I've been reading about thread-safe singleton patterns here:
http://en.wikipedia.org/wiki/Singleton_pattern#C.2B.2B_.28using_pthreads.29
And it says at the bottom that the only safe way is to use pthread_once - which isn't available on Windows.
Is that the only way of guaranteeing thread safe initialisation?
I've read this thread on SO:
Thread safe lazy construction of a singleton in C++
And seems to hint at an atomic OS level swap and compare function, which I assume on Windows is:
http://msdn.microsoft.com/en-us/library/ms683568.aspx
Can this do what I want?
Edit: I would like lazy initialisation and for there to only ever be one instance of the class.
Someone on another site mentioned using a global inside a namespace (and he described a singleton as an anti-pattern) - how can it be an "anti-pattern"?
Accepted Answer:
I've accepted Josh's answer as I'm using Visual Studio 2008 - NB: For future readers, if you aren't using this compiler (or 2005) - Don't use the accepted answer!!
Edit:
The code works fine except the return statement - I get an error:
error C2440: 'return' : cannot convert from 'volatile Singleton *' to 'Singleton *'.
Should I modify the return value to be volatile Singleton *?
Edit: Apparently const_cast<> will remove the volatile qualifier. Thanks again to Josh.
A simple way to guarantee cross-platform thread safe initialization of a singleton is to perform it explicitly (via a call to a static member function on the singleton) in the main thread of your application before your application starts any other threads (or at least any other threads that will access the singleton).
Ensuring thread safe access to the singleton is then achieved in the usual way with mutexes/critical sections.
Lazy initialization can also be achieved using a similar mechanism. The usual problem encountered with this is that the mutex required to provide thread-safety is often initialized in the singleton itself which just pushes the thread-safety issue to initialization of the mutex/critical section. One way to overcome this issue is to create and initialize a mutex/critical section in the main thread of your application then pass it to the singleton via a call to a static member function. The heavyweight initialization of the singleton can then occur in a thread-safe manner using this pre-initialized mutex/critical section. For example:
// A critical section guard - create on the stack to provide
// automatic locking/unlocking even in the face of uncaught exceptions
class Guard {
private:
LPCRITICAL_SECTION CriticalSection;
public:
Guard(LPCRITICAL_SECTION CS) : CriticalSection(CS) {
EnterCriticalSection(CriticalSection);
}
~Guard() {
LeaveCriticalSection(CriticalSection);
}
};
// A thread-safe singleton
class Singleton {
private:
static Singleton* Instance;
static CRITICAL_SECTION InitLock;
CRITICIAL_SECTION InstanceLock;
Singleton() {
// Time consuming initialization here ...
InitializeCriticalSection(&InstanceLock);
}
~Singleton() {
DeleteCriticalSection(&InstanceLock);
}
public:
// Not thread-safe - to be called from the main application thread
static void Create() {
InitializeCriticalSection(&InitLock);
Instance = NULL;
}
// Not thread-safe - to be called from the main application thread
static void Destroy() {
delete Instance;
DeleteCriticalSection(&InitLock);
}
// Thread-safe lazy initializer
static Singleton* GetInstance() {
Guard(&InitLock);
if (Instance == NULL) {
Instance = new Singleton;
}
return Instance;
}
// Thread-safe operation
void doThreadSafeOperation() {
Guard(&InstanceLock);
// Perform thread-safe operation
}
};
However, there are good reasons to avoid the use of singletons altogether (and why they are sometimes referred to as an anti-pattern):
They are essentially glorified global variables
They can lead to high coupling between disparate parts of an application
They can make unit testing more complicated or impossible (due to the difficultly in swapping real singletons with fake implementations)
An alternative is to make use of a 'logical singleton' whereby you create and initialise a single instance of a class in the main thread and pass it to the objects which require it. This approach can become unwieldy where there are many objects which you want to create as singletons. In this case the disparate objects can be bundled into a single 'Context' object which is then passed around where necessary.
If you are are using Visual C++ 2005/2008 you can use the double checked locking pattern, since "volatile variables behave as fences". This is the most efficient way to implement a lazy-initialized singleton.
From MSDN Magazine:
Singleton* GetSingleton()
{
volatile static Singleton* pSingleton = 0;
if (pSingleton == NULL)
{
EnterCriticalSection(&cs);
if (pSingleton == NULL)
{
try
{
pSingleton = new Singleton();
}
catch (...)
{
// Something went wrong.
}
}
LeaveCriticalSection(&cs);
}
return const_cast<Singleton*>(pSingleton);
}
Whenever you need access to the singleton, just call GetSingleton(). The first time it is called, the static pointer will be initialized. After it's initialized, the NULL check will prevent locking for just reading the pointer.
DO NOT use this on just any compiler, as it's not portable. The standard makes no guarantees on how this will work. Visual C++ 2005 explicitly adds to the semantics of volatile to make this possible.
You'll have to declare and initialize the CRITICAL SECTION elsewhere in code. But that initialization is cheap, so lazy initialization is usually not important.
While I like the accepted solution, I just found another promising lead and thought I should share it here: One-Time Initialization (Windows)
You can use an OS primitive such as mutex or critical section to ensure thread safe initialization however this will incur an overhead each time your singleton pointer is accessed (due to acquiring a lock). It's also non portable.
There is one clarifying point you need to consider for this question. Do you require ...
That one and only one instance of a class is ever actually created
Many instances of a class can be created but there should only be one true definitive instance of the class
There are many samples on the web to implement these patterns in C++. Here's a Code Project Sample
The following explains how to do it in C#, but the exact same concept applies to any programming language that would support the singleton pattern
http://www.yoda.arachsys.com/csharp/singleton.html
What you need to decide is wheter you want lazy initialization or not. Lazy initialization means that the object contained inside the singleton is created on the first call to it
ex :
MySingleton::getInstance()->doWork();
if that call isnt made until later on, there is a danger of a race condition between the threads as explained in the article. However, if you put
MySingleton::getInstance()->initSingleton();
at the very beginning of your code where you assume it would be thread safe, then you are no longer lazy initializing, you will require "some" more processing power when your application starts. However it will solve a lot of headaches about race conditions if you do so.
If you are looking for a more portable, and easier solution, you could turn to boost.
boost::call_once can be used for thread safe initialization.
Its pretty simple to use, and will be part of the next C++0x standard.
The question does not require the singleton is lazy-constructed or not.
Since many answers assume that, I assume that for the first phrase discuss:
Given the fact that the language itself is not thread-awareness, and plus the optimization technique, writing a portable reliable c++ singleton is very hard (if not impossible), see "C++ and the Perils of Double-Checked Locking" by Scott Meyers and Andrei Alexandrescu.
I've seen many of the answer resort to sync object on windows platform by using CriticalSection, but CriticalSection is only thread-safe when all the threads is running on one single processor, today it's probably not true.
MSDN cite: "The threads of a single process can use a critical section object for mutual-exclusion synchronization. ".
And http://msdn.microsoft.com/en-us/library/windows/desktop/ms682530(v=vs.85).aspx
clearify it further:
A critical section object provides synchronization similar to that provided by a mutex object, except that a critical section can be used only by the threads of a single process.
Now, if "lazy-constructed" is not a requirement, the following solution is both cross-module safe and thread-safe, and even portable:
struct X { };
X * get_X_Instance()
{
static X x;
return &x;
}
extern int X_singleton_helper = (get_X_instance(), 1);
It's cross-module-safe because we use locally-scoped static object instead of file/namespace scoped global object.
It's thread-safe because: X_singleton_helper must be assigned to the correct value before entering main or DllMain It's not lazy-constructed also because of this fact), in this expression the comma is an operator, not punctuation.
Explicitly use "extern" here to prevent compiler optimize it out(Concerns about Scott Meyers article, the big enemy is optimizer.), and also make static-analyze tool such as pc-lint keep silent. "Before main/DllMain" is Scott meyer called "single-threaded startup part" in "Effective C++ 3rd" item 4.
However, I'm not very sure about whether compiler is allowed to optimize the call the get_X_instance() out according to the language standard, please comment.
There are many ways to do thread safe Singleton* initialization on windows. In fact some of them are even cross-platform. In the SO thread that you linked to, they were looking for a Singleton that is lazily constructed in C, which is a bit more specific, and can be a bit trickier to do right, given the intricacies of the memory model you are working under.
which you should never use
Related
Is the following implementation, using lazy initialization, of Singleton (Meyers' Singleton) thread safe?
static Singleton& instance()
{
static Singleton s;
return s;
}
If not, why and how to make it thread safe?
In C++11, it is thread safe. According to the standard, §6.7 [stmt.dcl] p4:
If control enters
the declaration concurrently while the variable is being initialized, the concurrent execution shall wait for completion of the initialization.
GCC and VS support for the feature (Dynamic Initialization and Destruction with Concurrency, also known as Magic Statics on MSDN) is as follows:
Visual Studio: supported since Visual Studio 2015
GCC: supported since GCC 4.3
Thanks to #Mankarse and #olen_gam for their comments.
In C++03, this code wasn't thread safe. There is an article by Meyers called "C++ and the Perils of Double-Checked Locking" which discusses thread safe implementations of the pattern, and the conclusion is, more or less, that (in C++03) full locking around the instantiating method is basically the simplest way to ensure proper concurrency on all platforms, while most forms of double-checked locking pattern variants may suffer from race conditions on certain architectures, unless instructions are interleaved with strategically places memory barriers.
To answer your question about why it's not threadsafe, it's not because the first call to instance() must call the constructor for Singleton s. To be threadsafe this would have to occur in a critical section, and but there's no requirement in the standard that a critical section be taken (the standard to date is completely silent on threads). Compilers often implement this using a simple check and increment of a static boolean - but not in a critical section. Something like the following pseudocode:
static Singleton& instance()
{
static bool initialized = false;
static char s[sizeof( Singleton)];
if (!initialized) {
initialized = true;
new( &s) Singleton(); // call placement new on s to construct it
}
return (*(reinterpret_cast<Singleton*>( &s)));
}
So here's a simple thread-safe Singleton (for Windows). It uses a simple class wrapper for the Windows CRITICAL_SECTION object so that we can have the compiler automatically initialize the CRITICAL_SECTION before main() is called. Ideally a true RAII critical section class would be used that can deal with exceptions that might occur when the critical section is held, but that's beyond the scope of this answer.
The fundamental operation is that when an instance of Singleton is requested, a lock is taken, the Singleton is created if it needs to be, then the lock is released and the Singleton reference returned.
#include <windows.h>
class CritSection : public CRITICAL_SECTION
{
public:
CritSection() {
InitializeCriticalSection( this);
}
~CritSection() {
DeleteCriticalSection( this);
}
private:
// disable copy and assignment of CritSection
CritSection( CritSection const&);
CritSection& operator=( CritSection const&);
};
class Singleton
{
public:
static Singleton& instance();
private:
// don't allow public construct/destruct
Singleton();
~Singleton();
// disable copy & assignment
Singleton( Singleton const&);
Singleton& operator=( Singleton const&);
static CritSection instance_lock;
};
CritSection Singleton::instance_lock; // definition for Singleton's lock
// it's initialized before main() is called
Singleton::Singleton()
{
}
Singleton& Singleton::instance()
{
// check to see if we need to create the Singleton
EnterCriticalSection( &instance_lock);
static Singleton s;
LeaveCriticalSection( &instance_lock);
return s;
}
Man - that's a lot of crap to "make a better global".
The main drawbacks to this implemention (if I didn't let some bugs slip through) is:
if new Singleton() throws, the lock won't be released. This can be fixed by using a true RAII lock object instead of the simple one I have here. This can also help make things portable if you use something like Boost to provide a platform independent wrapper for the lock.
this guarantees thread safety when the Singleton instance is requested after main() is called - if you call it before then (like in a static object's initialization) things might not work because the CRITICAL_SECTION might not be initialized.
a lock must be taken each time an instance is requested. As I said, this is a simple thread safe implementation. If you need a better one (or want to know why things like the double-check lock technique is flawed), see the papers linked to in Groo's answer.
Looking at the next standard (section 6.7.4), it explians how static local initialization is thread safe. So once that section of standard is widely implemented, Meyer's Singleton will be the preferred implementation.
I disagree with many answers already. Most compilers already implement static initialization this way. The one notable exception is Microsoft Visual Studio.
The correct answer depends on your compiler. It can decide to make it threadsafe; it's not "naturallly" threadsafe.
Is the following implementation [...] thread safe?
On most platforms, this is not thread-safe. (Append the usual disclaimer explaining that the C++ standard doesn't know about threads, so, legally, it doesn't say whether it is or not.)
If not, why [...]?
The reason it isn't is that nothing prevents more than one thread from simultaneously executing s' constructor.
how to make it thread safe?
"C++ and the Perils of Double-Checked Locking" by Scott Meyers and Andrei Alexandrescu is a pretty good treatise on the subject of thread-safe singletons.
As MSalters said: It depends on the C++ implementation you use. Check the documentation. As for the other question: "If not, why?" -- The C++ standard doesn't yet mention anything about threads. But the upcoming C++ version is aware of threads and it explicitly states that the initialization of static locals is thread-safe. If two threads call such a function, one thread will perform an initialization while the other will block & wait for it to finish.
I have the following sample C++ code:
class Factory
{
public:
static Factory& createInstance()
{
static Factory fac;
return fac;
}
private:
Factory()
{
//Does something non-trivial
}
};
Let's assume that createInstance is called by two threads at the same time. So will the resulting object be created properly? What happens if the second thread enters the createInstance call when the first thread is in the constructor of Factory?
C++11 and above: local static creation is thread-safe.
The standard guarantees that:
The creation is synchronized.
Should the creation throws an exception, the next time the flow of execution passes the variable definition point, creation will be attempted again.
It is generally implemented with double-checking:
first a thread-local flag is checked, and if set, then the variable is accessed.
if not yet set, then a more expensive synchronized path is taken, and if the variable is created afterward, the thread-local flag is set.
C++03 and C++98: the standard knows no thread.
There are no threads as far as the Standard is concerned, and therefore there is no provision in the Standard regarding synchronization across threads.
However some compilers implement more than the standard mandates, either in the form of extensions or by giving stronger guarantees, so check out for the compilers you're interested in. If they are good quality ones, chances are that they will guarantee it.
Finally, it might not be necessary for it to be thread-safe. If you call this method before creating any thread, then you ensures that it will be correctly initialized before the real multi-threading comes into play, and you'll neatly side-step the issue.
Looking at this page, I'd say that this is not thread-safe, because the constructor could get called multiple times before the variable is finally assigned. An InterlockedCompareExchange() might be needed, where you create a local copy of the variable, then atomically assign the pointer to a static field via the interlocked function, if the static variable is null.
Of course it's thread safe! Unless you are a complete lunatic and spawn threads from constructors of static objects, you won't have any threads until after main() is called, and the createInstance method is just returning a reference to an already constructed object, there's no way this can fail. ISO C++ guarantees that the object will be constructed before the first use after main() is called: there's no assurance that will be before main is called, but is has to be before the first use, and so all systems will perform the initialisation before main() is called. Of course ISO C++ doesn't define behaviour in the presence of threads or dynamic loading, but all compilers for host level machines provide this support and will try to preserve the semantics specified for singly threaded statically linked code where possible.
The instantiation (first call) itself is threadsafe.
However, subsequent access will not be, in general. For instance, suppose after instantiation, one thread calls a mutable Factory method and another calls some accessor method in Factory, then you will be in trouble.
For example, if your factory keeps a count of the number of instances created, you will be in trouble without some kind of mutex around that variable.
However, if Factory is truly a class with no state (no member variables), then you will be okay.
Is the following implementation, using lazy initialization, of Singleton (Meyers' Singleton) thread safe?
static Singleton& instance()
{
static Singleton s;
return s;
}
If not, why and how to make it thread safe?
In C++11, it is thread safe. According to the standard, §6.7 [stmt.dcl] p4:
If control enters
the declaration concurrently while the variable is being initialized, the concurrent execution shall wait for completion of the initialization.
GCC and VS support for the feature (Dynamic Initialization and Destruction with Concurrency, also known as Magic Statics on MSDN) is as follows:
Visual Studio: supported since Visual Studio 2015
GCC: supported since GCC 4.3
Thanks to #Mankarse and #olen_gam for their comments.
In C++03, this code wasn't thread safe. There is an article by Meyers called "C++ and the Perils of Double-Checked Locking" which discusses thread safe implementations of the pattern, and the conclusion is, more or less, that (in C++03) full locking around the instantiating method is basically the simplest way to ensure proper concurrency on all platforms, while most forms of double-checked locking pattern variants may suffer from race conditions on certain architectures, unless instructions are interleaved with strategically places memory barriers.
To answer your question about why it's not threadsafe, it's not because the first call to instance() must call the constructor for Singleton s. To be threadsafe this would have to occur in a critical section, and but there's no requirement in the standard that a critical section be taken (the standard to date is completely silent on threads). Compilers often implement this using a simple check and increment of a static boolean - but not in a critical section. Something like the following pseudocode:
static Singleton& instance()
{
static bool initialized = false;
static char s[sizeof( Singleton)];
if (!initialized) {
initialized = true;
new( &s) Singleton(); // call placement new on s to construct it
}
return (*(reinterpret_cast<Singleton*>( &s)));
}
So here's a simple thread-safe Singleton (for Windows). It uses a simple class wrapper for the Windows CRITICAL_SECTION object so that we can have the compiler automatically initialize the CRITICAL_SECTION before main() is called. Ideally a true RAII critical section class would be used that can deal with exceptions that might occur when the critical section is held, but that's beyond the scope of this answer.
The fundamental operation is that when an instance of Singleton is requested, a lock is taken, the Singleton is created if it needs to be, then the lock is released and the Singleton reference returned.
#include <windows.h>
class CritSection : public CRITICAL_SECTION
{
public:
CritSection() {
InitializeCriticalSection( this);
}
~CritSection() {
DeleteCriticalSection( this);
}
private:
// disable copy and assignment of CritSection
CritSection( CritSection const&);
CritSection& operator=( CritSection const&);
};
class Singleton
{
public:
static Singleton& instance();
private:
// don't allow public construct/destruct
Singleton();
~Singleton();
// disable copy & assignment
Singleton( Singleton const&);
Singleton& operator=( Singleton const&);
static CritSection instance_lock;
};
CritSection Singleton::instance_lock; // definition for Singleton's lock
// it's initialized before main() is called
Singleton::Singleton()
{
}
Singleton& Singleton::instance()
{
// check to see if we need to create the Singleton
EnterCriticalSection( &instance_lock);
static Singleton s;
LeaveCriticalSection( &instance_lock);
return s;
}
Man - that's a lot of crap to "make a better global".
The main drawbacks to this implemention (if I didn't let some bugs slip through) is:
if new Singleton() throws, the lock won't be released. This can be fixed by using a true RAII lock object instead of the simple one I have here. This can also help make things portable if you use something like Boost to provide a platform independent wrapper for the lock.
this guarantees thread safety when the Singleton instance is requested after main() is called - if you call it before then (like in a static object's initialization) things might not work because the CRITICAL_SECTION might not be initialized.
a lock must be taken each time an instance is requested. As I said, this is a simple thread safe implementation. If you need a better one (or want to know why things like the double-check lock technique is flawed), see the papers linked to in Groo's answer.
Looking at the next standard (section 6.7.4), it explians how static local initialization is thread safe. So once that section of standard is widely implemented, Meyer's Singleton will be the preferred implementation.
I disagree with many answers already. Most compilers already implement static initialization this way. The one notable exception is Microsoft Visual Studio.
The correct answer depends on your compiler. It can decide to make it threadsafe; it's not "naturallly" threadsafe.
Is the following implementation [...] thread safe?
On most platforms, this is not thread-safe. (Append the usual disclaimer explaining that the C++ standard doesn't know about threads, so, legally, it doesn't say whether it is or not.)
If not, why [...]?
The reason it isn't is that nothing prevents more than one thread from simultaneously executing s' constructor.
how to make it thread safe?
"C++ and the Perils of Double-Checked Locking" by Scott Meyers and Andrei Alexandrescu is a pretty good treatise on the subject of thread-safe singletons.
As MSalters said: It depends on the C++ implementation you use. Check the documentation. As for the other question: "If not, why?" -- The C++ standard doesn't yet mention anything about threads. But the upcoming C++ version is aware of threads and it explicitly states that the initialization of static locals is thread-safe. If two threads call such a function, one thread will perform an initialization while the other will block & wait for it to finish.
I remember reading that static variables declared inside methods is not thread-safe. (See What about the Meyer's singleton? as mentioned by Todd Gardner)
Dog* MyClass::BadMethod()
{
static Dog dog("Lassie");
return &dog;
}
My library generates C++ code for end-users to compile as part of their application. The code it generates needs to initialize static variables in a thread-safe cross-platform manner. I'd like to use boost::call_once to mutex the variable initialization but then end-users are exposed to the Boost dependency.
Is there a way for me to do this without forcing extra dependencies on end-users?
You are correct that static initialization like that isn't thread safe (here is an article discussing what the compiler will turn it into)
At the moment, there's no standard, thread safe, portable way to initialize static singletons. Double checked locking can be used, but you need potentially non-portable threading libraries (see a discussion here).
Here's a few options if thread safety is a must:
Don't be Lazy (loaded): Initialize during static initialization. It could be a problem if another static calls this function in it's constructor, since the order of static initialization is undefined(see here).
Use boost (as you said) or Loki
Roll your
own singleton on your supported platforms
(should probably be avoided unless
you are a threading expert)
Lock a mutex everytime you need access. This could be very slow.
Example for 1:
// in a cpp:
namespace {
Dog dog("Lassie");
}
Dog* MyClass::BadMethod()
{
return &dog;
}
Example for 4:
Dog* MyClass::BadMethod()
{
static scoped_ptr<Dog> pdog;
{
Lock l(Mutex);
if(!pdog.get())
pdog.reset(new Dog("Lassie"));
}
return pdog.get();
}
Not sure whether this is what you mean or not, but you can remove the boost dependency on POSIX systems by calling pthread_once instead. I guess you'd have to do something different on Windows, but avoiding that is exactly why boost has a thread library in the first place, and why people pay the price of depending on it.
Doing anything "thread-safely" is inherently bound up with your threads implementation. You have to depend on something, even if it's only the platform-dependent memory model. It is simply not possible in pure C++03 to assume anything at all about threads, which are outside the scope of the language.
One way you could do it that does not require a mutex for thread safety is to make the singleton a file static, rather than function static:
static Dog dog("Lassie");
Dog* MyClass::BadMethod()
{
return &dog;
}
The Dog instance will be initialised before the main thread runs. File static variables have a famous issue with the initialisation order, but as long as the Dog does not rely on any other statics defined in another translation unit, this should not be of concern.
The only way I know of to guarantee you won't have threading issues with non-protected resources like your "static Dog" is to make it a requirement that they're all instantiated before any threads are created.
This could be as simple as just documenting that they have to call a MyInit() function in the main thread before doing anything else. Then you construct MyInit() to instantiate and destroy one object of each type that contains one of those statics.
The only other alternative is to put another restriction on how they can use your generated code (use Boost, Win32 threads, etc). Either of those solutions are acceptable in my opinion - it's okay to generate rules that they must follow.
If they don't follow the rules as set out by your documentation, then all bets are off. The rule that they must call an initialization function or be dependent on Boost is not unreasonable to me.
AFAIK, the only time this has been done safely and without mutexes or prior initialisation of global instances is in Matthew Wilson's Imperfect C++, which discusses how to do this using a "spin mutex". I'm not near to my copy of it, so can't tell you any more precisely at this time.
IIRC, there are some examples of the use of this inside the STLSoft libraries, though I can't remember which components at this time.
This question already has answers here:
Is Meyers' implementation of the Singleton pattern thread safe?
(6 answers)
Closed 4 years ago.
I've seen implementations of Singleton patterns where instance variable was declared as static variable in GetInstance method. Like this:
SomeBaseClass &SomeClass::GetInstance()
{
static SomeClass instance;
return instance;
}
I see following positive sides of this approach:
The code is simpler, because it's compiler who responsible for creating this object only when GetInstance called for the first time.
The code is safer, because there is no other way to get reference to instance, but with GetInstance method and there is no other way to change instance, but inside GetInstance method.
What are the negative sides of this approach (except that this is not very OOP-ish) ? Is this thread-safe?
In C++11 it is thread safe:
§6.7 [stmt.dcl] p4 If control enters the declaration concurrently while the variable is being initialized, the concurrent execution shall wait for completion of the initialization.
In C++03:
Under g++ it is thread safe.
But this is because g++ explicitly adds code to guarantee it.
One problem is that if you have two singletons and they try and use each other during construction and destruction.
Read this:
Finding C++ static initialization order problems
A variation on this problem is if the singleton is accessed from the destructor of a global variable. In this situation the singleton has definitely been destroyed, but the get method will still return a reference to the destroyed object.
There are ways around this but they are messy and not worth doing. Just don't access a singleton from the destructor of a global variable.
A Safer definition but ugly:
I am sure you can add some appropriate macros to tidy this up
SomeBaseClass &SomeClass::GetInstance()
{
#ifdef _WIN32
Start Critical Section Here
#elif defined(__GNUC__) && (__GNUC__ > 3)
// You are OK
#else
#error Add Critical Section for your platform
#endif
static SomeClass instance;
#ifdef _WIN32
END Critical Section Here
#endif
return instance;
}
It is not thread safe as shown. The C++ language is silent on threads so you have no inherent guarantees from the language. You will have to use platform synchronization primitives, e.g. Win32 ::EnterCriticalSection(), to protect access.
Your particular approach would be problematic b/c the compiler will insert some (non-thread safe) code to initialize the static instance on first invocation, most likely it will be before the function body begins execution (and hence before any synchronization can be invoked.)
Using a global/static member pointer to SomeClass and then initializing within a synchronized block would prove less problematic to implement.
#include <boost/shared_ptr.hpp>
namespace
{
//Could be implemented as private member of SomeClass instead..
boost::shared_ptr<SomeClass> g_instance;
}
SomeBaseClass &SomeClass::GetInstance()
{
//Synchronize me e.g. ::EnterCriticalSection()
if(g_instance == NULL)
g_instance = boost::shared_ptr<SomeClass>(new SomeClass());
//Unsynchronize me e.g. :::LeaveCriticalSection();
return *g_instance;
}
I haven't compiled this so it's for illustrative purposes only. It also relies on the boost library to obtain the same lifetime (or there about) as your original example. You can also use std::tr1 (C++0x).
According to specs this should also work in VC++. Anyone know if it does?
Just add keyword volatile.
The visual c++ compiler should then generate mutexes if the doc on msdn is correct.
SomeBaseClass &SomeClass::GetInstance()
{
static volatile SomeClass instance;
return instance;
}
It shares all of the common failings of Singleton implementations, namely:
It is untestable
It is not thread safe (this is trivial enough to see if you imagine two threads entering the function at the same time)
It is a memory leak
I recommend never using Singleton in any production code.