Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
We are producing a portable code (win+macOs) and we are looking at how to make the code more rubust as it crashes every so often... (overflows or bad initializations usually) :-(
I was reading that Google Chrome uses a process for every tab so if something goes wrong then the program does not crash compleatelly, only that tab. I think that is quite neat, so i might give it a go!
So i was wondering if someone has some tips, help, reading list, comment, or something that can help me build more rubust c++ code (portable is always better).
In the same topic i was also wondering if there is a portable library for processes (like boost)?
Well many Thanks.
I've developed on numerous multi-platform C++ apps (the largest being 1.5M lines of code and running on 7 platforms -- AIX, HP-UX PA-RISC, HP-UX Itanium, Solaris, Linux, Windows, OS X). You actually have two entirely different issues in your post.
Instability. Your code is not stable. Fix it.
Use unit tests to find logic problems before they kill you.
Use debuggers to find out what's causing the crashes if it's not obvious.
Use boost and similar libraries. In particular, the pointer types will help you avoid memory leaks.
Cross-platform coding.
Again, use libraries that are designed for this when possible. Particularly for any GUI bits.
Use standards (e.g. ANSI vs gcc/MSVC, POSIX threads vs Unix-specific thread models, etc) as much as possible, even if it requires a bit more work. Minimizing your platform specific code means less overall work, and fewer APIs to learn.
Isolate, isolate, isolate. Avoid in-line #ifdefs for different platforms as much as possible. Instead, stick platform specific code into its own header/source/class and use your build system and #includes to get the right code. This helps keep the code clean and readable.
Use the C99 integer types if at all possible instead of "long", "int", "short", etc -- otherwise it will bite you when you move from a 32-bit platform to a 64-bit one and longs suddenly change from 4 bytes to 8 bytes. And if that's ever written to the network/disk/etc then you'll run into incompatibility between platforms.
Personally, I'd stabilize the code first (without adding any more features) and then deal with the cross-platform issues, but that's up to you. Note that Visual Studio has an excellent debugger (the code base mentioned above was ported to Windows just for that reason).
The Chrome answer is more about failure mitigation and not about code quality. Doing what Chrome is doing is admitting defeat.
Better QA that is more than just programmer testing their own work.
Unit testing
Regression testing
Read up on best practices that other
companies use.
To be blunt, if your software is crashing often due to overflows and bad initializations, then you have a very basic programming quality problem that isn't going to be easily fixed. That sounds a hash and mean, that isn't my intent. My point is that the problem with the bad code has to be your primary concern (which I'm sure it is). Things like Chrome or liberal use to exception handling to catch program flaw are only distracting you from the real problem.
You don't mention what the target project is; having a process per-tab does not necessarily mean more "robust" code at all. You should aim to write solid code with tests regardless of portability - just read about writing good C++ code :)
As for the portability section, make sure you are testing on both platforms from day one and ensure that no new code is written until platform-specific problems are solved.
You really, really don't want to do what Chrome is doing, it requires a process manager which is probably WAY overkill for what you want.
You should investigate using smart pointers from Boost or another tool that will provide reference counting or garbage collection for C++.
Alternatively, if you are frequently crashing you might want to perhaps consider writing non-performance critical parts of your application in a scripting language that has C++ bindings.
Scott Meyers' Effective C++ and More Effective C++ are very good, and fun to read.
Steve McConnell's Code Complete is a favorite of many, including Jeff Atwood.
The Boost libraries are probably an excellent choice. One project where I work uses them. I've only used WIN32 threading myself.
I agree with Torlack.
Bad initialization or overflows are signs of poor quality code.
Google did it that way because sometimes, there was no way to control the code that was executed in a page (because of faulty plugins, etc.). So if you're using low quality plug ins (it happens), perhaps the Google solution will be good for you.
But a program without plugins that crashes often is just badly written, or very very complex, or very old (and missing a lot of maintenance time). You must stop the development, and investigate each and every crash. On Windows, compile the modules with PDBs (program databases), and each time it crashes, attach a debugger to it.
You must add internal tests, too. Avoid the pattern:
doSomethingBad(T * t)
{
if(t == NULL) return ;
// do the processing.
}
This is very bad design because the error is there, and you just avoid it, this time. But the next function without this guard will crash. Better to crash sooner to be nearer from the error.
Instead, on Windows (there must be a similar API on MacOS)
doSomethingBad(T * t)
{
if(t == NULL) ::DebugBreak() ; // it will call the debugger
// do the processing.
}
(don't use this code directly... Put it in a define to avoid delivering it to a client...)
You can choose the error API that suits you (exceptions, DebugBreak, assert, etc.), but use it to stop the moment the code knows something's wrong.
Avoid the C API whenever possible. Use C++ idioms (RAII, etc.) and libraries.
Etc..
P.S.: If you use exceptions (which is a good choice), don't hide them inside a catch. You'll only make your problem worse because the error is there, but the program will try to continue and will probably crash sometimes after, and corrupt anything it touches in the mean time.
You can always add exception handling to your program to catch these kinds of faults and ignore them (though the details are platform specific) ... but that is very much a two edged sword. Instead consider having the program catch the exceptions and create dump files for analysis.
If your program has behaved in an unexpected way, what do you know about your internal state? Maybe the routine/thread that crashed has corrupted some key data structure? Maybe if you catch the error and try to continue the user will save whatever they are working on and commit the corruption to disk?
Beside writing more stable code, here's one idea that answers your question.
Whether you are using processes or threads. You can write a small / simple watchdog program. Then your other programs register with that watchdog. If any process dies, or a thread dies, it can be restarted by the watchdog. Of course you'll want to put in some test to make sure you don't keep restarting the same buggy thread. ie: restart it 5 times, then after the 5th, shutdown the whole program and log to file / syslog.
Build your app with debug symbols, then either add an exception handler or configure Dr Watson to generate crash dumps (run drwtsn32.exe /i to install it as the debugger, without the /i to pop the config dialog). When your app crashes, you can inspect where it went wrong in windbg or visual studio by seeing a callstack and variables.
google for symbol server for more info.
Obviously you can use exception handling to make it more robust and use smart pointers, but fixing the bugs is best.
I would recommend that you compile up a linux version and run it under Valgrind.
Valgrind will track memory leaks, uninitialized memory reads and many other code problems. I highly recommend it.
After over 15 years of Windows development I recently wrote my first cross-platform C++ app (Windows/Linux). Here's how:
STL
Boost. In particular the filesystem and thread libraries.
A browser based UI. The app 'does' HTTP, with the UI consisting of XHTML/CSS/JavaScript (Ajax style). These resources are embedded in the server code and served to the browser when required.
Copious unit testing. Not quite TDD, but close. This actually changed the way I develop.
I used NetBeans C++ for the Linux build and had a full Linux port in no time at all.
Build it with the idea that the only way to quit is for the program to crash and that it can crash at any time. When you build it that way, crashing will never/almost never lose any data. I read an article about it a year or two ago. Sadly, I don't have a link to it.
Combine that with some sort of crash dump and have it email you it so you can fix the problem.
Related
I know that E&C is a controversial subject and some say that it encourages a wrong approach to debugging, but still - I think we can agree that there are numerous cases when it is clearly useful - experimenting with different values of some constants, redesigning GUI parameters on-the-fly to find a good look... You name it.
My question is: Are we ever going to have E&C on GDB? I understand that it is a platform-specific feature and needs some serious cooperation with the compiler, the debugger and the OS (MSVC has this one easy as the compiler and debugger always come in one package), but... It still should be doable. I've even heard something about Apple having it implemented in their version of GCC [citation needed]. And I'd say it is indeed feasible.
Knowing all the hype about MSVC's E&C (my experience says it's the first thing MSVC users mention when asked "why not switch to Eclipse and gcc/gdb"), I'm seriously surprised that after quite some years GCC/GDB still doesn't have such feature. Are there any good reasons for that? Is someone working on it as we speak?
It is a surprisingly non-trivial amount of work, encompassing many design decisions and feature tradeoffs. Consider: you are debugging. The debugee is suspended. Its image in memory contains the object code of the source, and the binary layout of objects, the heap, the stacks. The debugger is inspecting its memory image. It has loaded debug information about the symbols, types, address mappings, pc (ip) to source correspondences. It displays the call stack, data values.
Now you want to allow a particular set of possible edits to the code and/or data, without stopping the debuggee and restarting. The simplest might be to change one line of code to another. Perhaps you recompile that file or just that function or just that line. Now you have to patch the debuggee image to execute that new line of code the next time you step over it or otherwise run through it. How does that work under the hood? What happens if the code is larger than the line of code it replaced? How does it interact with compiler optimizations? Perhaps you can only do this on a specially compiled for EnC debugging target. Perhaps you will constrain possible sites it is legal to EnC. Consider: what happens if you edit a line of code in a function suspended down in the call stack. When the code returns there does it run the original version of the function or the version with your line changed? If the original version, where does that source come from?
Can you add or remove locals? What does that do to the call stack of suspended frames? Of the current function?
Can you change function signatures? Add fields to / remove fields from objects? What about existing instances? What about pending destructors or finalizers? Etc.
There are many, many functionality details to attend to to make any kind of usuable EnC work. Then there are many cross-tools integration issues necessary to provide the infrastructure to power EnC. In particular, it helps to have some kind of repository of debug information that can make available the before- and after-edit debug information and object code to the debugger. For C++, the incrementally updatable debug information in PDBs helps. Incremental linking may help too.
Looking from the MS ecosystem over into the GCC ecosystem, it is easy to imagine the complexity and integration issues across GDB/GCC/binutils, the myriad of targets, some needed EnC specific target abstractions, and the "nice to have but inessential" nature of EnC, are why it has not appeared yet in GDB/GCC.
Happy hacking!
(p.s. It is instructive and inspiring to look at what the Smalltalk-80 interactive programming environment could do. In St80 there was no concept of "restart" -- the image and its object memory were always live, if you edited any aspect of a class you still had to keep running. In such environments object versioning was not a hypothetical.)
I'm not familiar with MSVC's E&C, but GDB has some of the things you've mentioned:
http://sourceware.org/gdb/current/onlinedocs/gdb/Altering.html#Altering
17. Altering Execution
Once you think you have found an error in your program, you might want to find out for certain whether correcting the apparent error would lead to correct results in the rest of the run. You can find the answer by experiment, using the gdb features for altering execution of the program.
For example, you can store new values into variables or memory locations, give your program a signal, restart it at a different address, or even return prematurely from a function.
Assignment: Assignment to variables
Jumping: Continuing at a different address
Signaling: Giving your program a signal
Returning: Returning from a function
Calling: Calling your program's functions
Patching: Patching your program
Compiling and Injecting Code: Compiling and injecting code in GDB
This is a pretty good reference to the old Apple implementation of "fix and continue". It also references other working implementations.
http://sources.redhat.com/ml/gdb/2003-06/msg00500.html
Here is a snippet:
Fix and continue is a feature implemented by many other debuggers,
which we added to our gdb for this release. Sun Workshop, SGI ProDev
WorkShop, Microsoft's Visual Studio, HP's wdb, and Sun's Hotspot Java
VM all provide this feature in one way or another. I based our
implementation on the HP wdb Fix and Continue feature, which they
added a few years back. Although my final implementation follows the
general outlines of the approach they took, there is almost no shared
code between them. Some of this is because of the architectual
differences (both the processor and the ABI), but even more of it is
due to implementation design differences.
Note that this capability may have been removed in a later version of their toolchain.
UPDATE: Dec-21-2012
There is a GDB Roadmap PDF presentation that includes a slide describing "Fix and Continue" among other bullet points. The presentation is dated July-9-2012 so maybe there is hope to have this added at some point. The presentation was part of the GNU Tools Cauldron 2012.
Also, I get it that adding E&C to GDB or anywhere in Linux land is a tough chore with all the different components.
But I don't see E&C as controversial. I remember using it in VB5 and VB6 and it was probably there before that. Also it's been in Office VBA since way back. And it's been in Visual Studio since VS2005. VS2003 was the only one that didn't have it and I remember devs howling about it. They intended to add it back anyway and they did with VS2005 and it's been there since. It works with C#, VB, and also C and C++. It's been in MS core tools for 20+ years, almost continuous (counting VB when it was standalone), and subtracting VS2003. But you could still say they had it in Office VBA during the VS2003 period ;)
And Jetbrains recently added it too their C# tool Rider. They bragged about it (rightly so imo) in their Rider blog.
I'm working on a real-time application (lets call it App1) which is communicating with another application (App2). I used VS2008 and both applications are in C++. Recently I converted the App1 project to VS2010 and right after that it started crashing (I use VS2010 Premium Ver. 10.0.30319.1). Crash dump shows that right before a crash, App2 tries to send a request to App1 for multiple times without receiving any response. So I thought maybe converting App1 to VS2010 screwed the performance and it takes a long time for App1 to generate the response. Does using VS2010 has any effect on the performance (compared to VS2008)?
Well of course it has "some" effect on the performance. The compiler is newer, and in many regard better.
The problem you are suffering is unlikely to be as a result of the compiler going wrong however. Its possible you have made an assumption that no longer holds true under the C++0x features introduced in 2010 but I'd suggest its far more likely that you have a bug in the VS2008 version as well. You need to figure out why its hanging and see what you can do to stop that hang happening. It is quite probable that the timings have been changed around using 2010 and an assumption you've made (and you should never assume things will work in a specific way ... either know or look it up) has come back to bite you in the arse.
Probably not the kinda answer you were looking for though ... but I'd definitely bet on it being a bonafide bug!
The thing to do is not guess around about this and that.
The thing to do is find the bug and fix it.
It's tricky with asynchronous apps that coordinate with message passing. The way I handle jobs like that is to generate a detailed time-stamped log of the message traffic from/to each app. I take those logs and merge them together into a single timeline. Then I study the timeline and look for things that don't work as expected.
This is work. It can take many hours, and you will probably have to repeat it, but you will find the problem.
I assume you're the kind of programmer who will tackle a tough job and see it through.
HI,
I am normally a C programmer.
I do regularly debug C programs on unix environment using tools like gdb,dbx.
i have never done debugging of big applications of C++.
Is that much different from how we debug in C.
theoretically i am quite good in C++ but have never got a chance to debug C++ programs.
I am also not sure about what kind of technical problems we face in c++ which will lead a developer to switch on the debugger for finding out the problem.
what are the common issues we face in C++ which will make debugger to be started
what are the challenges that a c programmer might face while debugging a C++ program?
Is it difficult and complex when compared to C?
It is basically the same.
Just remember when setting break points manually you need to fully qualify the method name with both the namespace(s) and class (As a resul i someti es find it easier to use line numbers to define break points)
Don't forget that calls to destructors are invisible in the source, but you can still step into them at the end of a block.
A few minor differences:
When typing a full-qualified symbol such as foo::bar::fum(args) in the gdb shell you have to start with a single quote for gdb to recognize it and calculate completions.
As others have said, library templates expose their internals in the debugger. You can poke around in std::vector pretty easily, but poking through std::map may not be a wise way to spend your time.
The aggressive and abundant inlining common in C++ programs can make a single line of code have seemingly endless steps. Things like shared_ptr can be particularly annoying because every access to the pointer expands inline to the template internals. You never really get to used it.
If you've got a ton of overloaded symbol names, selecting which one you want from the readline completion can be unpleasant. (Which "foo" did you want? All of them? Just these two?)
GDB can be used to debug C++ as well, so if you have an understanding of how C++ works (and understand problems that can stem from the object-oriented side of things), then you shouldn't have all that much trouble (at least, not much more than you would debugging a C program). I think...
Quite a few issues really, but it also depends on the debugger you are using, its versioning etc:
Accessing individual members of templatized class is not easy
Exception handling is a problem -- i have seen debuggers doing a better job with setjmp/longjmp
Setting breakpoints with something like obj1 == obj2, where these are not POD types may not work
The good thing that I like about debuggers is that to access private/protected class members I don't have to call get routines; just [obj-name].[var-name] is good enough.
Arpan
GDB has had a rocky past with regard to debugging c++. For a while it couldn't efficiently break inside constructors/destructors.
Also stl container were netoriously difficult to inspect in gdb. std::string was painful but generally workable. std::map was so difficult, that I generally added print statements unless there was no other way.
The constructor/destructor problem has been fixed for a few years.
The stl support got fixed in gdb 7.0.
You might still have issues with boost's libraries. I at time had difficulty getting gdb to give me asses to the contents of a shared_ptr.
So I guess debugging your own C++ isn't really that difficult, it's debugging 3rd party classes and template code that could be a problem.
C++ objects might be sometimes harder to analyze. Also as data is sometimes nested in several classes (across several layers) it might take some time to "unfold" it (as already said by others in this thread). Its hard to generally say so, as it depends very much on C++ features used and programming style and complexity of the problem to analyze (actually that is language independent).
IMO: if someone finds himselfself in the need to debug very often he should reconsider his programming style.
Usually for me it is all about error handling at the end. If a program behaves unexpected your error logs should indicate enough information to reconstruct what happened at any stage.
This also gives you the benefit that you can "debug" problems offline later once your program gets shipped to end users.
I have a fairly complex (approx 200,000 lines of C++ code) application that has decided to crash, although it crashes a little differently on a couple of different systems. The trick is that it doesn't crash or trap out in debugger. It only crashes when the application .EXE is run independently (either the debug EXE or the release EXE - both behave the same way). When it crashes in the debug EXE, and I get it to start debugging, the call stack is buried down into the windows/MFC part of things, and isn't reflecting any of my code. Perhaps I'm seeing a stack corruption of some sort, but I'm just not sure at the moment. My question is more general - it's about tools and techniques.
I'm an old programmer (C and assembly language days), and a relative newcomer (couple/few years) to C++ and Visual Studio (2003 for this projecT).
Are there tricks or techniques anyone's had success with in tracking down crashing issues when you cannot make the software crash in a debugger session? Stuff like permission issues, for example?
The only thing I've thought of is to start plugging in debug/status messages to a logfile, but that's a long, hard way to go. Been there, done that. Any better suggestions? Am I missing some tools that would help? Is VS 2008 better for this kind of thing?
Thanks for any guidance. Some very smart people here (you know who you are!).
cheers.
lint.
C/C++ Free alternative to Lint?
I've not done C++ professionally for over 10 years, but back in the day I used Rational PurifyPlus, which will be a good start, as is BoundsChecker (if it still exists!) These products find out of bounds accesses, corrupted memory, corrupted stack and other problems that can go undetected until "boom" and then you have no idea where you are.
I would try these first. If that fails, then you can start typing in logging statements.
If the debugger mitigates the crash, this can be for these reasons:
memory corruption: under a debug build memory is allocated with space before an after, so rogue writes may not corrupt under a debug session
timing and multi-threading: the debugger alters timing of threads and can make tricky multi-threaded problems hard to nail down.
If it's memory corruption, a memory tracking/diagnostic tool (I used to use BoundsChecker to great effect in the good old days of C++) may help you to locate and fix the cause in minutes, where any other technique coud take days or even months.
For other cases, you've suggested another approach yourself: a sometimes labour-intensive but very effective approach to getting a "real" stack trace is to simply use printf - a vastly underrated debugging tool available in every environment. If you have a rough idea you can straddle the crash area with only a few log messages to narrow down the location, and then add more as you home in on the problem area. This can often unearth enough clues that you can isolate the cause of the crash in a few minutes, even though it can seem like a lot of work and perhaps a hopeless cause before you start.
edit:
Also, if you have the application under source control, then get a historical version from when you think it was working, and then do a binary chop between that date and "now" to isolate when the issue began to occur. This can often narrow down a bug to the precise checkin that introduced the bug, and if you're lucky it will point you at a few lines of code. (If you're unlucky the bug won't be so easily repeatable, or you'll narrow it down to a 500-file checkin where a major refactoring or similar took place)
Get the debugging tool kit from MS ( http://www.microsoft.com/whdc/devtools/debugging/default.mspx ).
Set adplus up for crash mode monitoring ( http://www.microsoft.com/whdc/devtools/debugging/default.mspx ).
This should get you a crash dump when the app crashes. Load the dump up in WindDbg from the debugging toolkit and analyze using that. It is a painful, but very powerful, process to anaylyze out-of-debugger crashes.
There are quite a few resources around for using WinDbg - a good book on general Windows unmanaged debugging and the tools in the debugging kits is: http://www.amazon.com/Advanced-Windows-Debugging-ebook/dp/B000XPNUMW
I couldn't recommend more the blog of Mark Rusinovich. Absolutely brilliant guy from whom you can learn a whole bunch of debugging techniques for windows and many more. Especially try read some of the "The Case of" series! Amazing stuff!
For example take a look at this case he had investigated - a crash of IE. He shows how to capture the stack of the failing thread and many more interesting stuff. His main tools are windows debugging tools and also his sysinternals tools!
Enough said. Go read it!
Also I would recommend the book: Windows Internals 5. Again by Mark and company.
Might be that you have a too big object on the stack...
Explainations (from comments):
I gives this answer because that's the only case I've seen that a debuger (VS or CodeWarrior) couldn't catch and seeemed mysterious. Most of the time, that was the big application object that was defined on the stack in the main() function, and having members not allocated on the heap. Just calling new to instantiate the object fixed the obscure problem. Didn't need to get a specific tool for that in the end.
My experience is that sometime indeed program launched by the debugger (release or debug mode) don't crash as they do when launch on their own.
But I don't recall a case when the very same program launch on it's own, and then attached and continued through a debugger don't reproduce the crash.
An other and better approach if the crash doesn't always happens, would be to be able to produce a minidump (equivalent of unix coredump) and do a postmortem analysis,
there are plenty of tools on windows to do that, for example look at:
http://www.codeproject.com/KB/debug/postmortemdebug_standalone1.aspx?df=100&forumid=3419&exp=0&select=1114393
(perhaps someone may have a better link that this one).
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
So far, I've only used Rational Quantify. I've heard great things about Intel's VTune, but have never tried it!
Edit: I'm mostly looking for software that will instrument the code, as I guess that's about the only way to get very fine results.
See also:
What are some good profilers for native C++ on Windows?
For linux development (although some of these tools might work on other platforms). These are the two big names I know of, there's plenty of other smaller ones that haven't seen active development in a while.
Valgrind
TAU - Tuning and Analysis Utilities
For Linux:
Google Perftools
Faster than valgrind (yet, not so fine grained)
Does not need code instrumentation
Nice graphical output (--> kcachegrind)
Does memory-profiling, cpu-profiling, leak-checking
IMHO, sampling using a debugger is the best method. All you need is an IDE or debugger that lets you halt the program. It nails your performance problems before you even get the profiler installed.
My only experience profiling C++ code is with AQTime by AutomatedQA (now SmartBear Software). It has several types of profilers built in (performance, memory, Windows handles, exception tracing, static analysis, etc.), and instruments the code to get the results.
I enjoyed using it - it was always fun to find those spots where a small change in code could make a dramatic improvement in performance.
I have never done profiling before. Yesterday I programmed a ProfilingTimer class with a static timetable (a map<std::string, long long>) for time storage.
The constructor stores the starting tick, and the destructor calculates the elapsed time and adds it to the map:
ProfilingTimer::ProfilingTimer(std::string name)
: mLocalName(name)
{
sNestedName += mLocalName;
sNestedName += " > ";
if(sTimetable.find(sNestedName) == sTimetable.end())
sTimetable[sNestedName] = 0;
mStartTick = Platform::GetTimerTicks();
}
ProfilingTimer::~ProfilingTimer()
{
long long totalTicks = Platform::GetTimerTicks() - mStartTick;
sTimetable[sNestedName] += totalTicks;
sNestedName.erase(sNestedName.length() - mLocalName.length() - 3);
}
In every function (or {block}) that I want to profile i need to add:
ProfilingTimer _ProfilingTimer("identifier");
This line is a bit cumbersome to add in all functions I want to profile since I have to guess which functions take a lot of time. But it works well and the print function shows time consumed in %.
(Is anyone else working with any similar "home-made profiling"? Or is it just stupid? But it's fun! Does anyone have improvement suggestions?
Is there some sort of auto-adding a line to all functions?)
I've used Glowcode extensively in the past and have had nothing but positive experiences with it. Its Visual Studio integration is really nice, and it is the most efficient/intuitive profiler that I've ever used (even compared to profilers for managed code).
Obviously, thats useless if your not running on Windows, but the question leaves it unclear to me exactly what your requirements are.
oprofile, without a doubt; its simple, reliable, does the job, and can give all sorts of nice breakdowns of data.
The profiler in Visual Studio 2008 is very good: fast, user friendly, clear and well integrated in the IDE.
For Windows, check out Xperf. It uses sampled profile, has some useful UI, & does not require instrumentation. Quite useful for tracking down performance problems. You can answer questions like:
Who is using the most CPU? Drill down to function name using call stacks.
Who is allocating the most memory?
Who is doing the most registry queries?
Disk writes? etc.
You will be quite surprised when you find the bottlenecks, as they are probably not where you expected!
Since you don't mention the platform you're working on, I'll say cachegrind under Linux. Definitely. It's part of the Valgrind toolset.
http://valgrind.org/info/tools.html
I've never used its sub-feature Callgrind, since most of my code optimization is for inside functions.
Note that there is a frontend KCachegrind available.
For Windows, I've tried AMD Codeanalyst, Intel VTune and the profiler in Visual Studio Team Edition.
Codeanalyst is buggy (crashes frequently) and on my code, its results are often inaccurate. Its UI is unintuitive. For example, to reach the call stack display in the profile results, you have to click the "Processes" tab, then click the EXE filename of your program, then click a toolbar button with the tiny letters "CSS" on it. But it is freeware, so you may as well try it, and it works (with fewer features) without an AMD processor.
VTune ($700) has a terrible user interface IMO; in a large program, it's hard to find the particular call tree you want, and you can only look at one "node" in a program at a time (a function with its immediate callers and callees)--you cannot look at a complete call tree. There is a call graph view, but I couldn't find a way to make the relative execution times appear on the graph. In other words, the functions in the graph look the same regardless of how much time was spent in them--it's as though they totally missed the point of profiling.
Visual Studio's profiler has the best GUI of the three, but for some reason it is unable to collect samples from the majority of my code (samples are only collected for a few functions in my entire C++ program). Also, I couldn't find a price or way to buy it directly; but it comes with my company's MSDN subscription. Visual Studio supports managed, native, and mixed code; I'm not sure about the other two profilers in that regard.
In conclusion, I don't know of a good profiler yet! I'll be sure to check out the other suggestions here.
There are different requirements for profiling. Is instrumented code ok, or do you need to profile optimized code (or even already compiled code)? Do you need line-by-line profile information? Which OS are you running? Do you need to profile shared libraries as well? What about trace into system calls?
Personally, I use oprofile for everything I do, but that might not be the best choice in every case. Vtune and Shark are both excellent as well.
For Windows development, I've been using Software Verification's Performance Validator - it's fast, reasonably accurate, and reasonably priced. Best yet, it can instrument a running process, and lets you turn data collection on and off at runtime, both manually and based on the callstack - great for profiling a small section of a larger program.
I use devpartner for the pc platform.
I have tried Quantify an AQTime, and Quantify won because of its invaluable 'focus on sub tree' and 'delete sub tree' features.
The only sensitive answer is PTU from Intel. Of course its best to use it on an Intel processor and to get even more valuable results at least on a C2D machine as the architecture itself is easier to give back meaningful profiles.
I've used VTune under Windows and Linux for many years with very good results. Later versions have gotten worse, when they outsourced that product to their Russian development crew quality and performance both went down (increased VTune crashes, often 15+ minutes to open an analysis file).
Regarding instrumentation, you may find out that it's less useful than you think. In the kind of applications I've worked on adding instrumentation often slows the product down so much that it doesn't work anymore (true story: start app, go home, come back next day, app still initializing). Also, with non instrumented profiling you can react to live problems. For example, with VTune remote date collector I can start up a sampling session against a live server with hundreds of simultaneous connections that is experiencing performance problems and catch issues that happen in production that I'd never be able to replicate in a test environment.
ElectricFence works nicely for malloc debugging
My favorite tool is Easy Profiler : http://code.google.com/p/easyprofiler/
It's a compile time profiler : the source code must be manually instrumented using a set of routines so to describe the target regions.
However, once the application is run, and measures automatically written to an XML file, it is only a matter of opening the Observer application and doing few clicks on the analysis/compare tools, before you can see the result in a qualitative chart.
Visual studio 2010 profiler under Windows. VTune had a great call graph tool, but it got broken as of Windows Vista/7. I don't know if they fixed it.
Let me give a plug for EQATEC... just what I was looking for... simple to learn and use and gives me the info I need to find the hotspots quickly. I much prefer it to the one built in to Visual Studio (though I haven't tried the VS 2010 one yet, to be fair).
The ability to take snapshots is HUGE. I often get an extra analysis and optimization done while waiting for the real target analysis to run... love it.
Oh, and its base version is free!
http://www.eqatec.com/Profiler/