Optimising C++ 2-D arrays - c++

I need a way to represent a 2-D array (a dense matrix) of doubles in C++, with absolute minimum accessing overhead.
I've done some timing on various linux/unix machines and gcc versions. An STL vector of vectors, declared as:
vector<vector<double> > matrix(n,vector<double>(n));
and accessed through matrix[i][j] is between 5% and 100% slower to access than an array declared as:
double *matrix = new double[n*n];
accessed through an inlined index function matrix[index(i,j)], where index(i,j) evaluates to i+n*j. Other ways of arranging a 2-D array without STL - an array of n pointers to the start of each row, or defining the whole thing on the stack as a constant size matrix[n][n] - run at almost exactly the same speed as the index function method.
Recent GCC versions (> 4.0) seem to be able to compile the STL vector-of-vectors to nearly the same efficiency as the non-STL code when optimisations are turned on, but this is somewhat machine-dependent.
I'd like to use STL if possible, but will have to choose the fastest solution. Does anyone have any experience in optimising STL with GCC?

If you're using GCC the compiler can analyze your matrix accesses and change the order in memory in certain cases. The magic compiler flag is defined as:
-fipa-matrix-reorg
Perform matrix flattening and
transposing. Matrix flattening tries
to replace a m-dimensional matrix with
its equivalent n-dimensional matrix,
where n < m. This reduces the level of
indirection needed for accessing the
elements of the matrix. The second
optimization is matrix transposing
that attemps to change the order of
the matrix's dimensions in order to
improve cache locality. Both
optimizations need fwhole-program
flag. Transposing is enabled only if
profiling information is avaliable.
Note that this option is not enabled by -O2 or -O3. You have to pass it yourself.

My guess would be the fastest is, for a matrix, to use 1D STL array and override the () operator to use it as 2D matrix.
However, the STL also defines a type specifically for non-resizeable numerical arrays: valarray. You also have various optimisations for in-place operations.
valarray accept as argument a numerical type:
valarray<double> a;
Then, you can use slices, indirect arrays, ... and of course, you can inherit the valarray and define your own operator()(int i, int j) for 2D arrays ...

Very likely this is a locality-of-reference issue. vector uses new to allocate its internal array, so each row will be at least a little apart in memory due to each block's header; it could be a long distance apart if memory is already fragmented when you allocate them. Different rows of the array are likely to at least incur a cache-line fault and could incur a page fault; if you're really unlucky two adjacent rows could be on memory lines that share a TLB slot and accessing one will evict the other.
In contrast your other solutions guarantee that all the data is adjacent. It could help your performance if you align the structure so it crosses as few cache lines as possible.
vector is designed for resizable arrays. If you don't need to resize the arrays, use a regular C++ array. STL operations can generally operate on C++ arrays.
Do be sure to walk the array in the correct direction, i.e. across (consecutive memory addresses) rather than down. This will reduce cache faults.

My recommendation would be to use Boost.UBLAS, which provides fast matrix/vector classes.

To be fair depends on the algorithms you are using upon the matrix.
The double name[n*m] format is very fast when you are accessing data by rows both because has almost no overhead besides a multiplication and addition and because your rows are packed data that will be coherent in cache.
If your algorithms access column ordered data then other layouts might have much better cache coherence. If your algorithm access data in quadrants of the matrix even other layouts might be better.
Try to make some research directed at the type of usage and algorithms you are using. That is specially important if the matrix are very large, since cache misses may hurt your performance way more than needing 1 or 2 extra math operations to access each address.

You could just as easily do vector< double >( n*m );

You may want to look at the Eigen C++ template library at http://eigen.tuxfamily.org/ . It generates AltiVec or sse2 code to optimize the vector/matrix calculations.

There is the uBLAS implementation in Boost. It is worth a look.
http://www.boost.org/doc/libs/1_36_0/libs/numeric/ublas/doc/matrix.htm

Another related library is Blitz++: http://www.oonumerics.org/blitz/docs/blitz.html
Blitz++ is designed to optimize array manipulation.

I have done this some time back for raw images by declaring my own 2 dimensional array classes.
In a normal 2D array, you access the elements like:
array[2][3]. Now to get that effect, you'd have a class array with an overloaded
[] array accessor. But, this would essentially return another array, thereby giving
you the second dimension.
The problem with this approach is that it has a double function call overhead.
The way I did it was to use the () style overload.
So instead of
array[2][3], change I had it do this style array(2,3).
That () function was very tiny and I made sure it was inlined.
See this link for the general concept of that:
http://www.learncpp.com/cpp-tutorial/99-overloading-the-parenthesis-operator/
You can template the type if you need to.
The difference I had was that my array was dynamic. I had a block of char memory I'd declare. And I employed a column cache, so I knew where in my sequence of bytes the next row began. Access was optimized for accessing neighbouring values, because I was using it for image processing.
It's hard to explain without the code but essentially the result was as fast as C, and much easier to understand and use.

Related

Declaring 3D array structure in c++ using vector

Hi I am a graduate student studying scientific computing using c++. Some of our research focus on speed of an algorithm, therefore it is important to construct array structure that is fast enough.
I've seen two ways of constructing 3D Arrays.
First one is to use vector liblary.
vector<vector<vector<double>>> a (isize,vector<double>(jsize,vector<double>(ksize,0)))
This gives 3D array structure of size isize x jsize x ksize.
The other one is to construct a structure containing 1d array of size isize* jsize * ksize using
new double[isize*jsize*ksize]. To access the specific location of (i,j,k) easily, operator overloading is necessary(am I right?).
And from what I have experienced, first one is much faster since it can access to location (i,j,k) easily while latter one has to compute location and return the value. But I have seen some people preferring latter one over the first one. Why do they prefer the latter setting? and is there any disadvantage of using the first one?
Thanks in adavance.
Main difference between those will be the layout:
vector<vector<vector<T>>>
This will get you a 1D array of vector<vector<T>>.
Each item will be a 1D array of vector<T>.
And each item of those 1D array will be a 1D array of T.
The point is, vector itself does not store its content. It manages a chunk of memory, and stores the content there. This has a number of bad consequences:
For a matrix of dimension X·Y·Z, you will end up allocating 1 + X + X·Y memory chunks. That's horribly slow, and will trash the heap. Imagine: a cube matrix of size 20 would trigger 421 calls to new!
To access a cell, you have 3 levels of indirection:
You must access the vector<vector<vector<T>>> object to get pointer to top-level memory chunk.
You must then access the vector<vector<T>> object to get pointer to second-level memory chunk.
You must then access the vector<T> object to get pointer to the leaf memory chunk.
Only then you can access the T data.
Those memory chunks will be spread around the heap, causing a lot of cache misses and slowing the overall computation.
Should you get it wrong at some point, it is possible to end up with some lines in your matrix having different lengths. After all, they're independent 1-d arrays.
Having a contiguous memory block (like new T[X * Y * Z]) on the other hand gives:
You allocate 1 memory chunk. No heap trashing, O(1).
You only need to access the pointer to the memory chunk, then can go straight for desired element.
All matrix is contiguous in memory, which is cache-friendly.
Those days, a single cache miss means dozens or hundreds lost computing cycles, do not underestimate the cache-friendliness aspect.
By the way, there is a probably better way you didn't mention: using one of the numerous matrix libraries that will handle this for you automatically and provide nice support tools (like SSE-accelerated matrix operations). One such library is Eigen, but there are plenty others.
→ You want to do scientific computing? Let a lib handle the boilerplate and the basics so you can focus on the scientific computing part.
In my point of view, there are too much advantages std::vector's have over normal plain arrays.
In short here are some:
It is much harder to create memory leaks with std::vector. This point alone is one of the biggest advantages. This has nothing to do with performance, but should be considered all the time.
std::vector is part of the STL. This part of C++ is one of the most used one. Thousands of people use the STL and so they get "tested" every day. Over the last years they got optimized so radically, they don't lack any performance anymore. (pls correct me if i see this wrong)
Handling with std::vector is easy as 1, 2, 3. No pointer handling no nothing... Just accessing it via methods or with []-operator and more other methods.
First of all, the idea that you access (i,j,k) in your vec^3 directly is somewhat flawed. What you have is a structure of pointers where you need to dereference three pointers along the way. Note that I have no idea whether that is faster or slower than computing the position within a one-dimensional array, though. You'd need to test that and it might depend on the size of your data (especially whether it fits in a chunk).
Second, the vector^3 requires pointers and vector sizes, which require more memory. In many cases, this will be irrelevant (as the image grows cubically but the memory difference only quadratically) but if your algoritm is really going to fill out any memory available, that can matter.
Third, the raw array stores everything in consecutive memory, which is good for streaming and can be good for certain algorithms because of quick cache accesses. For example when you add one 3D image to another.
Note that all of this is about hyper-optimization that you might not need. The advantages of vectors that skratchi.at pointed out in his answer are quite strong, and I add the advantage that vectors usually increase readability. If you do not have very good reasons not to use vectors, then use them.
If you should decide for the raw array, in any case, make sure that you wrap it well and keep the class small and simple, in order to counter problems regarding leaks and such.
Welcome to SO.
If everything what you have are the two alternatives, then the first one could be better.
Prefer using STL array or vector instead of a C array
You should avoid to use C++ plain arrays since you need to manage yourself the memory allocating/deallocating with new/delete and other boilerplate code like keep track of the size/check bounds. In clearly words "C arrays are less safe, and have no advantages over array and vector."
However, there are some important drawbacks in the first alternative. Something I would like to highlight is that:
std::vector<std::vector<std::vector<T>>>
is not a 3-d matrix. In a matrix, all the rows must have the same size. On the other hand, in a "vector of vectors" there is no guarantee that all the nested vectors have the same length. The reason is that a vector is a linear 1-D structure as pointed out in the #spectras answer. Hence, to avoid all sort of bad or unexpected behaviours, you must to include guards in your code to obtain the rectangular invariant guaranteed.
Luckily, the first alternative is not the only one you may have in hands.
For example, you can replace the c-style array by a std::array:
const int n = i_size * j_size * k_size;
std::array<int, n> myFlattenMatrix;
or use std::vector in case your matrix dimensions can change.
Accessing element by its 3 coordinates
Regarding your question
To access the specific location of (i,j,k) easily, operator
overloading is necessary(am I right?).
Not exactly. Since there isn't a 3-parameter operator for neither std::vector nor array, you can't overload it. But you can create a template class or function to wrap it for you. In any case you will must to deference the 3 vectors or calculate the flatten index of the element in the linear storage.
Considering do not use a third part matrix library like Eigen for your experiments
You aren't coding it for production but for research purposes instead. Particularly, your research is exactly regarding the performance of algorithms. In that case, I prefer do not recommend to use a third part library, like Eigen, absolutely. Of course it depends a lot of what kind of "speed of an algorithm" metrics are you willing to gather, but Eigen, for instance, will do a lot of things under the hood (like vectorization) which will have a tremendous influence on your experiments. Since it will be hard for you to control those unseen optimizations, these library's features may lead you to wrong conclusions about your algorithms.
Algorithm's performance and big-o notation
Usually, the performance of algorithms are analysed by using the big-O approach where factors like the actual time spent, hardware speed or programming language traits aren't taken in account. The book "Data Structures and Algorithms in C++" by Adam Drozdek can provide more details about it.

What advantages do arrays hold over vectors?

Well, after a full year of programming and only knowing of arrays, I was made aware of the existence of vectors (by some members of StackOverflow on a previous post of mine). I did a load of researching and studying them on my own and rewrote an entire application I had written with arrays and linked lists, with vectors. At this point, I'm not sure if I'll still use arrays, because vectors seem to be more flexible and efficient. With their ability to grow and shrink in size automatically, I don't know if I'll be using arrays as much. At this point, the only advantage I personally see is that arrays are much easier to write and understand. The learning curve for arrays is nothing, where there is a small learning curve for vectors. Anyway, I'm sure there's probably a good reason for using arrays in some situation and vectors in others, I was just curious what the community thinks. I'm an entirely a novice, so I assume that I'm just not well-informed enough on the strict usages of either.
And in case anyone is even remotely curious, this is the application I'm practicing using vectors with. Its really rough and needs a lot of work: https://github.com/JosephTLyons/Joseph-Lyons-Contact-Book-Application
A std::vector manages a dynamic array. If your program need an array that changes its size dynamically at run-time then you would end up writing code to do all the things a std::vector does but probably much less efficiently.
What the std::vector does is wrap all that code up in a single class so that you don't need to keep writing the same code to do the same stuff over and over.
Accessing the data in a std::vector is no less efficient than accessing the data in a dynamic array because the std::vector functions are all trivial inline functions that the compiler optimizes away.
If, however, you need a fixed size then you can get slightly more efficient than a std::vector with a raw array. However you won't loose anything using a std::array in those cases.
The places I still use raw arrays are like when I need a temporary fixed-size buffer that isn't going to be passed around to other functions:
// some code
{ // new scope for temporary buffer
char buffer[1024]; // buffer
file.read(buffer, sizeof(buffer)); // use buffer
} // buffer is destroyed here
But I find it hard to justify ever using a raw dynamic array over a std::vector.
This is not a full answer, but one thing I can think of is, that the "ability to grow and shrink" is not such a good thing if you know what you want. For example: assume you want to save memory of 1000 objects, but the memory will be filled at a rate that will cause the vector to grow each time. The overhead you'll get from growing will be costly when you can simply define a fixed array
Generally speaking: if you will use an array over a vector - you will have more power at your hands, meaning no "background" function calls you don't actually need (resizing), no extra memory saved for things you don't use (size of vector...).
Additionally, using memory on the stack (array) is faster than heap (vector*) as shown here
*as shown here it's not entirely precise to say vectors reside on the heap, but they sure hold more memory on the heap than the array (that holds none on the heap)
One reason is that if you have a lot of really small structures, small fixed length arrays can be memory efficient.
compare
struct point
{
float coords[4]
}
with
struct point
{
std::vector<float> coords;
}
Alternatives include std::array for cases like this. Also std::vector implementations will over allocate, meaning that if you want resize to 4 slots, you might have memory allocated for 16 slots.
Furthermore, the memory locations will be scattered and hard to predict, killing performance - using an exceptionally larger number of std::vectors may also need to memory fragmentation issues, where new starts failing.
I think this question is best answered flipped around:
What advantages does std::vector have over raw arrays?
I think this list is more easily enumerable (not to say this list is comprehensive):
Automatic dynamic memory allocation
Proper stack, queue, and sort implementations attached
Integration with C++ 11 related syntactical features such as iterator
If you aren't using such features there's not any particular benefit to std::vector over a "raw array" (though, similarly, in most cases the downsides are negligible).
Despite me saying this, for typical user applications (i.e. running on windows/unix desktop platforms) std::vector or std::array is (probably) typically the preferred data structure because even if you don't need all these features everywhere, if you're already using std::vector anywhere else you may as well keep your data types consistent so your code is easier to maintain.
However, since at the core std::vector simply adds functionality on top of "raw arrays" I think it's important to understand how arrays work in order to be fully take advantage of std::vector or std::array (knowing when to use std::array being one example) so you can reduce the "carbon footprint" of std::vector.
Additionally, be aware that you are going to see raw arrays when working with
Embedded code
Kernel code
Signal processing code
Cache efficient matrix implementations
Code dealing with very large data sets
Any other code where performance really matters
The lesson shouldn't be to freak out and say "must std::vector all the things!" when you encounter this in the real world.
Also: THIS!!!!
One of the powerful features of C++ is that often you can write a class (or struct) that exactly models the memory layout required by a specific protocol, then aim a class-pointer at the memory you need to work with to conveniently interpret or assign values. For better or worse, many such protocols often embed small fixed sized arrays.
There's a decades-old hack for putting an array of 1 element (or even 0 if your compiler allows it as an extension) at the end of a struct/class, aiming a pointer to the struct type at some larger data area, and accessing array elements off the end of the struct based on prior knowledge of the memory availability and content (if reading before writing) - see What's the need of array with zero elements?
embedding arrays can localise memory access requirement, improving cache hits and therefore performance

c++11 std::array vs static array vs std::vector

First question, is it a good thing to start using c++11 if I will develop a code for the 3 following years?
Then if it is, what is the "best" way to implement a matrix if I want to use it with Lapack? I mean, doing std::vector<std::vector< Type > > Matrix is not easily compatible with Lapack.
Up to now, I stored my matrix with Type* Matrix(new Type[N]) (the pointer form with new and delete were important because the size of the array is not given as a number like 5, but as a variable).
But with C++11 it is possible to use std::array. According to this site, this container seems to be the best solution... What do you think?
First things first, if you are going to learn C++, learn C++11. The previous C++ standard was released in 2003, meaning it's already ten years old. That's a lot in IT world. C++11 skills will also smoothly translate to upcoming C++1y (most probably C++14) standard.
The main difference between std::vector and std::array is the dynamic (in size and allocation) and static storage. So if you want to have a matrix class that's always, say, 4x4, std::array<float, 4*4> will do just fine.
Both of these classes provide .data() member, which should produce a compatible pointer. Note however, that std::vector<std::vector<float>> will NOT occuppy contiguous 16*sizeof(float) memory (so v[0].data() won't work). If you need a dynamically sized matrix, use single vector and resize it to the width*height size.
Since the access to the elements will be a bit harder (v[width * y +x] or v[height * x + y]), you might want to provide a wrapper class that will allow you to access arbitrary field by row/column pair.
Since you've also mentioned C-style arrays; std::array provides nicer interface to deal with the same type of storage, and thus should be preferred; there's nothing to gain with static arrays over std::array.
This is a very late reply to the question, but if someone reads this, I just want to point out that one should almost never implement a matrix as a ''vector of vectors''. The reason is that each row of the matrix gets stored in some random location on the heap. This means that matrix operations will do a lot of random memory accesses leading to cache misses, which slows down the implementation considerably.
In other words, if you care at all about performance, just allocate an array/std::array/std::vector of size rows * columns, then use wrapper functions that transforms a pair of integers to the corresponding element in the array. Unless you need to support things like returning references to rows of the matrix, then all of these options should work just fine.

What is the best way to treat large arrays of numbers in C++?

I need to deal with large arrays of float numbers (>200,000 numbers) and perform some maths with these arrays.
What do you suggest to treat these arrays so that I do not get any stack overflow problems?
UPDATE: I want to do simple and complex maths (sums, products, sin, cos, arctan) operations.
Plain numerical data you need to sequentially operate on?
std::valarray<double>
If profiling shows this is slowing you down, look for ways to make it faster by
std::valarray<double>::resize()
(yes, there's no reserve() unfortunately.
Why std::valarray<double> for numerical data? If you want to perform an operation on every element, just call
std::valarray<double>::apply(somefunction)
See for more information: a C++ reference.
If you want to be able to reserve(), you'll need std::vector, which is also fine but doesn't have overloads for the math functions you may want to use.
EDIT: This is of course assuming you have enough memory to fit all your arrays into std::valarrays. If not, you should split the 200,000 rows up so that only so many floats are in memory at the same time.
If your data are sparse, you could probably use boost's sparse_matrix http://www.boost.org/doc/libs/1_41_0/libs/numeric/ublas/doc/matrix_sparse.htm to represent you data structure and significantly reduce memory requirements.
Otherwise I would suggest looking into ways that you can split the data into chunks and work on one chunk in memory, then store that state to file and repeat.
I suggest you treat them like 10.000 per 10.000 then sum everything ?
It depends of what operations you are doing.
Depends on what you want to do with them.
Also, as chris said in the comments, dynamically allocate memory for your array (to get memory from the heap) and avoid using it as a local variable (which is allocated in the stack).

shortening the period of two dimensional dynamic array algorithms in C++

I defined two dimensional dynamic array and allocate memory for arrays.Dimensions of arrays are same as each other(256*256):
double **I1,**I2;
int M=256;
int N=256;
int i,j;
I1= new double *[M+1];
for(i=1;i<=M;i++)
{I1[i]=new double [N+1];}
I2= new double *[M+1];
for(i=1;i<=M;i++)
{I2[i]=new double [N+1];}
Then,I assigned values elements of arrays.I have to execute mathematical algorithms on these arrays .I used a lot of for loops.And my code worked very very slowly.
For example if I subtract I2 from I1 and asssigned substract array to another I3 two dimensional array,I used this code:
double **I3;
double temp;
//allocate I3;
I3= new double *[M+1];
for(i=1;i<=M;i++)
{I3[i]=new double [N+1];}
//I3=I1-I2
for(i=1;i<=M;i++){
for(j=1;j<=N;j++){
temp=I1[i][j]-I2[i][j];
I3[i][j]=temp;}
}
How can I short execution time of C++ without using for loops ?
Could you advise me another methods please?
Best Regards..
First of all, in most cases I would advise against manually managing your memory like this. I'm sure you have heard that C++ offers container classes to which "algorithms" can be applied. These containers are less error prone (especially in the case of exceptions), the operations are more expressive, optimized and usually well-tested, so proven to work.
In your case, with the size of array known before, a std::vector can be used with no performance loss (except at creation), since the memory is guaranteed to be continuous and can thus be used like an array. You should also think about flattening your array, calling an allocation routine in a loop is not exactly speedy - allocation is costly. When doing matrix multiplication, consider allocation in row-major / column-major pairs, this helps caching...but I digress.
This is only a general advice, though - I am not advising you to re-implement this using containers, I just felt the need to mention them.
In this specific case, since you mentioned you want to "execute mathematical algorithms" I would suggest you have a look at a numeric library that is able to do matrix / vector operations, as this seems to be what you are after.
For C++, there is Newmat for example, and the (more or less) canonical BLAS/LAPACK implementations (i.e. Netlib, AMD's ACML, ATLAS). These allow you to perform common (and not so common) operations like adding/subtracting vectors, multiplying matrices etc. much faster, both using optimized algorithms and also optimizations as SIMD instructions your processor might offer (i.e. SSE).
Obviously, there is no way to avoid iterating over these values when doing computations, but you can do it in an optimized manner and with a standard interface.
In order of importance:
Switch on compiler optimization.
Allocate a single array for each matrix and use something like M*i+j for indexing. This will allocate faster and perhaps more importantly be more compact and less fragmented than multiple allocations.
Get used to indexing starting by zero, this will save you one array element and in general zero comparisons have the potential to be faster.
I see nothing wrong in using for loops.
If you are willing to spend even more effort, you could either use a vectorized 3rd party linear algebra lib or vectorize yourself by using things like SSE* or GPUs.
Some architectures have hardware support for vector arithmetic, such that a single instruction will sum all the elements of an array of doubles.
However, the first thing you must do to speed up a program is measure it. Have you timed your program to see where the slowdown occurs?
For example, one thing you appear to be doing in a for loop is lots of heap allocation, which tends to be slow. You could combine all your arrays into one array for greater speed.
You are currently doing the logical equivalent of this:
I3 = I1 - I2;
If you did this:
I1 -= I2;
Now I1 would be storing the result. This would destroy the original value of I1, but would avoid allocating a new array-of-arrays.
Also the intention of C++ is that you define classes to represent a data type and the operations on it. So you could write a class to represent your dynamic array storage. Or use an existing one - check out the uBLAS library.
I don't understand why you say that this is very slow. You're doing 256*256 subtractions here. I don't think there is a way to avoid for loops here (even if you're using a matrix library it will probably still do the same).
You might consider allocating 256*256 floats in one go instead of calling new 256 times (and then use some indexing arithmetic because you have only one index) but then it's probably easier to find a matrix library which does this for you.
Everything is already in STL, use valarray.
See also: How can I use a std::valarray to store/manipulate a contiguous 2D array?