How do I use JUnit to test a class that has internal private methods, fields or nested classes?
It seems bad to change the access modifier for a method just to be able to run a test.
If you have somewhat of a legacy Java application, and you're not allowed to change the visibility of your methods, the best way to test private methods is to use reflection.
Internally we're using helpers to get/set private and private static variables as well as invoke private and private static methods. The following patterns will let you do pretty much anything related to the private methods and fields. Of course, you can't change private static final variables through reflection.
Method method = TargetClass.getDeclaredMethod(methodName, argClasses);
method.setAccessible(true);
return method.invoke(targetObject, argObjects);
And for fields:
Field field = TargetClass.getDeclaredField(fieldName);
field.setAccessible(true);
field.set(object, value);
Notes:
TargetClass.getDeclaredMethod(methodName, argClasses) lets you look into private methods. The same thing applies for
getDeclaredField.
The setAccessible(true) is required to play around with privates.
The best way to test a private method is via another public method. If this cannot be done, then one of the following conditions is true:
The private method is dead code
There is a design smell near the class that you are testing
The method that you are trying to test should not be private
When I have private methods in a class that are sufficiently complicated that I feel the need to test the private methods directly, that is a code smell: my class is too complicated.
My usual approach to addressing such issues is to tease out a new class that contains the interesting bits. Often, this method and the fields it interacts with, and maybe another method or two can be extracted in to a new class.
The new class exposes these methods as 'public', so they're accessible for unit testing. The new and old classes are now both simpler than the original class, which is great for me (I need to keep things simple, or I get lost!).
Note that I'm not suggesting that people create classes without using their brain! The point here is to use the forces of unit testing to help you find good new classes.
I have used reflection to do this for Java in the past, and in my opinion it was a big mistake.
Strictly speaking, you should not be writing unit tests that directly test private methods. What you should be testing is the public contract that the class has with other objects; you should never directly test an object's internals. If another developer wants to make a small internal change to the class, which doesn't affect the classes public contract, he/she then has to modify your reflection based test to ensure that it works. If you do this repeatedly throughout a project, unit tests then stop being a useful measurement of code health, and start to become a hindrance to development, and an annoyance to the development team.
What I recommend doing instead is using a code coverage tool, such as Cobertura, to ensure that the unit tests you write provide decent coverage of the code in private methods. That way, you indirectly test what the private methods are doing, and maintain a higher level of agility.
From this article: Testing Private Methods with JUnit and SuiteRunner (Bill Venners), you basically have 4 options:
Don't test private methods.
Give the methods package access.
Use a nested test class.
Use reflection.
Generally a unit test is intended to exercise the public interface of a class or unit. Therefore, private methods are implementation detail that you would not expect to test explicitly.
Just two examples of where I would want to test a private method:
Decryption routines - I would not
want to make them visible to anyone to see just for
the sake of testing, else anyone can
use them to decrypt. But they are
intrinsic to the code, complicated,
and need to always work (the obvious exception is reflection which can be used to view even private methods in most cases, when SecurityManager is not configured to prevent this).
Creating an SDK for community
consumption. Here public takes on a
wholly different meaning, since this
is code that the whole world may see
(not just internal to my application). I put
code into private methods if I don't
want the SDK users to see it - I
don't see this as code smell, merely
as how SDK programming works. But of
course I still need to test my
private methods, and they are where
the functionality of my SDK actually
lives.
I understand the idea of only testing the "contract". But I don't see one can advocate actually not testing code—your mileage may vary.
So my trade-off involves complicating the JUnit tests with reflection, rather than compromising my security and SDK.
The private methods are called by a public method, so the inputs to your public methods should also test private methods that are called by those public methods. When a public method fails, then that could be a failure in the private method.
In the Spring Framework you can test private methods using this method:
ReflectionTestUtils.invokeMethod()
For example:
ReflectionTestUtils.invokeMethod(TestClazz, "createTest", "input data");
Another approach I have used is to change a private method to package private or protected then complement it with the #VisibleForTesting annotation of the Google Guava library.
This will tell anybody using this method to take caution and not access it directly even in a package. Also a test class need not be in same package physically, but in the same package under the test folder.
For example, if a method to be tested is in src/main/java/mypackage/MyClass.java then your test call should be placed in src/test/java/mypackage/MyClassTest.java. That way, you got access to the test method in your test class.
To test legacy code with large and quirky classes, it is often very helpful to be able to test the one private (or public) method I'm writing right now.
I use the junitx.util.PrivateAccessor-package for Java. It has lots of helpful one-liners for accessing private methods and private fields.
import junitx.util.PrivateAccessor;
PrivateAccessor.setField(myObjectReference, "myCrucialButHardToReachPrivateField", myNewValue);
PrivateAccessor.invoke(myObjectReference, "privateMethodName", java.lang.Class[] parameterTypes, java.lang.Object[] args);
Having tried Cem Catikkas' solution using reflection for Java, I'd have to say his was a more elegant solution than I have described here. However, if you're looking for an alternative to using reflection, and have access to the source you're testing, this will still be an option.
There is possible merit in testing private methods of a class, particularly with test-driven development, where you would like to design small tests before you write any code.
Creating a test with access to private members and methods can test areas of code which are difficult to target specifically with access only to public methods. If a public method has several steps involved, it can consist of several private methods, which can then be tested individually.
Advantages:
Can test to a finer granularity
Disadvantages:
Test code must reside in the same
file as source code, which can be
more difficult to maintain
Similarly with .class output files, they must remain within the same package as declared in source code
However, if continuous testing requires this method, it may be a signal that the private methods should be extracted, which could be tested in the traditional, public way.
Here is a convoluted example of how this would work:
// Import statements and package declarations
public class ClassToTest
{
private int decrement(int toDecrement) {
toDecrement--;
return toDecrement;
}
// Constructor and the rest of the class
public static class StaticInnerTest extends TestCase
{
public StaticInnerTest(){
super();
}
public void testDecrement(){
int number = 10;
ClassToTest toTest= new ClassToTest();
int decremented = toTest.decrement(number);
assertEquals(9, decremented);
}
public static void main(String[] args) {
junit.textui.TestRunner.run(StaticInnerTest.class);
}
}
}
The inner class would be compiled to ClassToTest$StaticInnerTest.
See also: Java Tip 106: Static inner classes for fun and profit
As others have said... don't test private methods directly. Here are a few thoughts:
Keep all methods small and focused (easy to test, easy to find what is wrong)
Use code coverage tools. I like Cobertura (oh happy day, it looks like a new version is out!)
Run the code coverage on the unit tests. If you see that methods are not fully tested add to the tests to get the coverage up. Aim for 100% code coverage, but realize that you probably won't get it.
If using Spring, ReflectionTestUtils provides some handy tools that help out here with minimal effort. For example, to set up a mock on a private member without being forced to add an undesirable public setter:
ReflectionTestUtils.setField(theClass, "theUnsettableField", theMockObject);
Private methods are consumed by public ones. Otherwise, they're dead code. That's why you test the public method, asserting the expected results of the public method and thereby, the private methods it consumes.
Testing private methods should be tested by debugging before running your unit tests on public methods.
They may also be debugged using test-driven development, debugging your unit tests until all your assertions are met.
I personally believe it is better to create classes using TDD; creating the public method stubs, then generating unit tests with all the assertions defined in advance, so the expected outcome of the method is determined before you code it. This way, you don't go down the wrong path of making the unit test assertions fit the results. Your class is then robust and meets requirements when all your unit tests pass.
If you're trying to test existing code that you're reluctant or unable to change, reflection is a good choice.
If the class's design is still flexible, and you've got a complicated private method that you'd like to test separately, I suggest you pull it out into a separate class and test that class separately. This doesn't have to change the public interface of the original class; it can internally create an instance of the helper class and call the helper method.
If you want to test difficult error conditions coming from the helper method, you can go a step further. Extract an interface from the helper class, add a public getter and setter to the original class to inject the helper class (used through its interface), and then inject a mock version of the helper class into the original class to test how the original class responds to exceptions from the helper. This approach is also helpful if you want to test the original class without also testing the helper class.
Testing private methods breaks the encapsulation of your class because every time you change the internal implementation you break client code (in this case, the tests).
So don't test private methods.
The answer from JUnit.org FAQ page:
But if you must...
If you are using JDK 1.3 or higher, you can use reflection to subvert
the access control mechanism with the aid of the PrivilegedAccessor.
For details on how to use it, read this article.
If you are using JDK 1.6 or higher and you annotate your tests with
#Test, you can use Dp4j to inject reflection in your test methods. For
details on how to use it, see this test script.
P.S. I'm the main contributor to Dp4j. Ask me if you need help. :)
If you want to test private methods of a legacy application where you can't change the code, one option for Java is jMockit, which will allow you to create mocks to an object even when they're private to the class.
PowerMockito is made for this.
Use a Maven dependency:
<dependency>
<groupId>org.powermock</groupId>
<artifactId>powermock-core</artifactId>
<version>2.0.7</version>
<scope>test</scope>
</dependency>
Then you can do
import org.powermock.reflect.Whitebox;
...
MyClass sut = new MyClass();
SomeType rval = Whitebox.invokeMethod(sut, "myPrivateMethod", params, moreParams);
I tend not to test private methods. There lies madness. Personally, I believe you should only test your publicly exposed interfaces (and that includes protected and internal methods).
If you're using JUnit, have a look at junit-addons. It has the ability to ignore the Java security model and access private methods and attributes.
Here is my generic function to test private fields:
protected <F> F getPrivateField(String fieldName, Object obj)
throws NoSuchFieldException, IllegalAccessException {
Field field =
obj.getClass().getDeclaredField(fieldName);
field.setAccessible(true);
return (F)field.get(obj);
}
Please see below for an example;
The following import statement should be added:
import org.powermock.reflect.Whitebox;
Now you can directly pass the object which has the private method, method name to be called, and additional parameters as below.
Whitebox.invokeMethod(obj, "privateMethod", "param1");
I would suggest you refactoring your code a little bit. When you have to start thinking about using reflection or other kind of stuff, for just testing your code, something is going wrong with your code.
You mentioned different types of problems. Let's start with private fields. In case of private fields I would have added a new constructor and injected fields into that. Instead of this:
public class ClassToTest {
private final String first = "first";
private final List<String> second = new ArrayList<>();
...
}
I'd have used this:
public class ClassToTest {
private final String first;
private final List<String> second;
public ClassToTest() {
this("first", new ArrayList<>());
}
public ClassToTest(final String first, final List<String> second) {
this.first = first;
this.second = second;
}
...
}
This won't be a problem even with some legacy code. Old code will be using an empty constructor, and if you ask me, refactored code will look cleaner, and you'll be able to inject necessary values in test without reflection.
Now about private methods. In my personal experience when you have to stub a private method for testing, then that method has nothing to do in that class. A common pattern, in that case, would be to wrap it within an interface, like Callable and then you pass in that interface also in the constructor (with that multiple constructor trick):
public ClassToTest() {
this(...);
}
public ClassToTest(final Callable<T> privateMethodLogic) {
this.privateMethodLogic = privateMethodLogic;
}
Mostly all that I wrote looks like it's a dependency injection pattern. In my personal experience it's really useful while testing, and I think that this kind of code is cleaner and will be easier to maintain. I'd say the same about nested classes. If a nested class contains heavy logic it would be better if you'd moved it as a package private class and have injected it into a class needing it.
There are also several other design patterns which I have used while refactoring and maintaining legacy code, but it all depends on cases of your code to test. Using reflection mostly is not a problem, but when you have an enterprise application which is heavily tested and tests are run before every deployment everything gets really slow (it's just annoying and I don't like that kind of stuff).
There is also setter injection, but I wouldn't recommended using it. I'd better stick with a constructor and initialize everything when it's really necessary, leaving the possibility for injecting necessary dependencies.
A private method is only to be accessed within the same class. So there is no way to test a “private” method of a target class from any test class. A way out is that you can perform unit testing manually or can change your method from “private” to “protected”.
And then a protected method can only be accessed within the same package where the class is defined. So, testing a protected method of a target class means we need to define your test class in the same package as the target class.
If all the above does not suits your requirement, use the reflection way to access the private method.
As many above have suggested, a good way is to test them via your public interfaces.
If you do this, it's a good idea to use a code coverage tool (like EMMA) to see if your private methods are in fact being executed from your tests.
Today, I pushed a Java library to help testing private methods and fields. It has been designed with Android in mind, but it can really be used for any Java project.
If you got some code with private methods or fields or constructors, you can use BoundBox. It does exactly what you are looking for.
Here below is an example of a test that accesses two private fields of an Android activity to test it:
#UiThreadTest
public void testCompute() {
// Given
boundBoxOfMainActivity = new BoundBoxOfMainActivity(getActivity());
// When
boundBoxOfMainActivity.boundBox_getButtonMain().performClick();
// Then
assertEquals("42", boundBoxOfMainActivity.boundBox_getTextViewMain().getText());
}
BoundBox makes it easy to test private/protected fields, methods and constructors. You can even access stuff that is hidden by inheritance. Indeed, BoundBox breaks encapsulation. It will give you access to all that through reflection, but everything is checked at compile time.
It is ideal for testing some legacy code. Use it carefully. ;)
First, I'll throw this question out: Why do your private members need isolated testing? Are they that complex, providing such complicated behaviors as to require testing apart from the public surface? It's unit testing, not 'line-of-code' testing. Don't sweat the small stuff.
If they are that big, big enough that these private members are each a 'unit' large in complexity—consider refactoring such private members out of this class.
If refactoring is inappropriate or infeasible, can you use the strategy pattern to replace access to these private member functions / member classes when under unit test? Under unit test, the strategy would provide added validation, but in release builds it would be simple passthrough.
I want to share a rule I have about testing which particularly is related to this topic:
I think that you should never adapt production code in order to
indulge easer writing of tests.
There are a few suggestions in other posts saying you should adapt the original class in order to test a private method - please red this warning first.
If we change the accessibility of a method/field to package private or protected, just in order to have it accessible to tests, then we defeat the purpose of existence of private access directive.
Why should we have private fields/methods/classes at all when we want to have test-driven development? Should we declare everything as package private, or even public then, so we can test without any effort?—I don't think so.
From another point of view: Tests should not burden performance and execution of the production application.
If we change production code just for the sake of easier testing, that may burden performance and the execution of the application in some way.
If someone starts to change private access to package private, then a developer may eventually come up to other "ingenious ideas" about adding even more code to the original class. This would make additional noise to readability and can burden the performance of the application.
With changing of a private access to some less restrictive, we are opening the possibility to a developer for misusing the new situation in the future development of the application. Instead of enforcing him/her to develop in the proper way, we are tempting him/her with new possibilities and giving him ability to make wrong choices in the future.
Of course there might be a few exceptions to this rule, but with clear understanding, what is the rule and what is the exception? We need to be absolutely sure we know why that kind of exception is introduced.
This question already has answers here:
How do I test a class that has private methods, fields or inner classes?
(58 answers)
Closed 5 years ago.
In C++, I have often made a unit test class a friend of the class I am testing. I do this because I sometimes feel the need to write a unit test for a private method, or maybe I want access to some private member so I can more easily setup the state of the object so I can test it. To me this helps preserve encapsulation and abstraction because I am not modifying the public or protected interface of the class.
If I buy a third party library, I wouldn't want its public interface to be polluted with a bunch of public methods I don't need to know about simply because the vendor wanted to unit test!
Nor do I want have to worry about a bunch of protected members that I don't need to know about if I am inheriting from a class.
That is why I say it preserves abstraction and encapsulation.
At my new job they frown against using friend classes even for unit tests. They say because the class should not "know" anything about the tests and that you do not want tight coupling of the class and its test.
Can someone please explain these reasons to me more so that I may understand better? I just do not see why using a friend for unit tests is bad.
Ideally, you shouldn't need to unit test private methods at all. All a consumer of your class should care about is the public interface, so that's what you should test. If a private method has a bug, it should be caught by a unit test that invokes some public method on the class which eventually ends up calling the buggy private method. If a bug manages to slip by, this indicates that your test cases don't fully reflect the contract you wish your class to implement. The solution to this problem is almost certainly to test public methods with more scrutiny, not to have your test cases dig into the class's implementation details.
Again, this is the ideal case. In the real world, things may not always be so clear, and having a unit testing class be a friend of the class it tests might be acceptable, or even desirable. Still, it's probably not something you want to do all the time. If it seems to come up often enough, that might a sign that your classes are too large and/or performing too many tasks. If so, further subdividing them by refactoring complex sets of private methods into separate classes should help remove the need for unit tests to know about implementation details.
You should consider that there are different styles and methods to test: Black box testing only tests the public interface (treating the class as a black box). If you have an abstract base class you can even use the same tests against all your implementations.
If you use White box testing, you might even look at the details of the implementation. Not only about which private methods a class has, but what kind of conditional statements are included (i.e. if you want to increase your condition coverage because you know that the conditions were hard to code). In white box testing, you definitely have "high coupling" between classes/implementation and the tests which is necessary because you want to test the implementation and not the interface.
As bcat pointed out, it's often helpful to use composition and more but smaller classes instead of many private methods. This simplifies white box testing because you can more easily specify the test cases to get a good test coverage.
I feel that Bcat gave a very good answer, but I would like to expound on the exceptional case that he alludes to
In the real world, things may not always be so clear, and having a
unit testing class be a friend of the class it tests might be
acceptable, or even desirable.
I work in a company with a large legacy codebase, which has two problems both of which contribute to making a friend unit-test desirable.
We suffer from obscenely large functions and classes which require refactoring, but in order to refactor it is helpful to have tests.
Much of our code is dependent on database access, which for various reasons should not be brought into the unit tests.
In some cases Mocking is useful to alleviate the latter problem, but very often this just leads to uneccessarily complex design (class heirarchies where none would otherwise be needed), while one could very simply refactor the code in the following way:
class Foo{
public:
some_db_accessing_method(){
// some line(s) of code with db dependance.
// a bunch of code which is the real meat of the function
// maybe a little more db access.
}
}
Now we have the situation where the meat of the function needs refactoring, so we'd like a unit test. It shouldn't be exposed publicly. Now, there's a wonderful technique called mocking that could be used in this situation, but the fact is that in this case a mock is overkill. It would require me to increase the complexity of the design with an unecessary hierarchy.
A far more pragmatic approach would be to do something like this:
class Foo{
public:
some_db_accessing_method(){
// db code as before
unit_testable_meat(data_we_got_from_db);
// maybe more db code.
}
private:
unit_testable_meat(...);
}
The latter gives me all of the benefits I need from unit testing, including giving me that precious safety net to catch errors produced when I refactor the code in the meat. In order to unit test it, I have to friend a UnitTest class, but I would strongly argue that this is is far better than an otherwise useless code heirarchy just to allow me to use a Mock.
I think this should become an idiom, and I think it's a suitable, pragmatic solution to increase the ROI of unit testing.
Like bcat suggested, as much as possible, you need to find bugs using public interface itself. But if you want to do things like printing private variables and comparing with expected result etc(Helpful for developers to debug the issues easily), then you can make UnitTest class as friend to class to be tested. But you may need to add it under a macro like below.
class Myclass
{
#if defined(UNIT_TEST)
friend class UnitTest;
#endif
};
Enable flag UNIT_TEST only when Unit testing is required.
For other releases, you need to disable this flag.
I don't see anything wrong with using a friend unit testing class in many cases. Yes, decomposing a large class into smaller ones is sometimes a better way to go. I think people are a bit too hasty to dismiss using the friend keyword for something like this - it might not be ideal object oriented design, but I can sacrifice a little idealism for better test coverage if that's what I really need.
Typically you only test the public interface so that you are free to redesign and refactor the implementation. Adding test cases for private members defines a requirement and restriction on the implementation of your class.
Make the functions you want to test protected.
Now in your unit test file, create a derived class.
Create public wrapper functions that call your the class-under-test protected functions.
I am a fairly new software developer currently working adding unit tests to an existing C++ project that started years ago. Due to a non-technical reason, I'm not allowed to modify any existing code. The base class of all my modules has a bunch of methods for Setting/Getting data and communicating with other modules.
Since I just want to unit testing each individual module, I want to be able to use canned values for all my inter-module communication methods. I.e. for a method Ping() which checks if another module is active, I want to have it return true or false based on what kind of test I'm doing. I've been looking into Google Test and Google Mock, and it does support mocking non-virtual methods. However the approach described (https://google.github.io/googletest/gmock_cook_book.html#MockingNonVirtualMethods) requires me to "templatize" the original methods to take in either real or mock objects. I can't go and templatize my methods in the base class due to the requirement mentioned earlier, so I need some other way of mocking these virtual methods
Basically, the methods I want to mock are in some base class, the modules I want to unit test and create mocks of are derived classes of that base class. There are intermediate modules in between my base Module class and the modules that I want to test.
I would appreciate any advise!
Thanks,
JW
EDIT: A more concrete examples
My base class is lets say rootModule, the module I want to test is leafModule. There is an intermediate module which inherits from rootModule, leafModule inherits from this intermediate module.
In my leafModule, I want to test the doStuff() method, which calls the non virtual GetStatus(moduleName) defined in the rootModule class. I need to somehow make GetStatus() to return a chosen canned value. Mocking is new to me, so is using mock objects even the right approach?
There are some different ways of replacing non-virtual functions. One is to re-declare them and compile a new test executable for each different set of non-virtual functions you'd like to test. That's hardly scaleable.
A second option is to make them virtual for test. Most compilers allow you to define something on the command-line so compile your code with -DTEST_VIRTUAL=virtual or -DTEST_VIRTUAL to make them either virtual or normal depending on whether or not it's under test or not.
A third option which may be usable is to use a mocking framework that lets you mock non-virtual functions. I'm the author of HippoMocks (disclaimer with regard to neutrality and so on) and we've recently added the ability to mock plain C functions on X86 platforms. This can be extended to non-virtual member functions with a bit of work and would be what you're looking for. Keep in mind that, if your compiler can see both the use and the definition of a function at one time that it may inline it and that the mocking may fail. That holds in particular for functions that are defined in headers.
If regular C function mocking is sufficient for you, you can use it as it is now.
I would write a Perl/Ruby/Python script to read in the original source tree and write out a mocked source tree in a different directory. You don't have to fully parse C++ in order to replace a function definition.
One approach would be to specify different sources for testing. Say your production target uses rootModule.h and rootModule.cpp. Use different sources for your testing target. You can specify a different header by changing your include path, so that #include "rootModule.h" actually loads unittest/rootModule.h. Then mock rootModule to your heart's content.
I have a code base where many of the classes I implement derive from classes that are provided by other divisions of my company. Working with these other devisions often have the working relationship as though they are third party middle ware vendors.
I'm trying to write test code without modifying these base classes. However, there are issues with creating meaningful test
objects due to the lack of interfaces:
//ACommonClass.h
#include "globalthermonuclearwar.h" //which contains deep #include dependencies...
#include "tictactoe.h" //...and need to exist at compile time to get into test...
class Something //which may or may not inherit from another class similar to this...
{
public:
virtual void fxn1(void); //which often calls into many other classes, similar to this
//...
int data1; //will be the only thing I can test against, but is often meaningless without fxn1 implemented
//...
};
I'd normally extract an interface and work from there, but as these are "Third Party", I can't commit these changes.
Currently, I've created a separate file that holds fake implementations for functions that are defined in the third-party supplied base class headers on a need to know basis, as has been described in the book "Working with Legacy Code".
My plan was to continue to use these definitions and provide alternative test implementations for each third party class that I needed:
//SomethingRequiredImplementations.cpp
#include "ACommonClass.h"
void CGlobalThermoNuclearWar::Simulate(void) {}; // fake this and all other required functions...
// fake implementations for otherwise undefined functions in globalthermonuclearwar.h's #include files...
void Something::fxn1(void) { data1 = blah(); } //test specific functionality.
But before I start doing that I was wondering if any one has tried providing actual objects on a code base similar to mine, which would allow creating new test specific classes to use in place of actual third-party classes.
Note all code bases in question are written in C++.
Mock objects are suitable for this kind of task. They allow you to simulate the existence of other components without needing them to be present. You simply define the expected input and output in your tests.
Google have a good mocking framework for C++.
I'm running into a very similar problem at the moment. I don't want to add a bunch of interfaces that are only there for the purpose of testing, so I can't use any of the existing mock object libraries. To get around this I do the same thing, creating a different file with fake implementations, and having my tests link the fake behaviour, and production code links the real behaviour.
What I wish I could do at this point, is take the internals of another mock framework, and use it inside my fake objects. It would look a little something like this:
Production.h
class ConcreteProductionClass { // regular everyday class
protected:
ConcreteProductionClass(); // I've found the 0 arg constructor useful
public:
void regularFunction(); // regular function that I want to mock
}
Mock.h
class MockProductionClass
: public ConcreteProductionClass
, public ClassThatLetsMeSetExpectations
{
friend class ConcreteProductionClass;
MockTypes membersNeededToSetExpectations;
public:
MockClass() : ConcreteProductionClass() {}
}
ConcreteProductionClass::regularFunction() {
membersNeededToSetExpectations.PassOrFailTheTest();
}
ProductionCode.cpp
void doSomething(ConcreteProductionClass c) {
c.regularFunction();
}
Test.cpp
TEST(myTest) {
MockProductionClass m;
m.SetExpectationsAndReturnValues();
doSomething(m);
ASSERT(m.verify());
}
The most painful part of all this is that the other mock frameworks are so close to this, but don't do it exactly, and the macros are so convoluted that it's not trivial to adapt them. I've begun looking into this on my spare time, but it's not moving along very quickly. Even if I got my method working the way I want, and had the expectation setting code in place, this method still has a couple drawbacks, one of them being that your build commands can get to be kind of long if you have to link against a lot of .o files rather than one .a, but that's manageable. It's also impossible to fall through to the default implementation, since we're not linking it. Anyway, I know this doesn't answer the question, or really even tell you anything you don't already know, but it shows how close the C++ community is to being able to mock classes that don't have a pure virtual interface.
You might want to consider mocking instead of faking as a potential solution. In some cases you may need to write wrapper classes that are mockable if the original classes aren't. I've done this with framework classes in C#/.Net, but not C++ so YMMV.
If I have a class that I need under test that derives from something I can't (or don't want to) run under test I'll:
Make a new logic-only class.
Move the code-i-wanna-test to the logic class.
Use an interface to talk back to the real class to interact with the base class and/or things I can't or won't put in the logic.
Define a test class using that same interface. This test class could have nothing but noops or fancy code that simulates the real classes.
If I have a class that I just need to use in testing, but using the real class is a problem (dependencies or unwanted behaviors):
I'll define a new interface that looks like all of the public methods I need to call.
I'll create a mock version of the object that supports that interface for testing.
I'll create another class that is constructed with a "real" version of that class. It also supports that interface. All interface calls a forwarded to the real object methods.
I'll only do this for methods I actually call - not ALL the public methods. I'll add to these classes as I write more tests.
For example, I wrap MFC's GDI classes like this to test Windows GDI drawing code. Templates can make some of this easier - but we often end up not doing that for various technical reasons (stuff with Windows DLL class exporting...).
I'm sure all this is in Feather's Working with Legacy Code book - and what I'm describing has actual terms. Just don't make me pull the book off the shelf...
One thing you did not indicate in your question is the reason why your classes derive from base classes from the other division. Is the relationship really a IS-A relationshiop ?
Unless your classes needs to be used by a framework, you could consider favoring delegation over inheritance. Then you can use dependency injection to provide your class with a mock of their class in the unit tests.
Otherwise, an idea would be to write a script to extract and create the interface your need from the header they provide, and integrate this to the compilation process so your unit test can ve checked in.