OpenGL: ShadowMapping: Shadows only visible at y=0 - opengl

i have implemented shadowmapping with an FBO and GLSL.
it is used on a heightfield. that is some objects (trees, plants, ...) cast shadows on the heightfield.
the problem i have, is that the shadows are only visible on the ground of the heightfield. that is, where the heightfield's height = 0. as soon as there is some height involved, the shadows disappear. if i look at the shadowmap itself, everything looks fine... objects that are closer to the light are darker.
here is my GLSL vertexshader:
uniform mat4 lightView, lightProjection;
const mat4 biasMatrix = mat4( 0.5, 0.0, 0.0, 0.0,
0.0, 0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0); //bias from [-1, 1] to [0, 1]
void main()
{
gl_Position = ftransform();
mat4 shadowMatrix = biasMatrix * lightProjection * lightView;
shadowTexCoord = shadowMatrix * gl_Vertex;
}
fragmentshader:
uniform sampler2DShadow shadowmap;
varying vec4 shadowTexCoord;
void main()
{
vec4 shadow = shadow2DProj(shadowmap, shadowTexCoord, 0.0);
float colorshadow = shadow.r < 0.1 ? 0.5 : 1.0;
vec4 color = vec4(1,1,1,1);
gl_FragColor = vec4( color*colorshadow, color.w );
}
thanks a lot for any help on this!

I think there might be some confusion between the different spaces here. As written, it looks like your code would only work if gl_ModelViewMatrix for the ground contains only camera transformations. This is because ftransform basically goes
gl_Position = gl_ProjectionMatrix * (gl_ModelViewMatrix * gl_Vertex)
that means that the gl_Vertex is specified in object coordinates. However typically the view matrix of the light maps from world coordinates to the light's view space so this code would only work if object space = world space. So basically, lets say you scale the terrain, well then object space doesn't equal world space anymore. Because of this you need to separate out the gl_ModelViewMatrix into two parts: the camera view matrix and the modeling transform (eg object -> world space)
I havent tested this code, but I would try something like this:
uniform mat4 lightView, lightProjection;
uniform mat4 camView, camProj, modelTrans;
const mat4 biasMatrix = mat4( 0.5, 0.0, 0.0, 0.0,
0.0, 0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0); //bias from [-1, 1] to [0, 1]
void main()
{
mat4 modelViewProjMatrix = camProj * camView * modelTrans;
gl_Position = modelViewProjMatrix * gl_Vertex;
mat4 shadowMatrix = biasMatrix * lightProjection * lightView * modelTrans;
shadowTexCoord = shadowMatrix * gl_Vertex;
}
Technically it's faster to multiply the matrices on the CPU and only pass the exact ones you need but for getting stuff working sometimes its easier to do this way.

Maybe you just missed it copy-pasting, but I don't see shadowTexCoord as varying in the vertex shader. This should result in a compilation error, though.

Related

Finding the light ray that goes from light world position through the shadow map texel

I want to move from basic shadow mapping on to adaptive biased shadow mapping.
I found a paper which describes how to do it, but I am not sure how to achieve a certain step in the process:
The idea is to have a plane P (which is basically just the normal of the current fragment's surface in the fragment shader stage) and the world space position of the fragment (F1 in the picture above).
In order to calculate the correct bias (to fight shadow acne) I need to find the world space position of F2 which I can get if I shoot a ray from the light source through the center of the shadow map's texel center. This ray then eventually hits the plane P which results in the needed point F2.
With F1 and F2 now known, I then can calculate the distance between F1 and F2 along the light ray (I guess) and thus get the ideal bias to fight shadow acne.
Right now my basic shader code looks like this:
Vertex shader:
in vec3 aLocalObjectPos;
out vec4 vShadowCoord;
out vec3 vF1;
// to shift the coordinates from [-1;1] to [0;1]
const mat4 biasMatrix = mat4(
0.5, 0.0, 0.0, 0.0,
0.0, 0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0
);
int main()
{
// get the vertex position in the light's view space:
vShadowCoord = (biasMatrix * viewProjShadowMap * modelMatrix) * vec4(aLocalObjectPos, 1.0);
vF1 = (modelMatrix * vec4(aLocalObjectPos, 1.0)).xyz;
}
Helper method in fragment shader:
uniform sampler2DShadow uTextureShadowMap;
float calculateShadow(float bias)
{
vShadowCoord.z -= bias;
return textureProjOffset(uTextureShadowMap, vShadowCoord, ivec2(0, 0));
}
My problem now is:
How do I get the light ray that goes from the light source through the shadow map's texel center?
I already found this topic: Adaptive Depth Bias for Shadow Maps Ray Casting
Unfortunately there is no answer and I don't quite get all the things the author is talking about :-/
So, I think I have figured it out myself. I followed the directions in this paper:
http://cwyman.org/papers/i3d14_adaptiveBias.pdf
Vertex Shader (not much going on there):
const mat4 biasMatrix = mat4(
0.5, 0.0, 0.0, 0.0,
0.0, 0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0
);
in vec4 aPosition; // vertex in model's local space (not modified in any way)
uniform mat4 uVPShadowMap; // light's view-projection matrix
out vec4 vShadowCoord;
void main()
{
// ...
vShadowCoord = (biasMatrix * uVPShadowMap * uModelMatrix) * aPosition;
// ...
}
Fragment Shader:
#version 450
in vec3 vFragmentWorldSpace; // fragment position in World space
in vec4 vShadowCoord; // texture coordinates for shadow map lookup (see vertex shader)
uniform sampler2DShadow uTextureShadowMap;
uniform vec4 uLightPosition; // Light's position in world space
uniform vec2 uLightNearFar; // Light's zNear and zFar values
uniform float uK; // variable offset faktor to tweak the computed bias a little bit
uniform mat4 uVPShadowMap; // light's view-projection matrix
const vec4 corners[2] = vec4[]( // frustum diagonal points in light's view space normalized [-1;+1]
vec4(-1.0, -1.0, -1.0, 1.0), // left bottom near
vec4( 1.0, 1.0, 1.0, 1.0) // right top far
);
float calculateShadowIntensity(vec3 fragmentNormal)
{
// get fragment's position in light space:
vec4 fragmentLightSpace = uVPShadowMap * vec4(vFragmentWorldSpace, 1.0);
vec3 fragmentLightSpaceNormalized = fragmentLightSpace.xyz / fragmentLightSpace.w; // range [-1;+1]
vec3 fragmentLightSpaceNormalizedUV = fragmentLightSpaceNormalized * 0.5 + vec3(0.5, 0.5, 0.5); // range [ 0; 1]
// get shadow map's texture size:
ivec2 textureDimensions = textureSize(uTextureShadowMap, 0);
vec2 delta = vec2(textureDimensions.x, textureDimensions.y);
// get width of every texel:
vec2 textureStep = vec2(1.0 / textureDimensions.x, 1.0 / textureDimensions.y);
// get the UV coordinates of the texel center:
vec2 fragmentLightSpaceUVScaled = fragmentLightSpaceNormalizedUV.xy * delta;
vec2 texelCenterUV = floor(fragmentLightSpaceUVScaled) * textureStep + textureStep / 2;
// convert range for texel center in light space in range [-1;+1]:
vec2 texelCenterLightSpaceNormalized = 2.0 * texelCenterUV - vec2(1.0, 1.0);
// recreate light ray in world space:
vec4 recreatedVec4 = vec4(texelCenterLightSpaceNormalized.x, texelCenterLightSpaceNormalized.y, -uLightsNearFar.x, 1.0);
mat4 vpShadowMapInversed = inverse(uVPShadowMap);
vec4 texelCenterWorldSpace = vpShadowMapInversed * recreatedVec4;
vec3 lightRayNormalized = normalize(texelCenterWorldSpace.xyz - uLightsPositions.xyz);
// compute scene scale for epsilon computation:
vec4 frustum1 = vpShadowMapInversed * corners[0];
frustum1 = frustum1 / frustum1.w;
vec4 frustum2 = vpShadowMapInversed * corners[1];
frustum2 = frustum2 / frustum2.w;
float ln = uLightNearFar.x;
float lf = uLightNearFar.y;
// compute light ray intersection with fragment plane:
float dotLightRayfragmentNormal = dot(fragmentNormal, lightRayNormalized);
float d = dot(fragmentNormal, vFragmentWorldSpace);
float x = (d - dot(fragmentNormal, uLightsPositions.xyz)) / dot(fragmentNormal, lightRayNormalized);
vec4 intersectionWorldSpace = vec4(uLightsPositions.xyz + lightRayNormalized * x, 1.0);
// compute bias:
vec4 texelInLightSpace = uVPShadowMap * intersectionWorldSpace;
float intersectionDepthTexelCenterUV = (texelInLightSpace.z / texelInLightSpace.w) / 2.0 + 0.5;
float fragmentDepthLightSpaceUV = fragmentLightSpaceNormalizedUV.z;
float bias = intersectionDepthTexelCenterUV - fragmentDepthLightSpaceUV;
float depthCompressionResult = pow(lf - fragmentLightSpaceNormalizedUV.z * (lf - ln), 2.0) / (lf * ln * (lf - ln));
float epsilon = depthCompressionResult * length(frustum1.xyz - frustum2.xyz) * uK;
bias += epsilon;
vec4 shadowCoord = vShadowCoord;
shadowCoord.z -= bias;
float shadowValue = textureProj(uTextureShadowMap, shadowCoord);
return max(shadowValue, 0.0);
}
Please note that this is a very verbose method (you could optimise several steps, I know) to better explain what I did to make it work.
All my shadow casting lights use perspective projection.
I tested the results on the CPU side in a separate project (only c# with the math structs from the OpenTK package) and they seem reasonable. I used several light positions, texture sizes, etc. The bias values looked ok in all my tests. Of course, this is no proof, but I have a good feeling about this.
In the end:
The benefits were very small. The visual results are good (especially for shadow maps with >= 2048 samples per dimension) but I still had to tweak the offset value (uniform float uK in the fragment shader) for each of my scenes. I found values from 0.01 to 0.03 to deliver useable results.
I lost about 10% performance (fps-wise) compared to my previous approach (slope-scaled bias) and gained maybe 1% of visual fidelity when it comes to shadows (acne, peter panning). The 1% is not measured - only felt by me :-)
I wanted this approach to be the "one-solution-to-all-problems". But I guess, there is no "fire-and-forget" solution when it comes to shadow mapping ;-/

Lighting doesn't show in OpenGL

I'm trying to do point source directional lighting in OpenGL using my textbooks examples. I'm showing a rectangle centered at the origin, and doing the lighting computations in the shader. The rectangle appears, but it is black even when I try to put colored lights on it. Normals for the rectangle are all (0, 1.0, 0). I'm not doing any non-uniform scaling, so the regular model view matrix should also transform the normals.
I have code that sets the light parameters(as uniforms) and material parameters(also as uniforms) for the shader. There is no per vertex color information.
void InitMaterial()
{
color material_ambient = color(1.0, 0.0, 1.0);
color material_diffuse = color(1.0, 0.8, 0.0);
color material_specular = color(1.0, 0.8, 0.0);
float material_shininess = 100.0;
// set uniforms for current program
glUniform3fv(glGetUniformLocation(Programs[lightingType], "materialAmbient"), 1, material_ambient);
glUniform3fv(glGetUniformLocation(Programs[lightingType], "materialDiffuse"), 1, material_diffuse);
glUniform3fv(glGetUniformLocation(Programs[lightingType], "materialSpecular"), 1, material_specular);
glUniform1f(glGetUniformLocation(Programs[lightingType], "shininess"), material_shininess);
}
For the lights:
void InitLight()
{
// need light direction and light position
point4 light_position = point4(0.0, 0.0, -1.0, 0.0);
color light_ambient = color(0.2, 0.2, 0.2);
color light_diffuse = color(1.0, 1.0, 1.0);
color light_specular = color(1.0, 1.0, 1.0);
glUniform3fv(glGetUniformLocation(Programs[lightingType], "lightPosition"), 1, light_position);
glUniform3fv(glGetUniformLocation(Programs[lightingType], "lightAmbient"), 1, light_ambient);
glUniform3fv(glGetUniformLocation(Programs[lightingType], "lightDiffuse"), 1, light_diffuse);
glUniform3fv(glGetUniformLocation(Programs[lightingType], "lightSpecular"), 1, light_specular);
}
The fragment shader is a simple pass through shader that sets the color to the one input from the vertex shader. Here is the vertex shader :
#version 150
in vec4 vPosition;
in vec3 vNormal;
out vec4 color;
uniform vec4 materialAmbient, materialDiffuse, materialSpecular;
uniform vec4 lightAmbient, lightDiffuse, lightSpecular;
uniform float shininess;
uniform mat4 modelView;
uniform vec4 lightPosition;
uniform mat4 projection;
void main()
{
// Transform vertex position into eye coordinates
vec3 pos = (modelView * vPosition).xyz;
vec3 L = normalize(lightPosition.xyz - pos);
vec3 E = normalize(-pos);
vec3 H = normalize(L + E);
// Transform vertex normal into eye coordinates
vec3 N = normalize(modelView * vec4(vNormal, 0.0)).xyz;
// Compute terms in the illumination equation
vec4 ambient = materialAmbient * lightAmbient;
float Kd = max(dot(L, N), 0.0);
vec4 diffuse = Kd * materialDiffuse * lightDiffuse;
float Ks = pow(max(dot(N, H), 0.0), shininess);
vec4 specular = Ks * materialSpecular * lightSpecular;
if(dot(L, N) < 0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
gl_Position = projection * modelView * vPosition;
color = ambient + diffuse + specular;
color.a = 1.0;
}
Ok, it's working now. The solution was to replace glUniform3fv with glUniform4fv, I guess because the glsl counterpart is a vec4 instead of a vec3. I thought that it would be able to recognize this and simply add a 1.0 to the end, but no.

Sun shader not working

I'm trying to get a sun shader to work, but I can't get it to work.
What I currently get is a quarter of a circle/elipsis on the lower left of my screen, that is really stuck to my screen (if I move the camera, it also moves).
All I do is render two triangles to form a screen-covering quad, with screen width and height in uniforms.
Vertex Shader
#version 430 core
void main(void) {
const vec4 vertices[6] = vec4[](
vec4(-1.0, -1.0, 1.0, 1.0),
vec4(-1.0, 1.0, 1.0, 1.0),
vec4(1.0, 1.0, 1.0, 1.0),
vec4(1.0, 1.0, 1.0, 1.0),
vec4(1.0, -1.0, 1.0, 1.0),
vec4(-1.0, -1.0, 1.0, 1.0)
);
gl_Position = vertices[gl_VertexID];
}
Fragment Shader
#version 430 core
layout(location = 7) uniform int screen_width;
layout(location = 8) uniform int screen_height;
layout(location = 1) uniform mat4 view_matrix;
layout(location = 2) uniform mat4 proj_matrix;
out vec4 color;
uniform vec3 light_pos = vec3(-20.0, 7.5, -20.0);
void main(void) {
//calculate light position in screen space and get x, y components
vec2 screen_space_light_pos = (proj_matrix * view_matrix * vec4(light_pos, 1.0)).xy;
//calculate fragment position in screen space
vec2 screen_space_fragment_pos = vec2(gl_FragCoord.x / screen_width, gl_FragCoord.y / screen_height);
//check if it is in the radius of the sun
if (length(screen_space_light_pos - screen_space_fragment_pos) < 0.1) {
color = vec4(1.0, 1.0, 0.0, 1.0);
}
else {
discard;
}
}
What I think it does:
Get the position of the sun (light_pos) in screen space.
Get the fragment position in screen space.
If the distance between them is below a certain value, draw fragment with yellow color;
Else discard.
screen_space_light_pos is not yet in clip space. You've missed perspective division:
vec3 before_division = (proj_matrix * view_matrix * vec4(light_pos, 1.0)).xyw;
vec2 screen_space_light_pos = before_division.xy / before_division.z;
With common proj_matrix configurations, screen_space_light_pos will be in [-1,1]x[-1,1]. To match screen_space_fragment_pos range, you probably need to adjust screen_space_light_pos:
screen_space_light_pos = screen_space_light_pos * 0.5 + 0.5;

OpenGL reconstructing eye-view position from linearized depth incorrect

i have been trying to implement deferred rendering for past 2 weeks. I have finally come to the spot lighting pass part using stencil buffer and linearized depth. I hold 3 framebuffer textures : albedo, normal+depth (X,Y,Z,EyeViewLinearDepth), Lighting texture. So I draw my light (sphere) and apply this fragment shader :
void main(void)
{
vec2 texCoord = gl_FragCoord.xy * u_inverseScreenSize.xy;
float linearDepth = texture2D(u_normalDepth, texCoord.st).a;
// vector to far plane
vec3 viewRay = vec3(v_vertex.xy * (-farClip/v_vertex.z), -farClip);
// scale viewRay by linear depth to get view space position
vec3 vertex = viewRay * linearDepth;
vec3 normal = texture2D(u_normalDepth, texCoord.st).xyz*2.0 - 1.0;
vec4 ambient = vec4(0.0, 0.0, 0.0, 1.0);
vec4 diffuse = vec4(0.0, 0.0, 0.0, 1.0);
vec4 specular = vec4(0.0, 0.0, 0.0, 1.0);
vec3 lightDir = lightpos - vertex ;
vec3 R = normalize(reflect(lightDir, normal));
vec3 V = normalize(vertex);
float lambert = max(dot(normal, normalize(lightDir)), 0.0);
if (lambert > 0.0) {
float distance = length(lightDir);
if (distance <= u_lightRadius) {
//CLASSICAL LIGHTING COMPUTATION PART
}
}
vec4 final_color = vec4(ambient + diffuse + specular);
gl_FragColor = vec4(final_color.xyz, 1.0);
}
The variables you need to know : v_vertex is eye space position of the vertex (of sphere), lightpos is the position/center of the light in eye space, linearDepth is generated on geometry pass stage in eye space.
The problem is that, the code fail this if check : if (distance <= u_lightRadius). The light is never computed until i remove the distance check. I am sure that i pass these values correctly, radius is 170.0, light position is only like 40-50 units away from the model. There is definitely something wrong but i can't find it somehow. I tried many possibilities of radius and other variables.

How do you write a GLSL vertex program that transforms verticies?

...and have it actually work. I get the principle, you write a vertex program, something like, this say:
attribute vec3 v_pos;
attribute vec4 v_color;
attribute vec2 v_uv;
attribute vec3 v_rotation; // [angle, x, y]
uniform mat4 modelview_mat;
uniform mat4 projection_mat;
varying vec4 frag_color;
varying vec2 uv_vec;
void main (void) {
mat4 trans_in = mat4(
1.0, 0.0, 0.0, 50.0, // <--- Transformation matrix
0.0, 1.0, 0.0, 50.0,
0.0, 0.0, 1.0, 50.0,
0.0, 0.0, 0.0, 1.0
);
vec4 pos = trans_in * vec4(v_pos,1.0); // <--- apply to input
// Mark a vertex using color to prove a transformation is actually happening...
if (v_rotation[0] > 10.0) {
frag_color = vec4(1.0, 0.0, 0.0, 1.0);
gl_Position = projection_mat * vec4(pos[0], pos[1], 1.0, 1.0);
}
// And leave all the other verticies untouched.
else {
frag_color = v_color;
gl_Position = projection_mat * vec4(v_pos, 1.0); // <--- Untransformed output
}
uv_vec = v_uv; // <--- Pass UV to fragment program
}
The problem is, this doesn't actually work.
After applying the matrix transformation trans_in * v_pos, I expect a point [1, 2, 3] to become [51, 52, 53, 1].
...but it doesn't. In fact, it renders this:
(ie. no transformation of the point location; pos = trans_in * v_pos == vec4(v_pos, 1.0)!!!!!! O_o)
Notice the red marked vertices that prove that I am actually setting the gl_Position for them; indeed, if I do this:
gl_Position = projection_mat * vec4(1.0, 1.0, 1.0, 1.0);
Each of those red points is jumped down to the bottom corner, as you would expect.
I've also tried various 3x3 matrix multiplications and it seems that while the scale operations work, and to some extent, the rotation operations work, I cannot for the life of me get any 2d translation operations to run; the matrix multiplication just seems to... do nothing.
What am I doing wrong?
You got the matrix order wrong. GLSL uses column-major oder, so each row in your intializer will become a column of the matrix. This refelcts the same convention which was used with the (now deprecated) GL matrix stack. It is also consistent to the setting of the transpose parameter of glUinformMatrix*() calls which has to be set to GL_FALSE for column major input (where translation part are elements m[12],m[13],m[14] in an 1D array).
Your matrix actually only alters the w component of your vector, which you then ignore, so it does not have any visible effect.