I've got a game engine where I'm splitting off the physics simulation from the game object functionality. So I've got a pure virtual class for a physical body
class Body
from which I'll be deriving various implementations of a physics simulation. My game object class then looks like
class GameObject {
public:
// ...
private:
Body *m_pBody;
};
and I can plug in whatever implementation I need for that particular game. But I may need access to all of the Body functions when I've only got a GameObject. So I've found myself writing tons of things like
Vector GameObject::GetPosition() const { return m_pBody->GetPosition(); }
I'm tempted to scratch all of them and just do stuff like
pObject->GetBody()->GetPosition();
but this seems wrong (i.e. violates the Law of Demeter). Plus, it simply pushes the verbosity from the implementation to the usage. So I'm looking for a different way of doing this.
The idea of the law of Demeter is that your GameObject isn't supposed to have functions like GetPosition(). Instead it's supposed to have MoveForward(int) or TurnLeft() functions that may call GetPosition() (along with other functions) internally. Essentially they translate one interface into another.
If your logic requires a GetPosition() function, then it makes sense turn that into an interface a la Ates Goral. Otherwise you'll need to rethink why you're grabbing so deeply into an object to call methods on its subobjects.
One approach you could take is to split the Body interface into multiple interfaces, each with a different purpose and give GameObject ownership of only the interfaces that it would have to expose.
class Positionable;
class Movable;
class Collidable;
//etc.
The concrete Body implementations would probably implement all interfaces but a GameObject that only needs to expose its position would only reference (through dependency injection) a Positionable interface:
class BodyA : public Positionable, Movable, Collidable {
// ...
};
class GameObjectA {
private:
Positionable *m_p;
public:
GameObjectA(Positionable *p) { m_p = p; }
Positionable *getPosition() { return m_p; }
};
BodyA bodyA;
GameObjectA objA(&bodyA);
objA->getPosition()->getX();
Game hierarchies should not involve a lot of inheritance. I can't point you to any web pages, but that is the feeling I've gather from the several sources, most notably the game gem series.
You can have hierarchies like ship->tie_fighter, ship->x_wing. But not PlaysSound->tie_fighter. Your tie_fighter class should be composed of the objects it needs to represent itself. A physics part, a graphics part, etc. You should provide a minimal interface for interacting with your game objects. Implement as much physics logic in the engine or in the physic piece.
With this approach your game objects become collections of more basic game components.
All that said, you will want to be able to set a game objects physical state during game events. So you'll end up with problem you described for setting the various pieces of state. It's just icky but that is best solution I've found so far.
I've recently tried to make higher level state functions, using ideas from Box2D. Have a function SetXForm for setting positions etc. Another for SetDXForm for velocities and angular velocity. These functions take proxy objects as parameters that represent the various parts of the physical state. Using methods like these you could reduce the number of methods you'd need to set state but in the end you'd probably still end up implementing the finer grained ones, and the proxy objects would be more work than you would save by skipping out on a few methods.
So, I didn't help that much. This was more a rebuttal of the previous answer.
In summary, I would recommend you stick with the many method approach. There may not always be a simple one to 1 relationship between game objects and physic objects. We ran into that where it was much simpler to have one game object represent all of the particles from an explosion. If we had given in and just exposed a body pointer, we would not have been able to simplify the problem.
Do I understand correctly that you're separating the physics of something from it's game representation?
i.e, would you see something like this:
class CompanionCube
{
private:
Body* m_pPhysicsBody;
};
?
If so, that smells wrong to me. Technically your 'GameObject' is a physics object, so it should derive from Body.
It sounds like you're planning on swapping physics models around and that's why you're attempting to do it via aggregation, and if that's the case, I'd ask: "Do you plan on swapping physics types at runtime, or compile time?".
If compile time is your answer, I'd derive your game objects from Body, and make Body a typedef to whichever physics body you want to have be the default.
If it's runtime, you'd have to write a 'Body' class that does that switching internally, which might not be a bad idea if your goal is to play around with different physics.
Alternatively, you'll probably find you'll have different 'parent' classes for Body depending on the type of game object (water, rigid body, etc), so you could just make that explicit in your derivation.
Anyhow, I'll stop rambling since this answer is based on a lot of guesswork. ;) Let me know if I'm off base, and I'll delete my answer.
Related
In code I have been writing recently I have been forced to directly access a member of an object to call its functions, however, it feels wrong to do this because it would seem to violate encapsulation and the Law of Demeter. Yet the only good alternative I can come up with is to write my own function in the class for every single function of that member I may want to call, which would be very tedious and redundant. Example:
class Object
{
public:
void setNum(int x)
{
num = x;
}
private:
int num;
};
class Object2
{
public:
Object obj;
};
int main()
{
Object2 obj2;
obj2.obj.setNum(5);
}
vs
class Object
{
public:
void setNum(int x)
{
num = x;
}
private:
int num;
};
class Object2
{
public:
void setNum(int x)
{
obj.setNum(x);
}
private:
Object obj;
};
int main()
{
Object2 obj2;
obj2.setNum(5);
}
The call to setNum in Object2 is forwarded to the same function in Object. Is such a design considered bad practice? Is accessing obj directly be any better?
I could also have Object2 inherit from Object, but in this case the class I would be inheriting from is not designed to be a base class, would expose protected members to Object2, and seems unfitting to begin with because it is not an is-a relationship and composition would be preferred.
My specific situation: I am making a game using SFML, there is a class Ship that of course needs a sprite to represent it in the world. Anytime I want to set or get the ship's position, rotation, etc. I have to either directly access its sprite or write a redundant forwarding function in Ship. The issue is that doing either one of those things seems like a code smell: either violate encapsulation and the Law of Demeter, or write redundant code.
What would be considered best practice here? Am I being overly picky about writing simple forwarding functions? Or is there really nothing wrong with directly accessing the sprite of Ship in this case?
This question: C++ Forward method calls to embed object without inheritance in fact is exactly what I'm asking, however, neither answer gives a good solution. One not being condoned and apparently having very poor encapsulation, the other simply using a getter which seems to be a placebo if anything, and no one addresses the main question I have, which is what is the most elegant and acceptable solution?
What solution is the best highly depends on underlying semantics of encapsulation. You need to decouple your code as much as possible. I'll describe that on examples:
You have a Ship class and it has a Sprite. You may want to separate game logic and rendering. So all that Ships knows about the rendering is that it has a Sprite object which handles it. So in this case you are separating responsibilities and that's good. So simple getter is a good solution.
But if absolute coordinates and rotation must be stored in a sprite, then things change: game logic usually needs them two, so they must be set consistently both inside a Ship and a Sprite. The best way to achieve that is to make Ship's setPosition and setRotation methods to set Sprites position and rotation too. That way you simplify the code which works with the Ship at expense of Ship complexity. Given that Ship is manipulated from several places, that's worth it. NOTE: You still may want to expose Sprite through a getter for rendering purposes. And you may want to prevent anybody except a Ship to set Sprite position and rotation, if that does not bloat your code too much.
Let's imagine that Ship class is mostly devoted to rendering. In such situation you may want to hide from outer classes that you use sprites for graphics (because if you change rendering engine it will be good if you won't need to rewrite anything except rendering code). And in such situation you will want to proxy all setPosition and setRotation calls to a Sprite through Ship just to hide existence of the Sprite.
In none of this cases inheritance is used because inheritance means that child is a variation of it's ancestor. You can say that BattleShip is a variant of a Ship. But Ship is not a variant of a Sprite, they are too different and mean different things.
So: if encapsulated class is too specific and should not be visible outside or if it must be operated consistently with a master object, then writing a bunch of proxy methods is a good solution. Otherwise these methods will just bloat your code and it's better to provide a way to get nested object. But in that case I vote for a getter method instead of a public property.
Despite of how the classic javanese oop school can think, never forgot that also DRY (Don't Repeat Yourself) is ALSO considered a good practice.
And while OOP is just one of many programming paradigm C++ can support, DRY is the very essence of all programming since the first very assembler got macros, and this is true long before oop inventors was even far away from their own parent's thoughts and wishes.
For all what my unfair experience is... if respecting a good oop practice force you in writing useless boilerplates of repeating code it means either
The language you are using is fundamentally broken for the purpose you want to achieve, not supporting the paradigm correctly or...
OOP is broken for the purpose you are try to reach. And in C++ chances are that OOP is really the broken paradigm.
To come to your specific problem, delegation (that's how that pattern is commonly named) makes sense if:
the way it is delegating can be changed or
the delegation is to hide part of the member interface.
In you case, you have a function that calls a fixed method reachable from fixed member.
Is that only specific to this particular sample or in your implementation will be always that way by design?
If so, delegation adds no semantic value, if not just reducing a.b.m() to a.m(). If you are writing more than ... let's say three "do nothing just forward" functions you are wasting your time.
If b has 50 methods and you are making it private to delegate only 5 of them, than it makes perfectly sense.
In my simulation I have different objects that can be sensed in three ways: object can be seen and/or heard and/or smelled. For example, Animal can be seen, heard and smelled. And piece of Meat on the ground can be seen and smelled but not heard and Wall can only be seen. Then I have different sensors that gather this information - EyeSensor, EarSensor, NoseSensor.
Before state: brief version gist.github.com link
Before I started implementing NoseSensor I had all three functionality in one class that every object inherited - CanBeSensed because although classes were different they all needed the same getDistanceMethod() and if object implemented any CanBeSensed functionality it needed a senseMask - flags if object can be heard/seen/smelled and I didn't want to use virtual inheritance. I sacrificed having data members inside this class for smell, sounds, EyeInfo because objects that can only be seen do not need smell/sound info.
Objects then were registered in corresponding Sensor.
Now I've noticed that Smell and Sound sensors are the same and only differ in a single line inside a loop - one calls float getSound() and another float getSmell() on a CanBeSensed* object. When I create one of this two sensors I know what it needs to call, but I don't know how to choose that line without a condition and it's inside a tight loop and a virtual function.
So I've decided to make a single base class for these 3 functionality using virtual inheritance for base class with getDistanceMethod().
But now I had to make my SensorBase class a template class because of this method
virtual void sense(std::unordered_map<IdInt, CanBeSensed*>& objectsToSense) = 0;
, and it meant that I need to make SensorySubSystem class(manages sensors and objects in range) a template as well. And it meant that all my SubSystems like VisionSubSystem, HearingSubSystem and SmellSubSystem inherit from a template class, and it broke my SensorySystem class which was managing all SensorySubSystems through a vector of pointers to SensorySubSystem class std::vector<SensorySubSystem*> subSystems;
Please, could you suggest some solution for how to restructure this or how to make compiler decide at compile time(or at least decide once per call//once per object creation) what method to call inside Hearing/Smell Sensors.
Looking at your original design I have a few comments:
The class design in hierarchy.cpp looks quite ok to me.
Unless distance is something specific to sensory information getDistance() doesn't look like a method that belongs into this class. It could be moved either into a Vec2d-class or to a helper function (calculatePositon(vec2d, vec2d)). I do not see, why getDistance() is virtual, if it does something different than calculating the distance between the given position and the objects position, then it should be renamed.
The class CanBeSensed sounds more like a property and should probably be renamed to e.g. SensableObject.
Regarding your new approach:
Inheritance should primarily be used to express concepts (is-a-relations), not to share code. If you want to reuse an algorithm, consider writing an algorithm class or function (favour composition over inheritance).
In summary I propose to keep your original class design cleaning it up a little as described above. You could add virtual functions canBeSmelled/canBeHeard/canBeSeen to CanBeSensed.
Alternatively you could create a class hierachy:
class Object{ getPosition(); }
class ObjectWithSmell : virtual Object
class ObjectWithSound : virtual Object
...
But then you'd have to deal with virtual inheritance without any noticeable benefit.
The shared calculation code could go into an algorithmic class or function.
(Refer Update #1 for a concise version of the question.)
We have an (abstract) class named Games that has subclasses, say BasketBall and Hockey (and probably many more to come later).
Another class GameSchedule, must contain a collection GamesCollection of various Games objects. The issue is that we would, at times, like to iterate only through the BasketBall objects of GamesCollection and call functions that are specific to it (and not mentioned in the Games class).
That is, GameSchedule deals with a number of objects that broadly belong to Games class, in the sense that they do have common functions that are being accessed; at the same time, there is more granularity at which they are to be handled.
We would like to come up with a design that avoids unsafe downcasting, and is extensible in the sense that creating many subclasses under Games or any of its existing subclasses must not necessitate the addition of too much code to handle this requirement.
Examples:
A clumsy solution that I came up with, that doesn't do any downcasting at all, is to have dummy functions in the Game class for every subclass specific function that has to be called from GameSchedule. These dummy functions will have an overriding implementation in the appropriate subclasses which actually require its implementation.
We could explicitly maintain different containers for various subclasses of Games instead of a single container. But this would require a lot of extra code in GameSchedule, when the number of subclasses grow. Especially if we need to iterate through all the Games objects.
Is there a neat way of doing this?
Note: the code is written in C++
Update# 1: I realized that the question can be put in a much simpler way. Is it possible to have a container class for any object belonging to a hierarchy of classes? Moreover, this container class must have the ability to pick elements belonging to (or derive from) a particular class from the hierarchy and return an appropriate list.
In the context of the above problem, the container class must have functions like GetCricketGames, GetTestCricketGames, GetBaseballGame etc.,
This is exactly one of the problems that The "Tell, Don't Ask" principle was created for.
You're describing an object that holds onto references to other objects, and wants to ask them what type of object they are before telling them what they need to do. From the article linked above:
The problem is that, as the caller, you should not be making decisions based on the state of the called object that result in you then changing the state of the object. The logic you are implementing is probably the called object’s responsibility, not yours. For you to make decisions outside the object violates its encapsulation.
If you break the rules of encapsulation, you not only introduce the runtime risks incurred by rampant downcasts, but also make your system significantly less maintainable by making it easier for components to become tightly coupled.
Now that that's out there, let's look at how the "Tell, Don't Ask" could be applied to your design problem.
Let's go through your stated constraints (in no particular order):
GameSchedule needs to iterate over all games, performing general operations
GameSchedule needs to iterate over a subset of all games (e.g., Basketball), to perform type-specific operations
No downcasts
Must easily accommodate new Game subclasses
The first step to following the "Tell, Don't Ask" principle is identifying the actions that will take place in the system. This lets us take a step back and evaluate what the system should be doing, without getting bogged down into the details of how it should be doing it.
You made the following comment in #MarkB's answer:
If there's a TestCricket class inheriting from Cricket, and it has many specific attributes concerning the timings of the various innings of the match, and we would like to initialize the values of all TestCricket objects' timing attributes to some preset value, I need a loop that picks all TestCricket objects and calls some function like setInningTimings(int inning_index, Time_Object t)
In this case, the action is: "Initialize the inning timings of all TestCricket games to a preset value."
This is problematic, because the code that wants to perform this initialization is unable to differentiate between TestCricket games, and other games (e.g., Basketball). But maybe it doesn't need to...
Most games have some element of time: Basketball games have time-limited periods, while Baseball games have (basically) innings with basically unlimited time. Each type of game could have its own completely unique configuration. This is not something we want to offload onto a single class.
Instead of asking each game what type of Game it is, and then telling it how to initialize, consider how things would work if the GameSchedule simply told each Game object to initialize. This delegates the responsibility of the initialization to the subclass of Game - the class with literally the most knowledge of what type of game it is.
This can feel really weird at first, because the GameSchedule object is relinquishing control to another object. This is an example of the Hollywood Principle. It's a completely different way of solving problems than the approach most developers initially learn.
This approach deals with the constraints in the following ways:
GameSchedule can iterate over a list of Games without any problem
GameSchedule no longer needs to know the subtypes of its Games
No downcasting is necessary, because the subclasses themselves are handling the subclass-specific logic
When a new subclass is added, no logic needs to be changed anywhere - the subclass itself implements the necessary details (e.g., an InitializeTiming() method).
Edit: Here's an example, as a proof-of-concept.
struct Game
{
std::string m_name;
Game(std::string name)
: m_name(name)
{
}
virtual void Start() = 0;
virtual void InitializeTiming() = 0;
};
// A class to demonstrate a collaborating object
struct PeriodLengthProvider
{
int GetPeriodLength();
}
struct Basketball : Game
{
int m_period_length;
PeriodLengthProvider* m_period_length_provider;
Basketball(PeriodLengthProvider* period_length_provider)
: Game("Basketball")
, m_period_length_provider(period_length_provider)
{
}
void Start() override;
void InitializeTiming() override
{
m_period_length = m_time_provider->GetPeriodLength();
}
};
struct Baseball : Game
{
int m_number_of_innings;
Baseball() : Game("Baseball") { }
void Start() override;
void InitializeTiming() override
{
m_number_of_innings = 9;
}
}
struct GameSchedule
{
std::vector<Game*> m_games;
GameSchedule(std::vector<Game*> games)
: m_games(games)
{
}
void StartGames()
{
for(auto& game : m_games)
{
game->InitializeTiming();
game->Start();
}
}
};
You've already identified the first two options that came to my mind: Make the base class have the methods in question, or maintain separate containers for each game type.
The fact that you don't feel these are appropriate leads me to believe that the "abstract" interface you provide in the Game base class may be far too concrete. I suspect that what you need to do is step back and look at the base interface.
You haven't given any concrete example to help, so I'm going to make one up. Let's say your basketball class has a NextQuarter method and hockey has NextPeriod. Instead, add to the base class a NextGameSegment method, or something that abstracts away the game-specific details. All the game-specific implementation details should be hidden in the child class with only a game-general interface needed by the schedule class.
C# supports reflections and by using the "is" keyword or GetType() member function you could do these easily. If you are writing your code in unmanaged C++, I think the best way to do this is add a GetType() method in your base class (Games?). Which in its turn would return an enum, containing all the classes that derive from it (so you would have to create an enum too) for that. That way you can safely determine the type you are dealing with only through the base type. Below is an example:
enum class GameTypes { Game, Basketball, Football, Hockey };
class Game
{
public:
virtual GameTypes GetType() { return GameTypes::Game; }
}
class BasketBall : public Game
{
public:
GameTypes GetType() { return GameTypes::Basketball; }
}
and you do this for the remaining games (e.g. Football, Hockey). Then you keep a container of Game objects only. As you get the Game object, you call its GetType() method and effectively determine its type.
You're trying to have it all, and you can't do that. :) Either you need to do a downcast, or you'll need to utilize something like the visitor pattern that would then require you to do work every time you create a new implementation of Game. Or you can fundamentally redesign things to eliminate the need to pick the individual Basketballs out of a collection of Games.
And FWIW: downcasting may be ugly, but it's not unsafe as long as you use pointers and check for null:
for(Game* game : allGames)
{
Basketball* bball = dynamic_cast<Basketball*>(game);
if(bball != nullptr)
bball->SetupCourt();
}
I'd use the strategy pattern here.
Each game type has its own scheduling strategy which derives from the common strategy used by your game schedule class and decouples the dependency between the specific game and game schedule.
I'm having a little circular-dependency problem. It works fine, but it makes for ugly-seeming code. It's in the context of a Snake game.
I have a class, Snake, which contains a vector of SnakeSegments, and manages their interaction (for instance moving and growing as a unit, rather than as separate entities).
When a SnakeSegment collides with a Food object, it flips its hasEaten member to true. The Snake routinely queries the SnakeSegments, essentially for this member. If any of the queries return positive (i.e. one has hit food), then the Snake will grow as a unit (i.e. expand the head and shrink the tail). This is all fine and good, but I'd much prefer a more signal-based approach, where, when a SnakeSegment hits food, it sends an alert (signal, interrupt, etc.) to the Snake class, which tells it to grow. This means I wouldn't have ugly code in my Snake's Update function, checking all the segments; and I would instead have an OnEat() function in my Snake class.
However, this leads to circular dependencies; the Snake contains a vector of SnakeSegments, and the SnakeSegments have a Snake& or Snake* member, which tells them whom to alert when they eat. In the code, I essentially just have to pre-declare the Snake class:
class Snake;
class SnakeSegment
{
...
Snake* alertOnEat;
...
};
and my Snake class just works normally
#include "SnakeSegment.hpp"
class Snake
{
...
std::vector segments;
...
void OnEat();
...
};
Are there any nicer designs to this? Note that it isn't just a problem occuring here; a similar problem occurs in a number of areas (e.g. the GameWorld contains a Snake member, and the Snake alerts the GameWorld when it dies), so a solution specific to Snake and SnakeSegment isn't what I'm looking for.
Your current design is perfectly fine in most situations. Yes, it creates a circular dependency, but it also is the simplest and the clearest way to do it.
However, you should limit those dependencies between interfaces or base classes rather than to the derived classes directly. The world-snake dependency is a good example. You probablly don't necessarily want the World class to know about all the possible game object types. However, what you can do is derive all your game objects from a common GameObject class and make World and GameObject interdependant.
There are also more complicated ways to avoid dependencies all with their pros and cons, they mostly differ on the level of separation and clarity. Among those, function pointers, delegates, observers, listerners, functors, etc.
In the end, it always come down to how much complexity you are ready to introduce to your architecture in exchange of flexibility and clear separation of concerns.
Never forget that design is compromise.
What you may want to look at for this problem is the Observer/Observable design pattern. It allows you to create objects that observe (Snake) observable objects (SnakeSegment) and get notified right away when their state has changed.
Wikipedia has a good example of it written in many languages including C++.
It's a common pattern used in a lot of GUI development so the View layer can change when any of the underlying Model data changes.
Most of the books on object-oriented programming I've read used either a Shape class with a Shape.draw() member function or a Dog class with a Dog.talk() member function, or something similar, to demonstrate the concept of polymorphism. Now, this has been a source of confusion for me, which has nothing to do with polymorphism.
class Dog : public Animal
{
public:
...
virtual void talk() { cout << "bark! bark!" << endl; }
...
};
While this might work as a simple example, I just can't imagine a good way to make this work in a more complicated application, where Dog.talk() might need to access sound subroutines of another class, e.g. to play bark.mp3 instead of using cout for output. Let's say I have:
class Audio
{
public:
...
void playMP3(const string& filename)
...
};
What would be a good way to access Audio.playMP3() from within Dog.talk() at design time? Make Audio.playMP3() static? Pass around function pointers? Have Dog.talk() return the filename it wants to play and let another part of the program deal with it?
One way might be to have the Dog constructor take a reference to an instance of an Audio class, because dogs (usually) make noise:
class Dog: public Animal {
public:
Dog(Audio &a): audio(a) {}
virtual void talk() { audio.playMP3("bark.mp3"); }
private:
Audio &audio;
};
You might use it like this:
Audio audioDriver;
Dog fido(audioDriver);
fido.talk();
My solution would be for the Dog class to be passed an audio device in the bark function.
The dog should not store a pointer to the audio device all the time, that's not one of its responsibilities. If you go that route, you end up with the constructor taking two dozen objects, essentially pointing to all the rest of the application (it needs a pointer to the renderer too, so it can be drawn. It needs a pointer to the ground, and to the input manager telling it where to go, and........... Madness lies that way.
None of that belongs in the dog. If it needs to communicate with another object, pass that object to the specific method that needs it.
The dog's responsibility is to bark. A bark makes a sound. So the bark method needs a way to generate a sound: It must be passed a reference to an audio object. The dog as a whole shouldn't care or know about that.
class Dog: public Animal {
public:
virtual void talk(Audio& a);
};
By the same logic, shapes should not draw themselves. The renderer draws objects, that's what it's for. The rectangle object's responsibility is just to be rectangular. Part of this responsibility is to be able to pass the necessary drawing data to the renderer when it wishes to draw the rectangle, but drawing itself is not part of it.
This is a really interesting question as it touches on elements of design and abstraction. For example, how do you put a Dog object together so that you retain control over how it is created? What sort of Audio object should it support and should it 'bark' in MP3 or WAV etc?
It's worth reading through a bit about Inversion of Control and Dependency Injection as a lot of the issues you're thinking about have been thought through quite a bit. There are quite a few implications such as flexibility, maintainability, testing etc.
The callback interface has been suggested in a few of the other answers, but it has drawbacks:
Many (potentially significantly) different classes relying on the same interface. These classes different needs may corrupt the clarity of the interface, what started out as PlaySound( sound_name ) becomes PlaySound( string sound_name, bool reverb, float max_level, vector direction, bool looping, ... ) with a bunch of other methods (StopSound, RestartSound, etc etc)
Changes to the audio interface will rebuild everything that knows about the audio interface (I find this does matter with C++)
The provided interface only works for the audio system (well, it should only be for the audio system). What about the video system, and the networking system?
One alternative that has also been mentioned is to make the audio system calls static (or the audio system interface a singleton). This will keep dog construction simple (creating a dog no longer requires knowledge of the audio system), but doesn't address any of the issues above.
My prefered solution is delegates. The dog defines its generic output interface (IE Bark( t_barkData const& data); Growl( t_growlData const& data ) ) and other classes subscribe to this interface. Delegate systems can become quite complex, but when properly implemented they are no more difficult to debug than a callback interface, reduce recompile times, and improve readability.
An important note is that the dog's output interface does not need to be a separate class that the dog is provided with at construction. Instead pointers to the dogs member functions can be cached and executed when the dog decides it wants to bark (or the shape decides to draw).
A great generic implementation is QT's signals and slots, but implementing something so powerful yourself will prove difficult. If you would like a simple example of something like this in c++ I would consider posting one but if you're not interested I'm not going to take the time out of my Saturday :)
Some drawbacks to delegates (off the top of my head):
1. Call overhead, for things that happen thousands of time a second (IE "draw" operations in a rendering engine) this has to be taken into account. Most implementations are slower than virtual functions. This overhead is utterly insignificant for operations which do not happen extremely frequently.
2. Code generation, mostly the fault of C++'s limited pointer-to-member-function support. Templates are practically a requirement to implement an easy to read portable delegate system.
Mainly depends on what your application is. Passing function pointers to the animals is not a good idea unless you want dogs and cats to use different audio drivers.
The approach with the static playMP3 method is fine. Using a global reference for your audio system is perfectly fine.
A basic answer is that an Animal gets initialized with either an Audio object or a more complex object that contains multiple Audio's. An Animal's talk function then calls a method on this Audio object to produce the talk noise for the animal.
The Dog object initializes the Animal with a particular instance of an Audio object characteristic of Dogs, or (in more complex cases) takes parameters that allow it to build the Audio object to pass to Animal.