NULL 0
int * getFoo()
{
if( FOO_IS_NULL )
{
return 0;
}
int *tmp = malloc(sizeof(int));
*tmp = 1234;
return tmp;
}
int * bar = getFoo();
Note that this gets rid of the variable foo entirely.
The only caveat is that you now need to free(bar).

Well, here is what we have:
C++ allows overloading operator& and has templates to do the work for you, but doesn't allow dereferencing the null pointer.
C allows dereferencing the null pointer, as long as the address is taken afterwards. It also allows assigning void* to any pointer to an object.
Well, that's ideal. First, the C part, which is very easy. I don't understand your point that you cannot embed it into macros. It works fine for me.
#define foo_ (*(void*) 0)
Now, the C++ part. Put the stuff in nullp.hpp:
struct nullp {
struct proxy {
template<typename T> operator T*() {
return 0;
}
};
proxy operator&() {
return omg();
}
} foo;
Now, all we need to do is to glue things together:
#ifdef __cplusplus
#include "nullp.hpp"
#else
#define foo (*(void*) 0)
#endif
Now, you can use &foo and assign it to some pointer to some object-type.

Look, I'm sorry, but you're making this both too hard and too complicated.
If you want to call the thing in C, you need a pointer to function. So, for example, you have
/* ptr to 0-ary function returning int */
int (*func)() = NULL ; /* That's all you need. */
// elsewhere ....
int myfunc() { /* do a good thing */ }
func = myfunc ; /* function name *is* its address */
Now, in later code you can do
if(!func)
(*func)();
else
/* function not defined */
You don't need to mess with the loader, and you don't need --- and shouldn't use --- any zippy macros unless you really really have a strong reason for doing so. This is all standard C.

I don't think there's a standard way to define something that has the address 0. Or rather, it's undefined since it would then be possible to dereference 0, which is undefined (or is it platform specific?) in the standard.
What are you trying to do?

If you're using C++, you can use references:
int *foo = 0;
int &bar = *foo;
int *foo_addr = &bar; // gives NULL

Related

Avoid use of undefined object in c++

If I create a class in c++, it is possible to call a function of an object of this class, even if this class does not exists.
For example:
Class:
class ExampleClass
{
private:
double m_data;
public:
void readSomeData(double param)
{
m_data = param;
}
}
Any function where this class is used:
int main()
{
ExampleClass* myClass;
myClass->readSomeData(2.5);
}
Ofcourse this wouldn't function, because myClass is not defined.
To avoid such situations, I check if ExampleClass objects are a null_ptr
example:
void readSomeData(double param)
{
if(this == null_ptr)
return;
m_data = param;
}
But gcc says:
'this' pointer cannot be null in well-defined C++ code; comparison may
be assumed to always avaluate to false.
Ofcourse that is only a warning, but I think it is not nice to have this warning. Is there a better way to check if the pointer of a class is defined?
Testing it in the class is the wrong way, the warning is correct about that if your code is well defined then this must not be null, so the test should happen at the time when you call the member function:
int main()
{
ExampleClass* myClass = nullptr; // always initialize a raw pointer to ensure
// that it does not point to a random address
// ....
if (myClass != nullptr) {
myClass->readSomeData(2.5);
}
return 0;
}
If a pointer must not be null at a certain part of your code then you should do it according to CppCoreGuideline: I.12: Declare a pointer that must not be null as not_null
Micorosoft provides an Guidelines Support Library that has an implementation for not_null.
Or if possible then don't use pointers at all but std::optional.
So a code setup could look like this:
#include <gsl/gsl>
struct ExampleClass {
void readSomeData(double ){}
};
// now it is clear that myClass must not and can not be null within work_with_class
// it still could hold an invalid pointe, but thats another problem
void work_with_class(gsl::not_null<ExampleClass*> myClass) {
myClass->readSomeData(2.5);
}
int main()
{
ExampleClass* myClass = nullptr; // always initialize a raw pointer to ensure
// that it does not point to a random address
// ....
work_with_class(myClass);
return 0;
}
The best way is not use pointers at all:
int main()
{
ExampleClass myClass;
myClass.readSomeData(2.5);
}
That way there's no need for any check, and in fact, checking this inside the function is moot.
If you need nullability, use std::optional instead.
Either don't use pointers as Bartek Banachewicz has pointed out, or properly initialize and check the pointer:
int main()
{
ExampleClass* myClass= 0;
if (myClass)
myClass->readSomeData(2.5);
return 0;
}
Of course you still have to add the instantiation of the object at some point, otherwise the code is nonsense.

Dealing with reference variables in c++

Alright, so I have looked around online and clearly my problem is that I'm using a variable "val" here that stops existing when the function closes. Unfortunately, I haven't really found any actual solutions to my problem here. I'm sure this is an easy enough problem to solve once you know how, but I just don't have the knowledge.
In this code, just notice I'm trying to return an unsigned int val. I can't do that because the code wants a reference, not just a variable. I can't simply return val but I don't know what to do.
http://i.imgur.com/E8sf2aS.png
Thanks for the help.
Edit: sorry, I had some problems with the image, apparently I need to work on my rep.
I'm going to take a wild guess.
Foo& doStuff()
{
// blah blah
Foo val;
// ...
return val;
// val is no longer valid end of scope. Returning invalid reference.
}
Either pass in the result Foo instance to doStuff, or create a new Foo on the heap and return as pointer.
So,
void doStuff(Foo& val)
{
// blah blah
// ...
val = x;
}
or
Foo* doStuff()
{
// blah blah
Foo* val = new Foo; // dont forget to delete
// ...
return val;
}
Of course, you can return by value:
Foo doStuff()
{
// blah blah
Foo val;
// ...
return val;
}
Depending on how heavy a Foo is. Of course, since in this case a Foo is just an small int, you should simply return by value. For some cases of return by value for large/non-trivial types, a temporary copy is created (In those instances where there is no copy elision via RVO or NRVO); in these cases you might want to avoid returning large object types by value.
This code has a lot of problems, apart from being given in an image (!!!)
I guess you're trying to find the element at position pos-1 in a list, or something. The main problem referring to your question seems to be that you're first assigning val by value, then you have no reference to return. You should return n2->value directly, which should be a reference to unsigned int, like that:
const unsigned int &list::operator[](unsigned int pos) const
{
node *n1 = ???, *n2 = ???;
for (unsigned int k = 0; k < _size; k++)
{
if (k == pos)
return n2->value;
n1 = n2->next;
n2 = n1;
}
return ???;
}
Other problems remain, e.g.
why you need two node* and not just one (looking for position pos-1 directly)
how to initialize n1, n2 (somehow pointing to the head of your list; obviously new node() should not work)
what to return if input argument pos is out of range (possibly return a reference to some static variable that you can detect, or throw an exception)
For these problems, more context would be needed from your side.
Reference variables, are only valid if the object to which "refer" to, exists in memory. Passing around references to an out of scope variable, is considered undefined behavior.
This is the mistake in your code.Please correct it.
const unsigned int& list::operator[] (unsigned int pos)const
{
const unsigned int val = 0;
return val; //this is a local variable, whose scope ends here, a reference to this should not be returned
}
This is the compiler's warning, to your code.
warning: reference to local variable ‘val’ returned [enabled by default]
Please listen to compiler warnings (especially c/c++ !!), in your case simply using pass by value, would have been sufficient.
Edit:
In case the return variable, is enforced to be a reference type, and cannot be avoided, you can then extend the life of you local variable, to throughout the existence of the program by making it static.
const unsigned int& list::operator[] (unsigned int pos)const
{
static const unsigned int val = 0;
return val;
}
Th variable val is now a static local variable, whose life is throughout the program,
so pasing around references to this variable should be OK, but not recommended programming,
since a pass by value will suffice for the needs of your application.

Get function address from a function structure member

I'm trying to get function addresses which are hidden behind structures. Unfortunately, the void* basic C++ conversion doesn't work, so I used C++ template instead.
1. Basic void* C++ conversion doesn't work with functions inside structures, why?
void * lpfunction;
lpfunction = scanf; //OK
lpfunction = MessageBoxA; //OK
I made a simple structure :
struct FOO{
void PRINT(void){printf("bla bla bla");}
void SETA(int){} //nothing you can see
void SETB(int){} //nothing you can see
int GETA(void){} //nothing you can see
int GETB(void){} //nothing you can see
};
///////////////////////////////////////////
void *lpFunction = FOO::PRINT;
And the compiling error :
error C2440: 'initializing' :
cannot convert from 'void (__thiscall FOO::*)(void)' to 'void *'
2. Is getting function member addresses impossible?
Then, I made a template function which is able to convert a function member to address. Then I will call it by assembly. It should be something like this:
template <class F,void (F::*Function)()>
void * GetFunctionAddress() {
union ADDRESS
{
void (F::*func)();
void * lpdata;
}address_data;
address_data.func = Function;
return address_data.lpdata; //Address found!!!
}
And here is the code :
int main()
{
void * address = GetFunctionAddress<FOO,&FOO::PRINT>();
FOO number;
number.PRINT(); //Template call
void * lpdata = &number;
__asm mov ecx, lpdata //Attach "number" structure address
__asm call address //Call FOO::PRINT with assembly using __thiscall
printf("Done.\n");
system("pause");
return 0;
}
But, I see it is extremely specific. It looks like LOCK - KEY, and I have to make a new template for every set of argument types.
Original (OK) :
void PRINT(); //void FOO::PRINT();
Modify a bit :
void PRINT(int); //void FOO::PRINT(int);
Immediately with old template code the compiler shows :
//void (F::*func)();
//address_data.func = Function;
error C2440: '=' : cannot convert from
'void (__thiscall FOO::*)(int)' to 'void (__thiscall FOO::*)(void)'
Why? They are only addresses.
69: address_data.func = Function;
00420328 mov dword ptr [ebp-4],offset #ILT+2940(FOO::PRINT) (00401b81)
...
EDIT3 : I know the better solution :
void(NUMBER::*address_PRINT)(void) = FOO::PRINT;
int(NUMBER::*address_GETA)(void) = FOO::GETA;
int(NUMBER::*address_GETB)(void) = FOO::GETB;
void(NUMBER::*address_SETA)(int) = FOO::SETA;
void(NUMBER::*address_SETA)(int) = FOO::SETB;
It's much better than template. And by the way I want to achieve the goal :
<special_definition> lpfunction;
lpfunction = FOO::PRINT; //OK
lpfunction = FOO::GETA; //OK
lpfunction = FOO::GETB; //OK
lpfunction = FOO::SETA; //OK
lpfunction = FOO::SETB; //OK
Is this possible?
Pointers to member functions are nothing like pointers to global functions or static member functions. There are many reasons for this, but I'm not sure how much you know about how C++ works, and so I'm not sure what reasons will make sense.
I do know that what you are trying in assembly simply won't work in the general case. It seems like you have a fundamental misunderstanding about the purpose of member functions and function pointers.
The thing is, you are doing some things that you would generally not do in C++. You don't generally build up tables of function pointers in C++ because the things you would use that sort of thing for are what virtual functions are for.
If you are determined to use this approach, I would suggest you not use C++ at all, and only use C.
To prove these pointer types are completely incompatible, here is a program for you:
#include <cstdio>
struct Foo {
int a;
int b;
int addThem() { return a + b; }
};
struct Bar {
int c;
int d;
int addThemAll() { return c + d; }
};
struct Qux : public Foo, public Bar {
int e;
int addAllTheThings() { return Foo::addThem() + Bar::addThemAll() + e; }
};
int addThemGlobal(Foo *foo)
{
return foo->a + foo->b;
}
int main()
{
int (Qux::*func)();
func = &Bar::addThemAll;
printf("sizeof(Foo::addThem) == %u\n", sizeof(&Foo::addThem));
printf("sizeof(Bar::addThemAll) == %u\n", sizeof(&Bar::addThemAll));
printf("sizeof(Qux::addAllTheThings) == %u\n", sizeof(&Qux::addAllTheThings));
printf("sizeof(func) == %u\n", sizeof(func));
printf("sizeof(addThemGlobal) == %u\n", sizeof(&addThemGlobal));
printf("sizeof(void *) == %u\n", sizeof(void *));
return 0;
}
On my system this program yields these results:
$ /tmp/a.out
sizeof(Foo::addThem) == 16
sizeof(Bar::addThemAll) == 16
sizeof(Qux::addAllTheThings) == 16
sizeof(func) == 16
sizeof(addThemGlobal) == 8
sizeof(void *) == 8
Notice how the member function pointer is 16 bytes long. It won't fit into a void *. It isn't a pointer in the normal sense. Your code and union work purely by accident.
The reason for this is that a member function pointer often needs extra data stored in it related to fixing up the object pointer it's passed in order to be correct for the function that's called. In my example, when called Bar::addThemAll on a Qux object (which is perfectly valid because of inheritance) the pointer to the Qux object needs to be adjusted to point at the Bar sub-object before the function is called. So Qux::*s to member functions must have this adjustment encoded in them. After all, saying func = &Qux::addAllTheThings is perfectly valid, and if that function were called no pointer adjustment would be necessary. So the pointer adjustment is a part of the function pointer's value.
And that's just an example. Compilers are permitted to implement member function pointers in any way they see fit (within certain constraints). Many compilers (like the GNU C++ compiler on a 64-bit platform like I was using) will implement them in a way that do not permit any member function pointer to be treated as at all equivalent to normal function pointers.
There are ways to deal with this. The swiss-army knife of dealing with member function pointers is the ::std::function template in C++11 or C++ TR1.
An example:
#include <functional>
// .... inside main
::std::function<int(Qux *)> funcob = func;
funcob can point at absolutely anything that can be called like a function and needs a Qux *. Member functions, global functions, static member functions, functors... funcob can point at it.
That example only works on a C++11 compiler though. But if your compiler is reasonably recent, but still not a C++11 compiler, this may work instead:
#include <tr1/functional>
// .... inside main
::std::tr1::function<int(Qux *)> funcob = func;
If worse comes to worse, you can use the Boost libraries, which is where this whole concept came from.
But I would rethink your design. I suspect that you will get a lot more milage out of having a well thought out inheritance hierarchy and using virtual functions than you will out of whatever it is you're doing now. With an interpreter I would have a top level abstract 'expression' class that is an abstract class for anything that can be evaluated. I would give it a virtual evaluate method. Then you can derive classes for different syntax elements like an addition expression a variable or a constant. Each of them will overload the evaluate method for their specific case. Then you can build up expression trees.
Not knowing details though, that's just a vague suggestion about your design.
Here is a clean solution. By means of a template wrap your member function into a static member function. Then you can convert it to whatever pointer you want:
template<class F, void (F::*funct)()>
struct Helper: public T {
static void static_f(F *obj) {
((*obj).*funct)();
};
};
struct T {
void f() {
}
};
int main() {
void (*ptr)(T*);
ptr = &(Helper<T,&T::f>::static_f);
}
It seems that you need to convert a pointer to a member function to a void *. I presume you want to give that pointer as a "user data" to some library function and then you will get back your pointer and want to use it on some given object.
If this is the case a reinterpret_cast<void *>(...) could be the right thing... I assume that the library receiving the pointer is not using it.

How to modify a C++ structure with int *

I have the following structure:
struct CountCarrier
{
int *CurrCount;
};
And this is what I want to do:
int main()
{
CountCarrier carrier = CountCarrier();
*(carrier.CurrCount) = 2; // initialize the *(carrier.CurrCount) to 2
IncreaseCount(&carrier); // should increase the *(carrier.CurrCount) to 3
}
void IncreaseCount(CountCarrier *countCarrier)
{
int *currCounts = countCarrier->CurrCount;
(*currCounts)++;
}
So, my intention is specified in the comments.
However, I couldn't get this to work. For starters, the program throws an exception at this line:
*(carrier.CurrCount) = 2;
And I suspect the following line won't work as well. Anything I did wrong?
struct CountCarrier
{
int *CurrCount; //No memory assigned
};
You need to allocate some valid memory to the pointer inside the structure to be able to put data in this.
Unless you do so, What you ar trying to do is attempting to write at some invalid address, which results in an Undefined Behavior, which luckiy in this case shows up as an exception.
Resolution:
struct CountCarrier
{
int *CurrCount; //No memory assigned
CountCarrier():CurrCount(new(int))
{
}
};
Suggestion:
Stay away from dynamic allocations as long as you can.
When you think of using pointers always think whether you really need one. In this case it doesn't really seem that you need one, A simple int member would be just fine.
You need to create the pointer. ie. carrier->CurrCount = new int;
*(carrier.CurrCount)
This is dereferencing the pointer carrier.CurrCount, but you never initialized it. I suspect this is what you want:
carrier.CurrCount = new int(2);
I seriously doubt that your program throws an exception at the line:
*(carrier.CurrCount) = 2;
While throwing an exception is certainly allowed behaviour, it seems much more likely that you encountered an access violation that caused the process to be killed by the operating system.
The problem is that you are using a pointer, but your pointer is not initialised to point at anything. This means that the result of the pointer dereference is undefined.
In this situation there does not seem to be any advantage to using a pointer at all. Your CurrCount member would work just as well if it was just a plain int.
If you are using C++, then you should encash its facilities. Instead of correcting your code, I am showing here that how the code should look like:
struct CountCarrier
{
int CurrCount; // simple data member
CountCarrier(int count) : CurrCount(count) {} // constructor
CountCarrier& operator ++ () // overloaded operator
{
++ CurrCount;
return *this;
}
};
We are overloading operator ++, because you have only one data member. You can replace with some named method also, like void IncrementCount().
CountCarrier carrier(2);
++ carrier;
As Als said, you need to provide some memory for the code to work.
But why make it so complicated? You don't need any pointers for the code you have to work. The "modern C++" way looks more like this:
struct CountCarrier
{
public:
CountCarrier(int currCount) : currCount(currCount) {}
void IncreaseCount() { ++currCount; }
int GetCount() const { return currCount; }
private:
int currCount;
};
int main()
{
CountCarrier carrier(2); // Initialize carrier.currCount to 2
carrier.IncreaseCount(); // Increment carrier.currCount to 3
}
Note how much cleaner and less error prone that is. Like I said, pick up a good introductory C++ book and read through it.

How to pass Virtually Anything To A Function In C++ (or C)?

I need to pass something like a pointer that takes anything as a function parameter. You know, something without any predefined type or a type that can take anything like this:
void MyFunc( *pointer );
And then use it like:
char * x = "YAY!";
MyFunc(x);
int y = 10;
MyFunc(&y);
MyObj *b = new MyObj();
MyFunc(b);
And I don't want to use templates because I am mostly using C in my project.
Is there anything that can be used here except a function macro?
In C++, Boost.Any will let you do this in a type-safe way:
void func(boost::any const &x)
{
// any_cast a reference and it
// will throw if x is not an int.
int i = any_cast<int>(x);
// any_cast a pointer and it will
// return a null pointer if x is not an int.
int const *p = any_cast<int>(&x);
}
// pass in whatever you want.
func(123);
func("123");
In C, you would use a void pointer:
void func(void const *x)
{
// it's up to you to ensure x points to an int. if
// it's not, it might crash or it might silently appear
// to work. nothing is checked for you!
int i = *(int const*)x;
}
// pass in whatever you want.
int i = 123;
func(&i);
func("123");
You seem adverse to it but I'll recommend it anyway: if you're using C++, embrace it. Don't be afraid of templates. Things like Boost.Any and void pointers have a place in C++, but it is very small.
Update:
Well , I am making a small signals - slots - connections library to be
used with my gui toolkit. So that I can get rid of the Ugly WNDPROC. I
need these pointers for the connections.
If you need multi-target signals, Boost.Signals already provides a full and tested signals/slots implementation. You can use Boost.Bind (or std::bind, if you've got a C++0x compiler) to connect member functions:
struct button
{
boost::signal<void(button&)> on_click;
}
struct my_window
{
button b;
my_window()
{
b.on_click.connect(std::bind(&my_window::handle_click,
this, std::placeholders::_1));
}
void handle_click(button &b)
{
}
void simulate_click()
{
b.on_click(b);
}
};
If you only want a simple callback, Boost.Function (or std::function if you've got a C++0x compiler) will work well:
struct button
{
std::function<void(button&)> on_click;
}
struct my_window
{
button b;
my_window()
{
b.on_click = std::bind(&my_window::handle_click,
this, std::placeholders::_1);
}
void handle_click(button &b)
{
}
void simulate_click()
{
b.on_click(b);
}
};
You can use a function that takes a void*, but you must be aware of the pointer types that are not compatible with void*:
pointers to functions:
void MyFunc(void*);
MyFunc(&MyFunc); // WRONG
pointers to members:
void MyFunc(void*);
struct A { int x; };
MyFunc(&A::x); // WRONG
While these pointers are not compatible with void* (even with casting, on some compilers), they are themselves data. So you can pass a pointer to the pointer:
void MyFunc(void*);
void (*pfn)(void*) = &MyFunc;
MyFunc(&pfn); // ok
struct A { int x; };
int A::*px = &A::x;
MyFunc(&px); // ok
You can define the method as taking one void * argument. Of course, at that point, it's up to you to figure out what to do with the data (as far as accessing it or casting it.)
void MyFunc(void * ptr);
You could use:
void MyFunc( void* p){}
int g = 10;
MyFunc( (void*)&g );
void * is the way to do it. You can assign any pointer type to and from a void *. But to use the pointer in the called function, you'll have to know the type so you can create an appropriate local pointer or cast appropriately. You can encode a limited set of types as enum symbols, and perhaps use a switch to select type-specific behavior. But without a specific purpose or use-case, you might end up chasing your tail in a quest for generality for which C was never intended.
Another way would be to make a union to contain all the various types you know are needed.
typedef union {
int i;
char c;
float f;
} vartype;
Then if the value can carry around its own type-identifier, it becomes a tag-union or variant-record.
typedef struct {
enum type { INT, CHAR, FLOAT } type;
vartype var;
} varrec;