Related
Currently I am implementing a multi-processing application. Different processes seldom share data, instead each process will work on its own pre-divided chunk of data for most of the time. With that said, these processes are pretty independent, except occasionally they communicate for control or feedback purposes, and collecting results in the end.
So my question is, is there any reason I should choose MPI over other inter-process mechanisms? Or is there any reason preventing me from choosing MPI?
I am not sure if on a single node, MPI is efficient enough.
MPI is an interface that let you to communicate between multiple process. When your processes are not communicating together (with the MPI code) and not doing parallelized code, they are not more or less eficient than a standalone process.
MPI is made for high performance, scalability, and portability. Most of the time MPI is used for scientific computing because of it's caracteristics that I enumeratate. It helps scientifics to save time.
The communication interface include function like broadcast, scatter, gather, reduction that help to reduce time of processing. In other communication mechanisme (most of them) you need to think about the efficient part of your communication by yourself.
If you only need a simple communication with two process, and the processing time is not a concern, you should use the inter-process message passing mechanismes of your OS. Sometimes MPI become tricky and difficult if you don't follow the idea for what MPI is made. And if you are juste begining to that, I think it's better for your to begin with OS mechanisms.
Hope that helps
Captain Wise spoke to the efficiency aspect. Consider the maintainability aspect as well.
If you use MPI and your code grows more complex and larger and some day needs to run on more than one node, then your porting and tuning effort might be as simple as "run on more than one node" -- presuming, of course, that your MPI implementation is clever enough to skip the networking stack when a message is passed on the same node.
If you want to show your code to a future collaborator, its likely they will know MPI if you are at all affiliated with HPC environments, and your possible future collaborator can just dive in and help you. The pool of Chapel or UPC users is a bit smaller (though if you use Chapel, Brad Chamberlain will work insanely hard to ensure you have a good experience)
For using all the cores of a quad core processor what do I need to change in my code is it about adding support of multi threading or is it which is taken care by OS itself. I am having FreeBSD and language I am using is C++. I want to give complete CPU cycles to my application at least 90%.
You need some form of parallelism. Multi-threading or multi-processing would be fine.
Usually, multiple threads are easier to handle (since they can access shared data) than multiple processes. However, usually, multiple threads are harder to handle (since they access shared data) than multiple processes.
And, yes, I wrote this deliberately.
If you have a SIMD scenario, Ninefingers' suggestion to look at OpenMP is also very good. (If you don't know what SIMD means, see Ninefingers' helpful comment below.)
For multi-threaded applications in C++ may I suggest Boost.Thread which should help you access the full potential of your quad-core machine.
As for changing your code, you might want to consider making things as immutable as possible. State transitions between threads are much more difficult to debug. There a plethora of things that could potentially happen in unexpected ways. See this SO thread.
Another option not mentioned here, threading aside, is the use of OpenMP available via the -fopenmp and the libgomp library, both of which I have installed on my FreeBSD 8 system.
These give you #pragma directives to parallelise certain loops, while statements etc i.e. the bits you can parallelise. It takes care of threading and cpu association for you. Note it is a general solution and therefore might not be the optimum way to parallelise, but it will allow you to parallelise certain routines.
Take a look at this: https://computing.llnl.gov/tutorials/openMP/
As for using threads/processes themselves, certain routines and ways of working lend themselves to it. Can you break tasks out into such a way? Does it make sense to fork() your process or create a thread? If so, do so, but if not, don't try to force your application to be multi-threaded just because. An example I usually give is the greatest common divisor algorithm - it relies on the step before all the time in the traditional implementation therefore is difficult to make parallel.
Also note it is well known that for certain algorithms, parallelisation is actually slower for small values of whatever you are doing in parallel, because although the jobs complete more quickly, the associated time cost of forking and joining (be that threads or processes) actually pushes the time above that of a serial implementation.
I think your only option is to run several threads. If your application is single-threaded, then it will only run on one of the cores (at a time), but if you have more threads, they can run simultaneously.
You need to add support to your application for parallelism through the use of Threading.
Once you have support for parallelism, it's up to the OS to assign your threads to CPU cores.
The first thing I think you should look at is whether your application and its algorithms are suited to be executed in parellel (or possibly as a set of serial tasks that can be processed independently). If this is not the case, it will be difficult to multithread it or break it up into parallel processes, and you may need to look into modifying the way it works.
Once you have established that you will be able to benefit from parallel processing you have the option to either use several processes or threads. The choice depends a lot on the nature of your application and how independent the parallel processes can be. It is easier to coordinate and share data between threads since they are in the same process, but also quite a bit more challenging to develop and debug.
Boost.Thread is a good library if you decide to go down the multi-threaded route.
I want to give complete CPU cycles to my application at least 90%.
Why? Your chip's not hot enough?
Seriously, it takes world experts dozens if not hundreds of hours to parallelize and load-balance an application so that it uses 90% of all four cores. Your CPU is already paid for and it costs the same whether you use it or not. (Actually, it costs slightly less to run, electrically speaking, if you don't use it.) How much is your time worth? How many hours are you willing to invest in order to make more effective use of a resource that may have cost you $300 and is probably sitting idle most of the time anyway?
It's possible to get speedups through parallelism, but it's expensive in human time. You need a good reason to justify it. (Learning how is a good enough reason.)
All the good books I know on parallel programming are for languages other than C++, and for good reason. If you want interesting stuff on parallelism check out Implicit Parallel Programmin in pH or Concurrent Programming in ML or the Fortress Project.
I'm currently working on a wireless networking application in C++ and it's coming to a point where I'm going to want to multi-thread pieces of software under one process, rather than have them all in separate processes. Theoretically, I understand multi-threading, but I've yet to dive in practically.
What should every programmer know when writing multi-threaded code in C++?
I would focus on design the thing as much as partitioned as possible so you have the minimal amount of shared things across threads. If you make sure you don't have statics and other resources shared among threads (other than those that you would be sharing if you designed this with processes instead of threads) you would be fine.
Therefore, while yes, you have to have in mind concepts like locks, semaphores, etc, the best way to tackle this is to try to avoid them.
I am no expert at all in this subject. Just some rule of thumb:
Design for simplicity, bugs really are hard to find in concurrent code even in the simplest examples.
C++ offers you a very elegant paradigm to manage resources(mutex, semaphore,...): RAII. I observed that it is much easier to work with boost::thread than to work with POSIX threads.
Build your code as thread-safe. If you don't do so, your program could behave strangely
I am exactly in this situation: I wrote a library with a global lock (many threads, but only one running at a time in the library) and am refactoring it to support concurrency.
I have read books on the subject but what I learned stands in a few points:
think parallel: imagine a crowd passing through the code. What happens when a method is called while already in action ?
think shared: imagine many people trying to read and alter shared resources at the same time.
design: avoid the problems that points 1 and 2 can raise.
never think you can ignore edge cases, they will bite you hard.
Since you cannot proof-test a concurrent design (because thread execution interleaving is not reproducible), you have to ensure that your design is robust by carefully analyzing the code paths and documenting how the code is supposed to be used.
Once you understand how and where you should bottleneck your code, you can read the documentation on the tools used for this job:
Mutex (exclusive access to a resource)
Scoped Locks (good pattern to lock/unlock a Mutex)
Semaphores (passing information between threads)
ReadWrite Mutex (many readers, exclusive access on write)
Signals (how to 'kill' a thread or send it an interrupt signal, how to catch these)
Parallel design patterns: boss/worker, producer/consumer, etc (see schmidt)
platform specific tools: openMP, C blocks, etc
Good luck ! Concurrency is fun, just take your time...
You should read about locks, mutexes, semaphores and condition variables.
One word of advice, if your app has any form of UI make sure you always change it from the UI thread. Most UI toolkits/frameworks will crash (or behave unexpectedly) if you access them from a background thread. Usually they provide some form of dispatching method to execute some function in the UI thread.
Never assume that external APIs are threadsafe. If it is not explicitly stated in their docs, do not call them concurrently from multiple threads. Instead, limit your use of them to a single thread or use a mutex to prevent concurrent calls (this is rather similar to the aforementioned GUI libraries).
Next point is language-related. Remember, C++ has (currently) no well-defined approach to threading. The compiler/optimizer does not know if code might be called concurrently. The volatile keyword is useful to prevent certain optimizations (i.e. caching of memory fields in CPU registers) in multi-threaded contexts, but it is no synchronization mechanism.
I'd recommend boost for synchronization primitives. Don't mess with platform APIs. They make your code difficult to port because they have similar functionality on all major platforms, but slightly different detail behaviour. Boost solves these problems by exposing only common functionality to the user.
Furthermore, if there's even the smallest chance that a data structure could be written to by two threads at the same time, use a synchronization primitive to protect it. Even if you think it will only happen once in a million years.
One thing I've found very useful is to make the application configurable with regard to the actual number of threads it uses for various tasks. For example, if you have multiple threads accessing a database, make the number of those threads be configurable via a command line parameter. This is extremely handy when debugging - you can exclude threading issues by setting the number to 1, or force them by setting it to a high number. It's also very handy when working out what the optimal number of threads is.
Make sure you test your code in a single-cpu system and a multi-cpu system.
Based on the comments:-
Single socket, single core
Single socket, two cores
Single socket, more than two cores
Two sockets, single core each
Two sockets, combination of single, dual and multi core cpus
Mulitple sockets, combination of single, dual and multi core cpus
The limiting factor here is going to be cost. Ideally, concentrate on the types of system your code is going to run on.
In addition to the other things mentioned, you should learn about asynchronous message queues. They can elegantly solve the problems of data sharing and event handling. This approach works well when you have concurrent state machines that need to communicate with each other.
I'm not aware of any message passing frameworks tailored to work only at the thread level. I've only seen home-brewed solutions. Please comment if you know of any existing ones.
EDIT:
One could use the lock-free queues from Intel's TBB, either as-is, or as the basis for a more general message-passing queue.
Since you are a beginner, start simple. First make it work correctly, then worry about optimizations. I've seen people try to optimize by increasing the concurrency of a particular section of code (often using dubious tricks), without ever looking to see if there was any contention in the first place.
Second, you want to be able to work at as high a level as you can. Don't work at the level of locks and mutexs if you can using an existing master-worker queue. Intel's TBB looks promising, being slightly higher level than pure threads.
Third, multi-threaded programming is hard. Reduce the areas of your code where you have to think about it as much as possible. If you can write a class such that objects of that class are only ever operated on in a single thread, and there is no static data, it greatly reduces the things that you have to worry about in the class.
A few of the answers have touched on this, but I wanted to emphasize one point:
If you can, make sure that as much of your data as possible is only accessible from one thread at a time. Message queues are a very useful construct to use for this.
I haven't had to write much heavily-threaded code in C++, but in general, the producer-consumer pattern can be very helpful in utilizing multiple threads efficiently, while avoiding the race conditions associated with concurrent access.
If you can use someone else's already-debugged code to handle thread interaction, you're in good shape. As a beginner, there is a temptation to do things in an ad-hoc fashion - to use a "volatile" variable to synchronize between two pieces of code, for example. Avoid that as much as possible. It's very difficult to write code that's bulletproof in the presence of contending threads, so find some code you can trust, and minimize your use of the low-level primitives as much as you can.
My top tips for threading newbies:
If you possibly can, use a task-based parallelism library, Intel's TBB being the most obvious one. This insulates you from the grungy, tricky details and is more efficient than anything you'll cobble together yourself. The main downside is this model doesn't support all uses of multithreading; it's great for exploiting multicores for compute power, less good if you wanted threads for waiting on blocking I/O.
Know how to abort threads (or in the case of TBB, how to make tasks complete early when you decide you didn't want the results after all). Newbies seem to be drawn to thread kill functions like moths to a flame. Don't do it... Herb Sutter has a great short article on this.
Make sure to explicitly know what objects are shared and how they are shared.
As much as possible make your functions purely functional. That is they have inputs and outputs and no side effects. This makes it much simpler to reason about your code. With a simpler program it isn't such a big deal but as the complexity rises it will become essential. Side effects are what lead to thread-safety issues.
Plays devil's advocate with your code. Look at some code and think how could I break this with some well timed thread interleaving. At some point this case will happen.
First learn thread-safety. Once you get that nailed down then you move onto the hard part: Concurrent performance. This is where moving away from global locks is essential. Figuring out ways to minimize and remove locks while still maintaining the thread-safety is hard.
Keep things dead simple as much as possible. It's better to have a simpler design (maintenance, less bugs) than a more complex solution that might have slightly better CPU utilization.
Avoid sharing state between threads as much as possible, this reduces the number of places that must use synchronization.
Avoid false-sharing at all costs (google this term).
Use a thread pool so you're not frequently creating/destroying threads (that's expensive and slow).
Consider using OpenMP, Intel and Microsoft (possibly others) support this extension to C++.
If you are doing number crunching, consider using Intel IPP, which internally uses optimized SIMD functions (this isn't really multi-threading, but is parallelism of a related sorts).
Have tons of fun.
Stay away from MFC and it's multithreading + messaging library.
In fact if you see MFC and threads coming toward you - run for the hills (*)
(*) Unless of course if MFC is coming FROM the hills - in which case run AWAY from the hills.
The biggest "mindset" difference between single-threaded and multi-threaded programming in my opinion is in testing/verification. In single-threaded programming, people will often bash out some half-thought-out code, run it, and if it seems to work, they'll call it good, and often get away with it using it in a production environment.
In multithreaded programming, on the other hand, the program's behavior is non-deterministic, because the exact combination of timing of which threads are running for which periods of time (relative to each other) will be different every time the program runs. So just running a multithreaded program a few times (or even a few million times) and saying "it didn't crash for me, ship it!" is entirely inadequate.
Instead, when doing a multithreaded program, you always should be trying to prove (at least to your own satisfaction) that not only does the program work, but that there is no way it could possibly not work. This is much harder, because instead of verifying a single code-path, you are effectively trying to verify a near-infinite number of possible code-paths.
The only realistic way to do that without having your brain explode is to keep things as bone-headedly simple as you can possibly make them. If you can avoid using multithreading totally, do that. If you must do multithreading, share as little data between threads as possible, and use proper multithreading primitives (e.g. mutexes, thread-safe message queues, wait conditions) and don't try to get away with half-measures (e.g. trying to synchronize access to a shared piece of data using only boolean flags will never work reliably, so don't try it)
What you want to avoid is the multithreading hell scenario: the multithreaded program that runs happily for weeks on end on your test machine, but crashes randomly, about once a year, at the customer's site. That kind of race-condition bug can be nearly impossible to reproduce, and the only way to avoid it is to design your code extremely carefully to guarantee it can't happen.
Threads are strong juju. Use them sparingly.
You should have an understanding of basic systems programing, in particular:
Synchronous vs Asynchronous I/O (blocking vs. non-blocking)
Synchronization mechanisms, such as lock and mutex constructs
Thread management on your target platform
I found viewing the introductory lectures on OS and systems programming here by John Kubiatowicz at Berkeley useful.
Part of my graduate study area relates to parallelism.
I read this book and found it a good summary of approaches at the design level.
At the basic technical level, you have 2 basic options: threads or message passing. Threaded applications are the easiest to get off the ground, since pthreads, windows threads or boost threads are ready to go. However, it brings with it the complexity of shared memory.
Message-passing usability seems mostly limited at this point to the MPI API. It sets up an environment where you can run jobs and partition your program between processors. It's more for supercomputer/cluster environments where there's no intrinsic shared memory. You can achieve similar results with sockets and so forth.
At another level, you can use language type pragmas: the popular one today is OpenMP. I've not used it, but it appears to build threads in via preprocessing or a link-time library.
The classic problem is synchronization here; all the problems in multiprogramming come from the non-deterministic nature of multiprograms, which can not be avoided.
See the Lamport timing methods for a further discussion of synchronizations and timing.
Multithreading is not something that only Ph.D.`s and gurus can do, but you will have to be pretty decent to do it without making insane bugs.
I'm in the same boat as you, I am just starting multi threading for the first time as part of a project and I've been looking around the net for resources. I found this blog to be very informative. Part 1 is pthreads, but I linked starting on the boost section.
I have written a multithreaded server application and a multithreaded shellsort. They were both written in C and use NT's threading functions "raw" that is without any function library in-between to muddle things. They were two quite different experiences with different conclusions to be drawn. High performance and high reliability were the main priorities although coding practices had a higher priority if one of the first two was judged to be threatened in the long term.
The server application had both a server and a client part and used iocps to manage requests and responses. When using iocps it is important never to use more threads than you have cores. Also I found that requests to the server part needed a higher priority so as not to lose any requests unnecessarily. Once they were "safe" I could use lower priority threads to create the server responses. I judged that the client part could have an even lower priority. I asked the questions "what data can't I lose?" and "what data can I allow to fail because I can always retry?" I also needed to be able to interface to the application's settings through a window and it had to be responsive. The trick was that the UI had normal priority, the incoming requests one less and so on. My reasoning behind this was that since I will use the UI so seldom it can have the highest priority so that when I use it it will respond immediately. Threading here turned out to mean that all separate parts of the program in the normal case would/could be running simultaneously but when the system was under higher load, processing power would be shifted to the vital parts due to the prioritization scheme.
I've always liked shellsort so please spare me from pointers about quicksort this or that or blablabla. Or about how shellsort is ill-suited for multithreading. Having said that, the problem I had had to do with sorting a semi-largelist of units in memory (for my tests I used a reverse-sorted list of one million units of forty bytes each. Using a single-threaded shellsort I could sort them at a rate of roughly one unit every two us (microseconds). My first attempt to multithread was with two threads (though I soon realized that I wanted to be able to specify the number of threads) and it ran at about one unit every 3.5 seconds, that is to say SLOWER. Using a profiler helped a lot and one bottleneck turned out to be the statistics logging (i e compares and swaps) where the threads would bump into each other. Dividing up the data between the threads in an efficient way turned out to be the biggest challenge and there is definitley more I can do there such as dividing the vector containing the indeces to the units in cache-line size adapted chunks and perhaps also comparing all indeces in two cache lines before moving to the next line (at least I think there is something I can do there - the algorithms get pretty complicated). In the end, I achieved a rate of one unit every microsecond with three simultaneous threads (four threads about the same, I only had four cores available).
As to the original question my advice to you would be
If you have the time, learn the threading mechanism at the lowest possible level.
If performance is important learn the related mechanisms that the OS provides. Multi-threading by itself is seldom enough to achieve an application's full potential.
Use profiling to understand the quirks of multiple threads working on the same memory.
Sloppy architectural work will kill any app, regardless of how many cores and systems you have executing it and regardless of the brilliance of your programmers.
Sloppy programming will kill any app, regardless of the brilliance of the architectural foundation.
Understand that using libraries lets you reach the development goal faster but at the price of less understanding and (usually) lower performance .
Before giving any advice on do's and dont's about multi-thread programming in C++, I would like to ask the question Is there any particular reason you want to start writing the application in C++?
There are other programming paradigms where you utilize the multi-cores without getting into multi-threaded programming. One such paradigm is functional programming. Write each piece of your code as functions without any side effects. Then it is easy to run it in multiple thread without worrying about synchronization.
I am using Erlang for my development purpose. It has increased by productivity by at least 50%. Code running may not be as fast as the code written in C++. But I have noticed that for most of the back-end offline data processing, speed is not as important as distribution of work and utilizing the hardware as much as possible. Erlang provides a simple concurrency model where you can execute a single function in multiple-threads without worrying about the synchronization issue. Writing multi-threaded code is easy, but debugging that is time consuming. I have done multi-threaded programming in C++, but I am currently happy with Erlang concurrency model. It is worth looking into.
Make sure you know what volatile means and it's uses(which may not be obvious at first).
Also, when designing multithreaded code, it helps to imagine that an infinite amount of processors is executing every single line of code in your application at once. (er, every single line of code that is possible according to your logic in your code.) And that everything that isn't marked volatile the compiler does a special optimization on it so that only the thread that changed it can read/set it's true value and all the other threads get garbage.
As someone in the world of HPC who came from the world of enterprise web development, I'm always curious to see how developers back in the "real world" are taking advantage of parallel computing. This is much more relevant now that all chips are going multicore, and it'll be even more relevant when there are thousands of cores on a chip instead of just a few.
My questions are:
How does this affect your software roadmap?
I'm particularly interested in real stories about how multicore is affecting different software domains, so specify what kind of development you do in your answer (e.g. server side, client-side apps, scientific computing, etc).
What are you doing with your existing code to take advantage of multicore machines, and what challenges have you faced? Are you using OpenMP, Erlang, Haskell, CUDA, TBB, UPC or something else?
What do you plan to do as concurrency levels continue to increase, and how will you deal with hundreds or thousands of cores?
If your domain doesn't easily benefit from parallel computation, then explaining why is interesting, too.
Finally, I've framed this as a multicore question, but feel free to talk about other types of parallel computing. If you're porting part of your app to use MapReduce, or if MPI on large clusters is the paradigm for you, then definitely mention that, too.
Update: If you do answer #5, mention whether you think things will change if there get to be more cores (100, 1000, etc) than you can feed with available memory bandwidth (seeing as how bandwidth is getting smaller and smaller per core). Can you still use the remaining cores for your application?
My research work includes work on compilers and on spam filtering. I also do a lot of 'personal productivity' Unix stuff. Plus I write and use software to administer classes that I teach, which includes grading, testing student code, tracking grades, and myriad other trivia.
Multicore affects me not at all except as a research problem for compilers to support other applications. But those problems lie primarily in the run-time system, not the compiler.
At great trouble and expense, Dave Wortman showed around 1990 that you could parallelize a compiler to keep four processors busy. Nobody I know has ever repeated the experiment. Most compilers are fast enough to run single-threaded. And it's much easier to run your sequential compiler on several different source files in parallel than it is to make your compiler itself parallel. For spam filtering, learning is an inherently sequential process. And even an older machine can learn hundreds of messages a second, so even a large corpus can be learned in under a minute. Again, training is fast enough.
The only significant way I have of exploiting parallel machines is using parallel make. It is a great boon, and big builds are easy to parallelize. Make does almost all the work automatically. The only other thing I can remember is using parallelism to time long-running student code by farming it out to a bunch of lab machines, which I could do in good conscience because I was only clobbering a single core per machine, so using only 1/4 of CPU resources. Oh, and I wrote a Lua script that will use all 4 cores when ripping MP3 files with lame. That script was a lot of work to get right.
I will ignore tens, hundreds, and thousands of cores. The first time I was told "parallel machines are coming; you must get ready" was 1984. It was true then and is true today that parallel programming is a domain for highly skilled specialists. The only thing that has changed is that today manufacturers are forcing us to pay for parallel hardware whether we want it or not. But just because the hardware is paid for doesn't mean it's free to use. The programming models are awful, and making the thread/mutex model work, let alone perform well, is an expensive job even if the hardware is free. I expect most programmers to ignore parallelism and quietly get on about their business. When a skilled specialist comes along with a parallel make or a great computer game, I will quietly applaud and make use of their efforts. If I want performance for my own apps I will concentrate on reducing memory allocations and ignore parallelism.
Parallelism is really hard. Most domains are hard to parallelize. A widely reusable exception like parallel make is cause for much rejoicing.
Summary (which I heard from a keynote speaker who works for a leading CPU manufacturer): the industry backed into multicore because they couldn't keep making machines run faster and hotter and they didn't know what to do with the extra transistors. Now they're desperate to find a way to make multicore profitable because if they don't have profits, they can't build the next generation of fab lines. The gravy train is over, and we might actually have to start paying attention to software costs.
Many people who are serious about parallelism are ignoring these toy 4-core or even 32-core machines in favor of GPUs with 128 processors or more. My guess is that the real action is going to be there.
For web applications it's very, very easy: ignore it. Unless you've got some code that really begs to be done in parallel you can simply write old-style single-threaded code and be happy.
You usually have a lot more requests to handle at any given moment than you have cores. And since each one is handled in its own Thread (or even process, depending on your technology) this is already working in parallel.
The only place you need to be careful is when accessing some kind of global state that requires synchronization. Keep that to a minimum to avoid introducing artificial bottlenecks to an otherwise (almost) perfectly scalable world.
So for me multi-core basically boils down to these items:
My servers have less "CPUs" while each one sports more cores (not much of a difference to me)
The same number of CPUs can substain a larger amount of concurrent users
When the seems to be performance bottleneck that's not the result of the CPU being 100% loaded, then that's an indication that I'm doing some bad synchronization somewhere.
At the moment - doesn't affect it that much, to be honest. I'm more in 'preparation stage', learning about the technologies and language features that make this possible.
I don't have one particular domain, but I've encountered domains like math (where multi-core is essential), data sort/search (where divide & conquer on multi-core is helpful) and multi-computer requirements (e.g., a requirement that a back-up station's processing power is used for something).
This depends on what language I'm working. Obviously in C#, my hands are tied with a not-yet-ready implementation of Parallel Extensions that does seem to boost performance, until you start comparing same algorithms with OpenMP (perhaps not a fair comparison). So on .NET it's going to be an easy ride with some for → Parallel.For refactorings and the like.Where things get really interesting is with C++, because the performance you can squeeze out of things like OpenMP is staggering compared to .NET. In fact, OpenMP surprised me a lot, because I didn't expect it to work so efficiently. Well, I guess its developers have had a lot of time to polish it. I also like that it is available in Visual Studio out-of-the-box, unlike TBB for which you have to pay.As for MPI, I use PureMPI.net for little home projects (I have a LAN) to fool around with computations that one machine can't quite take. I've never used MPI commercially, but I do know that MKL has some MPI-optimized functions, which might be interesting to look at for anyone needing them.
I plan to do 'frivolous computing', i.e. use extra cores for precomputation of results that might or might not be needed - RAM permitting, of course. I also intend to delve into costly algorithms and approaches that most end users' machines right now cannot handle.
As for domains not benefitting from parallellization... well, one can always find something. One thing I am concerned about is decent support in .NET, though regrettably I have given up hope that speeds similar to C++ can be attained.
I work in medical imaging and image processing.
We're handling multiple cores in much the same way we handled single cores-- we have multiple threads already in the applications we write in order to have a responsive UI.
However, because we can now, we're taking strong looks at implementing most of our image processing operations in either CUDA or OpenMP. The Intel Compiler provides a lot of good sample code for OpenMP, and is just a much more mature product than CUDA, and provides a much larger installed base, so we're probably going to go with that.
What we tend to do for expensive (ie, more than a second) operations is to fork that operation off into another process, if we can. That way, the main UI remains responsive. If we can't, or it's just far too inconvenient or slow to move that much memory around, the operation is still in a thread, and then that operation can itself spawn multiple threads.
The key for us is to make sure that we don't hit concurrency bottlenecks. We develop in .NET, which means that UI updates have to be done from an Invoke call to the UI in order to have the main thread update the UI.
Maybe I'm lazy, but really, I don't want to have to spend too much time figuring a lot of this stuff out when it comes to parallelizing things like matrix inversions and the like. A lot of really smart people have spent a lot of time making that stuff fast like nitrous, and I just want to take what they've done and call it. Something like CUDA has an interesting interface for image processing (of course, that's what it's defined for), but it's still too immature for that kind of plug-and-play programming. If I or another developer get a lot of spare time, we might give it a try. So instead, we'll just go with OpenMP to make our processing faster (and that's definitely on the development roadmap for the next few months).
So far, nothing more than more efficient compilation with make:
gmake -j
the -j option allows tasks that don't depend on one another to run in parallel.
I'm developing ASP.NET web applications. There is little possibility to use multicore directly in my code, however IIS already scales well for multiple cores/CPU's by spawning multiple worker threads/processes when under load.
We're having a lot of success with task parallelism in .NET 4 using F#. Our customers are crying out for multicore support because they don't want their n-1 cores idle!
I'm in image processing. We're taking advantage of multicore where possible by processing images in slices doled out to different threads.
I said some of this in answer to a different question (hope this is OK!): there is a concept/methodology called Flow-Based Programming (FBP) that has been around for over 30 years, and is being used to handle most of the batch processing at a major Canadian bank. It has thread-based implementations in Java and C#, although earlier implementations were fiber-based (C++ and mainframe Assembler). Most approaches to the problem of taking advantage of multicore involve trying to take a conventional single-threaded program and figure out which parts can run in parallel. FBP takes a different approach: the application is designed from the start in terms of multiple "black-box" components running asynchronously (think of a manufacturing assembly line). Since the interface between components is data streams, FBP is essentially language-independent, and therefore supports mixed-language applications, and domain-specific languages. Applications written this way have been found to be much more maintainable than conventional, single-threaded applications, and often take less elapsed time, even on single-core machines.
My graduate work is in developing concepts for doing bare-metal multicore work & teaching same in embedded systems.
I'm also working a bit with F# to bring up my high-level multiprocess-able language facilities to speed.
We create the VivaMP code analyzer for error detecting in parallel OpenMP programs.
VivaMP is a lint-like static C/C++ code analyzer meant to indicate errors in parallel programs based on OpenMP technology. VivaMP static analyzer adds much to the abilities of the existing compilers, diagnoses any parallel code which has some errors or is an eventual source of such errors. The analyzer is integrated into VisualStudio2005/2008 development environment.
VivaMP – a tool for OpenMP
32 OpenMP Traps For C++ Developers
I believe that "Cycles are an engineers' best friend".
My company provides a commercial tool for analyzing
and transforming very
large software systems in many computer languages.
"Large" means 10-30 million lines of code.
The tool is the DMS Software Reengineering Toolkit
(DMS for short).
Analyses (and even transformations) on such huge systems
take a long time: our points-to analyzer for C
code takes 90 CPU hours on an x86-64 with 16 Gb RAM.
Engineers want answers faster than that.
Consequently, we implemented DMS in PARLANSE,
a parallel programming language of our own design,
intended to harness small-scale multicore shared
memory systems.
The key ideas behind parlanse are:
a) let the programmer expose parallelism,
b) let the compiler choose which part it can realize,
c) keep the context switching to an absolute minimum.
Static partial orders over computations are
an easy to help achieve all 3; easy to say,
relatively easy to measure costs,
easy for compiler to schedule computations.
(Writing parallel quicksort with this is trivial).
Unfortunately, we did this in 1996 :-(
The last few years have finally been a vindication;
I can now get 8 core machines at Fry's for under $1K
and 24 core machines for about the same price as a small
car (and likely to drop rapidly).
The good news is that DMS is now a fairly mature,
and there are a number of key internal mechanisms
in DMS which take advantage of this, notably
an entire class of analyzers call "attribute grammars",
which we write using a domain-specific language
which is NOT parlanse. DMS compiles these
atrribute grammars into PARLANSE and then they
are executed in parallel. Our C++ front
end uses attribute grammars, and is about 100K
sloc; it is compiled into 800K SLOC of parallel
parlanse code that actually works reliably.
Now (June 2009), we are pretty busy making DMS useful, and
don't always have enough time to harness the parallelism
well. Thus the 90 hour points-to analysis.
We are working on parallelizing that, and
have reasonable hope of 10-20x speedup.
We believe that in the long run, harnessing
SMP well will make workstations far more
friendly to engineers asking hard questions.
As well they should.
Our domain logic is based heavily on a workflow engine and each workflow instance runs off the ThreadPool.
That's good enough for us.
I can now separate my main operating system from my development / install whatever I like os using vitualisation setups with Virtual PC or VMWare.
Dual core means that one CPU runs my host OS, the other runs my development OS with a decent level of performance.
Learning a functional programming language might use multiple cores... costly.
I think it's not really hard to use extra cores. There are some trivialities as web apps that does not need to have any extra care as the web server does its work running the queries in parallel. The questions are for long running algorythms (long is what you call long). These need to be split over smaller domains that does not depend each other, or synchronize the dependencies. A lot of algs can do this, but sometimes horribly different implementations needed (costs again).
So, no silver bullet until you are using imperative programming languages, sorry. Either you need skilled programmers (costly) or you need to turn to an other programming language (costly). Or you may have luck simply (web).
I'm using and programming on a Mac. Grand Central Dispatch for the win. The Ars Technica review of Snow Leopard has a lot of interesting things to say about multicore programming and where people (or at least Apple) are going with it.
I've decided to take advantage of multiple cores in an implementation of the DEFLATE algorithm. MArc Adler did something similar in C code with PIGZ (parallel gzip). I've delivered the philosophical equivalent, but in a managed code library, in DotNetZip v1.9. This is not a port of PIGZ, but a similar idea, implemented independently.
The idea behind DEFLATE is to scan a block of data, look for repeated sequences, build a "dictionary" that maps a short "code" to each of those repeated sequences, then emit a byte stream where each instance of one of the repeated sequences is replaced by a "code" from the dictionary.
Because building the dictionary is CPU intensive, DEFLATE is a perfect candidate for parallelization. i've taken a Map+Reduce type approach, where I divide the incoming uncompressed bytestreeam into a set of smaller blocks (map), say 64k each, and then compress those independently. Then I concatenate the resulting blocks together (reduce). Each 64k block is compressed independently, on its own thread, without regard for the other blocks.
On a dual-core machine, this approach compresses in about 54% of the time of the traditional serial approach. On server-class machines, with more cores available, it can potentially deliver even better results; with no server machine, I haven't tested it personally, but people tell me it's fast.
There's runtime (cpu) overhead associated to the management of multiple threads, runtime memory overhead associated to the buffers for each thead, and data overhead associated to concatenating the blocks. So this approach pays off only for larger bytestreams. In my tests, above 512k, it can pay off. Below that, it is better to use a serial approach.
DotNetZip is delivered as a library. My goal was to make all of this transparent. So the library automatically uses the extra threads when the buffer is above 512kb. There's nothing the application has to do, in order to use threads. It just works, and when threads are used, it's magically faster. I think this is a reasonable approach to take for most libbraries being consumed by applications.
It would be nice for the computer to be smart about automatically and dynamically exploiting resources on parallizable algorithms, but the reality today is that apps designers have to explicitly code the parallelization in.
I work in C# with .Net Threads.
You can combine object-oriented encapsulation with Thread management.
I've read some posts from Peter talking about a new book from Packt Publishing and I've found the following article in Packt Publishing web page:
http://www.packtpub.com/article/simplifying-parallelism-complexity-c-sharp
I've read Concurrent Programming with Windows, Joe Duffy's book. Now, I am waiting for "C# 2008 and 2005 Threaded Programming", Hillar's book - http://www.amazon.com/2008-2005-Threaded-Programming-Beginners/dp/1847197108/ref=pd_rhf_p_t_2
I agree with Szundi "No silver bullet"!
You say "For web applications it's very, very easy: ignore it. Unless you've got some code that really begs to be done in parallel you can simply write old-style single-threaded code and be happy."
I am working with Web applications and I do need to take full advantage of parallelism.
I understand your point. However, we must prepare for the multicore revolution. Ignoring it is the same than ignoring the GUI revolution in the 90's.
We are not still developing for DOS? We must tackle multicore or we'll be dead in many years.
I think this trend will first persuade some developers, and then most of them will see that parallelization is a really complex task.
I expect some design pattern to come to take care of this complexity. Not low level ones but architectural patterns which will make hard to do something wrong.
For example I expect messaging patterns to gain popularity, because it's inherently asynchronous, but you don't think about deadlock or mutex or whatever.
How does this affect your software roadmap?
It doesn't. Our (as with almost all other) business related apps run perfectly well on a single core. So long as adding more cores doesn't significantly reduce the performance of single threaded apps, we're happy
...real stories...
Like everyone else, parallel builds are the main benefit we get. The Visual Studio 2008 C# compiler doesn't seem to use more than one core though, which really sucks
What are you doing with your existing code to take advantage of multicore machines
We may look into using the .NET parallel extensions if we ever have a long-running algorithm that can be parallelized, but the odds of this actually occurring are slim. The most likely answer is that some of the developers will play around with it for interest's sake, but not much else
how will you deal with hundreds or thousands of cores?
Head -> Sand.
If your domain doesn't easily benefit from parallel computation, then explaining why is interesting, too.
The client app mostly pushes data around, the server app mostly relies on SQL server to do the heavy lifting
I'm taking advantage of multicore using C, PThreads, and a home brew implementation of Communicating Sequential Processes on an OpenVPX platform with Linux using the PREEMPT_RT patch set's scheduler. It all adds up to nearly 100% CPU utilisation across multiple OS instances with no CPU time used for data exchange between processor cards in the OpenVPX chassis, and very low latency too. Also using sFPDP to join multiple OpenVPX chassis together into a single machine. Am not using Xeon's internal DMA so as to relieve memory pressure inside CPUs (DMA still uses memory bandwidth at the expense of the CPU cores). Instead we're leaving data in place and passing ownership of it around in a CSP way (so not unlike the philosophy of .NET's task parallel data flow library).
1) Software Roadmap - we have pressure to maximise the use real estate and available power. Making the very most of the latest hardware is essential
2) Software domain - effectively Scientific Computing
3) What we're doing with existing code? Constantly breaking it apart and redistributing parts of it across threads so that each core is maxed out doing the most it possibly can without breaking out real time requirement. New hardware means quite a lot of re-thinking (faster cores can do more in the given time, don't want them to be under utilised). Not as bad as it sounds - the core routines are very modular so easily assembled into thread-sized lumps. Although we planned on taking control of thread affinity away from Linux, we've not yet managed to extract significant extra performance by doing so. Linux is pretty good at getting data and code in more or less the same place.
4) In effect already there - total machine already adds up to thousands of cores
5) Parallel computing is essential - it's a MISD system.
If that sounds like a lot of work, it is. some jobs require going whole hog on making the absolute most of available hardware and eschewing almost everything that is high level. We're finding that the total machine performance is a function of CPU memory bandwidth, not CPU core speed, L1/L2/L3 cache size.
I am quite excited by the possibility of using languages which have parallelism / concurrency built in, such as stackless python and erlang, and have a firm belief that we'll all have to move in that direction before too long - or will want to because it will be a good/easy way to get to scalability and performance.
However, I am so used to thinking about solutions in a linear/serial/OOP/functional way that I am struggling to cast any of my domain problems in a way that merits using concurrency. I suspect I just need to unlearn a lot, but I thought I would ask the following:
Have you implemented anything reasonably large in stackless or erlang or other?
Why was it a good choice? Was it a good choice? Would you do it again?
What characteristics of your problem meant that concurrent/parallel was right?
Did you re-cast an exising problem to take advantage of concurrency/parallelism? and
if so, how?
Anyone any experience they are willing to share?
in the past when desktop machines had a single CPU, parallelization only applied to "special" parallel hardware. But these days desktops have usually from 2 to 8 cores, so now the parallel hardware is the standard. That's a big difference and therefore it is not just about which problems suggest parallelism, but also how to apply parallelism to a wider set of problems than before.
In order to be take advantage of parallelism, you usually need to recast your problem in some ways. Parallelism changes the playground in many ways:
You get the data coherence and locking problems. So you need to try to organize your problem so that you have semi-independent data structures which can be handled by different threads, processes and computation nodes.
Parallelism can also introduce nondeterminism into your computation, if the relative order in which the parallel components do their jobs affects the results. You may need to protect against that, and define a parallel version of your algorithm which is robust against different scheduling orders.
When you transcend intra-motherboard parallelism and get into networked / cluster / grid computing, you also get the issues of network bandwidth, network going down, and the proper management of failing computational nodes. You may need to modify your problem so that it becomes easier to handle the situations where part of the computation gets lost when a network node goes down.
Before we had operating systems people building applications would sit down and discuss things like:
how will we store data on disks
what file system structure will we use
what hardware will our application work with
etc, etc
Operating systems emerged from collections of 'developer libraries'.
The beauty of an operating system is that your UNWRITTEN software has certain characteristics, it can:
talk to permanent storage
talk to the network
run in a command line
be used in batch
talk to a GUI
etc, etc
Once you have shifted to an operating system - you don't go back to the status quo ante...
Erlang/OTP (ie not Erlang) is an application system - it runs on two or more computers.
The beauty of an APPLICATION SYSTEM is that your UNWRITTEN software has certain characteristics, it can:
fail over between two machines
work in a cluster
etc, etc...
Guess what, once you have shifted to an Application System - you don't go back neither...
You don't have to use Erlang/OTP, Google have a good Application System in their app engine, so don't get hung up about the language syntax.
There may well be good business reasons to build on the Erlang/OTP stack not the Google App Engine - the biz dev guys in your firm will make that call for you.
The problems will stay almost the same inf future, but the underlying hardware for the realization is changing. To use this, the way of compunication between objects (components, processes, services, how ever you call it) will change. Messages will be sent asynchronously without waiting for a direct response. Instead after a job is done the process will call the sender back with the answer. It's like people working together.
I'm currently designing a lightweighted event-driven architecture based on Erlang/OTP. It's called Tideland EAS. I'm describing the ideas and principles here: http://code.google.com/p/tideland-eas/wiki/IdeasAndPrinciples. It's not ready, but maybe you'll understand what I mean.
mue
Erlang makes you think of the problem in parallel. You won't forget it one second. After a while you adapt. Not a big problem. Except the solution become parallel in every little corner. All other languages you have to tweak. To be concurrent. And that doesn't feel natural. Then you end up hating your solution. Not fun.
The biggest advantages Erlang have is that it got no global garbage collect. It will never take a break. That is kind of important, when you have 10000 page views a second.