I'm writing an inner loop that needs to place structs in contiguous storage. I don't know how many of these structs there will be ahead of time. My problem is that STL's vector initializes its values to 0, so no matter what I do, I incur the cost of the initialization plus the cost of setting the struct's members to their values.
Is there any way to prevent the initialization, or is there an STL-like container out there with resizeable contiguous storage and uninitialized elements?
(I'm certain that this part of the code needs to be optimized, and I'm certain that the initialization is a significant cost.)
Also, see my comments below for a clarification about when the initialization occurs.
SOME CODE:
void GetsCalledALot(int* data1, int* data2, int count) {
int mvSize = memberVector.size()
memberVector.resize(mvSize + count); // causes 0-initialization
for (int i = 0; i < count; ++i) {
memberVector[mvSize + i].d1 = data1[i];
memberVector[mvSize + i].d2 = data2[i];
}
}
std::vector must initialize the values in the array somehow, which means some constructor (or copy-constructor) must be called. The behavior of vector (or any container class) is undefined if you were to access the uninitialized section of the array as if it were initialized.
The best way is to use reserve() and push_back(), so that the copy-constructor is used, avoiding default-construction.
Using your example code:
struct YourData {
int d1;
int d2;
YourData(int v1, int v2) : d1(v1), d2(v2) {}
};
std::vector<YourData> memberVector;
void GetsCalledALot(int* data1, int* data2, int count) {
int mvSize = memberVector.size();
// Does not initialize the extra elements
memberVector.reserve(mvSize + count);
// Note: consider using std::generate_n or std::copy instead of this loop.
for (int i = 0; i < count; ++i) {
// Copy construct using a temporary.
memberVector.push_back(YourData(data1[i], data2[i]));
}
}
The only problem with calling reserve() (or resize()) like this is that you may end up invoking the copy-constructor more often than you need to. If you can make a good prediction as to the final size of the array, it's better to reserve() the space once at the beginning. If you don't know the final size though, at least the number of copies will be minimal on average.
In the current version of C++, the inner loop is a bit inefficient as a temporary value is constructed on the stack, copy-constructed to the vectors memory, and finally the temporary is destroyed. However the next version of C++ has a feature called R-Value references (T&&) which will help.
The interface supplied by std::vector does not allow for another option, which is to use some factory-like class to construct values other than the default. Here is a rough example of what this pattern would look like implemented in C++:
template <typename T>
class my_vector_replacement {
// ...
template <typename F>
my_vector::push_back_using_factory(F factory) {
// ... check size of array, and resize if needed.
// Copy construct using placement new,
new(arrayData+end) T(factory())
end += sizeof(T);
}
char* arrayData;
size_t end; // Of initialized data in arrayData
};
// One of many possible implementations
struct MyFactory {
MyFactory(int* p1, int* p2) : d1(p1), d2(p2) {}
YourData operator()() const {
return YourData(*d1,*d2);
}
int* d1;
int* d2;
};
void GetsCalledALot(int* data1, int* data2, int count) {
// ... Still will need the same call to a reserve() type function.
// Note: consider using std::generate_n or std::copy instead of this loop.
for (int i = 0; i < count; ++i) {
// Copy construct using a factory
memberVector.push_back_using_factory(MyFactory(data1+i, data2+i));
}
}
Doing this does mean you have to create your own vector class. In this case it also complicates what should have been a simple example. But there may be times where using a factory function like this is better, for instance if the insert is conditional on some other value, and you would have to otherwise unconditionally construct some expensive temporary even if it wasn't actually needed.
In C++11 (and boost) you can use the array version of unique_ptr to allocate an uninitialized array. This isn't quite an stl container, but is still memory managed and C++-ish which will be good enough for many applications.
auto my_uninit_array = std::unique_ptr<mystruct[]>(new mystruct[count]);
C++0x adds a new member function template emplace_back to vector (which relies on variadic templates and perfect forwarding) that gets rid of any temporaries entirely:
memberVector.emplace_back(data1[i], data2[i]);
To clarify on reserve() responses: you need to use reserve() in conjunction with push_back(). This way, the default constructor is not called for each element, but rather the copy constructor. You still incur the penalty of setting up your struct on stack, and then copying it to the vector. On the other hand, it's possible that if you use
vect.push_back(MyStruct(fieldValue1, fieldValue2))
the compiler will construct the new instance directly in the memory thatbelongs to the vector. It depends on how smart the optimizer is. You need to check the generated code to find out.
You can use boost::noinit_adaptor to default initialize new elements (which is no initialization for built-in types):
std::vector<T, boost::noinit_adaptor<std::allocator<T>> memberVector;
As long as you don't pass an initializer into resize, it default initializes the new elements.
So here's the problem, resize is calling insert, which is doing a copy construction from a default constructed element for each of the newly added elements. To get this to 0 cost you need to write your own default constructor AND your own copy constructor as empty functions. Doing this to your copy constructor is a very bad idea because it will break std::vector's internal reallocation algorithms.
Summary: You're not going to be able to do this with std::vector.
You can use a wrapper type around your element type, with a default constructor that does nothing. E.g.:
template <typename T>
struct no_init
{
T value;
no_init() { static_assert(std::is_standard_layout<no_init<T>>::value && sizeof(T) == sizeof(no_init<T>), "T does not have standard layout"); }
no_init(T& v) { value = v; }
T& operator=(T& v) { value = v; return value; }
no_init(no_init<T>& n) { value = n.value; }
no_init(no_init<T>&& n) { value = std::move(n.value); }
T& operator=(no_init<T>& n) { value = n.value; return this; }
T& operator=(no_init<T>&& n) { value = std::move(n.value); return this; }
T* operator&() { return &value; } // So you can use &(vec[0]) etc.
};
To use:
std::vector<no_init<char>> vec;
vec.resize(2ul * 1024ul * 1024ul * 1024ul);
Err...
try the method:
std::vector<T>::reserve(x)
It will enable you to reserve enough memory for x items without initializing any (your vector is still empty). Thus, there won't be reallocation until to go over x.
The second point is that vector won't initialize the values to zero. Are you testing your code in debug ?
After verification on g++, the following code:
#include <iostream>
#include <vector>
struct MyStruct
{
int m_iValue00 ;
int m_iValue01 ;
} ;
int main()
{
MyStruct aaa, bbb, ccc ;
std::vector<MyStruct> aMyStruct ;
aMyStruct.push_back(aaa) ;
aMyStruct.push_back(bbb) ;
aMyStruct.push_back(ccc) ;
aMyStruct.resize(6) ; // [EDIT] double the size
for(std::vector<MyStruct>::size_type i = 0, iMax = aMyStruct.size(); i < iMax; ++i)
{
std::cout << "[" << i << "] : " << aMyStruct[i].m_iValue00 << ", " << aMyStruct[0].m_iValue01 << "\n" ;
}
return 0 ;
}
gives the following results:
[0] : 134515780, -16121856
[1] : 134554052, -16121856
[2] : 134544501, -16121856
[3] : 0, -16121856
[4] : 0, -16121856
[5] : 0, -16121856
The initialization you saw was probably an artifact.
[EDIT] After the comment on resize, I modified the code to add the resize line. The resize effectively calls the default constructor of the object inside the vector, but if the default constructor does nothing, then nothing is initialized... I still believe it was an artifact (I managed the first time to have the whole vector zerooed with the following code:
aMyStruct.push_back(MyStruct()) ;
aMyStruct.push_back(MyStruct()) ;
aMyStruct.push_back(MyStruct()) ;
So...
:-/
[EDIT 2] Like already offered by Arkadiy, the solution is to use an inline constructor taking the desired parameters. Something like
struct MyStruct
{
MyStruct(int p_d1, int p_d2) : d1(p_d1), d2(p_d2) {}
int d1, d2 ;
} ;
This will probably get inlined in your code.
But you should anyway study your code with a profiler to be sure this piece of code is the bottleneck of your application.
I tested a few of the approaches suggested here.
I allocated a huge set of data (200GB) in one container/pointer:
Compiler/OS:
g++ (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Settings: (c++-17, -O3 optimizations)
g++ --std=c++17 -O3
I timed the total program runtime with linux-time
1.) std::vector:
#include <vector>
int main(){
constexpr size_t size = 1024lu*1024lu*1024lu*25lu;//25B elements = 200GB
std::vector<size_t> vec(size);
}
real 0m36.246s
user 0m4.549s
sys 0m31.604s
That is 36 seconds.
2.) std::vector with boost::noinit_adaptor
#include <vector>
#include <boost/core/noinit_adaptor.hpp>
int main(){
constexpr size_t size = 1024lu*1024lu*1024lu*25lu;//25B elements = 200GB
std::vector<size_t,boost::noinit_adaptor<std::allocator<size_t>>> vec(size);
}
real 0m0.002s
user 0m0.001s
sys 0m0.000s
So this solves the problem. Just allocating without initializing costs basically nothing (at least for large arrays).
3.) std::unique_ptr<T[]>:
#include <memory>
int main(){
constexpr size_t size = 1024lu*1024lu*1024lu*25lu;//25B elements = 200GB
auto data = std::unique_ptr<size_t[]>(new size_t[size]);
}
real 0m0.002s
user 0m0.002s
sys 0m0.000s
So basically the same performance as 2.), but does not require boost.
I also tested simple new/delete and malloc/free with the same performance as 2.) and 3.).
So the default-construction can have a huge performance penalty if you deal with large data sets.
In practice you want to actually initialize the allocated data afterwards.
However, some of the performance penalty still remains, especially if the later initialization is performed in parallel.
E.g., I initialize a huge vector with a set of (pseudo)random numbers:
(now I use fopenmp for parallelization on a 24 core AMD Threadripper 3960X)
g++ --std=c++17-fopenmp -O3
1.) std::vector:
#include <vector>
#include <random>
int main(){
constexpr size_t size = 1024lu*1024lu*1024lu*25lu;//25B elements = 200GB
std::vector<size_t> vec(size);
#pragma omp parallel
{
std::minstd_rand0 gen(42);
#pragma omp for schedule(static)
for (size_t i = 0; i < size; ++i) vec[i] = gen();
}
}
real 0m41.958s
user 4m37.495s
sys 0m31.348s
That is 42s, only 6s more than the default initialization.
The problem is, that the initialization of std::vector is sequential.
2.) std::vector with boost::noinit_adaptor:
#include <vector>
#include <random>
#include <boost/core/noinit_adaptor.hpp>
int main(){
constexpr size_t size = 1024lu*1024lu*1024lu*25lu;//25B elements = 200GB
std::vector<size_t,boost::noinit_adaptor<std::allocator<size_t>>> vec(size);
#pragma omp parallel
{
std::minstd_rand0 gen(42);
#pragma omp for schedule(static)
for (size_t i = 0; i < size; ++i) vec[i] = gen();
}
}
real 0m10.508s
user 1m37.665s
sys 3m14.951s
So even with the random-initialization, the code is 4 times faster because we can skip the sequential initialization of std::vector.
So if you deal with huge data sets and plan to initialize them afterwards in parallel, you should avoid using the default std::vector.
From your comments to other posters, it looks like you're left with malloc() and friends. Vector won't let you have unconstructed elements.
From your code, it looks like you have a vector of structs each of which comprises 2 ints. Could you instead use 2 vectors of ints? Then
copy(data1, data1 + count, back_inserter(v1));
copy(data2, data2 + count, back_inserter(v2));
Now you don't pay for copying a struct each time.
If you really insist on having the elements uninitialized and sacrifice some methods like front(), back(), push_back(), use boost vector from numeric . It allows you even not to preserve existing elements when calling resize()...
I'm not sure about all those answers that says it is impossible or tell us about undefined behavior.
Sometime, you need to use an std::vector. But sometime, you know the final size of it. And you also know that your elements will be constructed later.
Example : When you serialize the vector contents into a binary file, then read it back later.
Unreal Engine has its TArray::setNumUninitialized, why not std::vector ?
To answer the initial question
"Is there any way to prevent the initialization, or is there an STL-like container out there with resizeable contiguous storage and uninitialized elements?"
yes and no.
No, because STL doesn't expose a way to do so.
Yes because we're coding in C++, and C++ allows to do a lot of thing. If you're ready to be a bad guy (and if you really know what you are doing). You can hijack the vector.
Here a sample code that works only for the Windows's STL implementation, for another platform, look how std::vector is implemented to use its internal members :
// This macro is to be defined before including VectorHijacker.h. Then you will be able to reuse the VectorHijacker.h with different objects.
#define HIJACKED_TYPE SomeStruct
// VectorHijacker.h
#ifndef VECTOR_HIJACKER_STRUCT
#define VECTOR_HIJACKER_STRUCT
struct VectorHijacker
{
std::size_t _newSize;
};
#endif
template<>
template<>
inline decltype(auto) std::vector<HIJACKED_TYPE, std::allocator<HIJACKED_TYPE>>::emplace_back<const VectorHijacker &>(const VectorHijacker &hijacker)
{
// We're modifying directly the size of the vector without passing by the extra initialization. This is the part that relies on how the STL was implemented.
_Mypair._Myval2._Mylast = _Mypair._Myval2._Myfirst + hijacker._newSize;
}
inline void setNumUninitialized_hijack(std::vector<HIJACKED_TYPE> &hijackedVector, const VectorHijacker &hijacker)
{
hijackedVector.reserve(hijacker._newSize);
hijackedVector.emplace_back<const VectorHijacker &>(hijacker);
}
But beware, this is hijacking we're speaking about. This is really dirty code, and this is only to be used if you really know what you are doing. Besides, it is not portable and relies heavily on how the STL implementation was done.
I won't advise you to use it because everyone here (me included) is a good person. But I wanted to let you know that it is possible contrary to all previous answers that stated it wasn't.
Use the std::vector::reserve() method. It won't resize the vector, but it will allocate the space.
Do the structs themselves need to be in contiguous memory, or can you get away with having a vector of struct*?
Vectors make a copy of whatever you add to them, so using vectors of pointers rather than objects is one way to improve performance.
I don't think STL is your answer. You're going to need to roll your own sort of solution using realloc(). You'll have to store a pointer and either the size, or number of elements, and use that to find where to start adding elements after a realloc().
int *memberArray;
int arrayCount;
void GetsCalledALot(int* data1, int* data2, int count) {
memberArray = realloc(memberArray, sizeof(int) * (arrayCount + count);
for (int i = 0; i < count; ++i) {
memberArray[arrayCount + i].d1 = data1[i];
memberArray[arrayCount + i].d2 = data2[i];
}
arrayCount += count;
}
I would do something like:
void GetsCalledALot(int* data1, int* data2, int count)
{
const size_t mvSize = memberVector.size();
memberVector.reserve(mvSize + count);
for (int i = 0; i < count; ++i) {
memberVector.push_back(MyType(data1[i], data2[i]));
}
}
You need to define a ctor for the type that is stored in the memberVector, but that's a small cost as it will give you the best of both worlds; no unnecessary initialization is done and no reallocation will occur during the loop.
Related
I was wondering if it was possible to create an array of objects when the object needs things passed into it for the constructor. I want something like this:
MyClass *myVar;
myVar = new MyClass[num]; // I would like to specify the array size after declaration
int i = 0;
for(i = 0;i < num;i++)
myVar[i] = new MyClass(0,0); // I would also like to populate the array with new objects
I know that this works:
MyClass *myVar;
myVar = new MyClass[num];
but this only works when the constructor has nothing passed into it. Is what I am trying to do possible? If so, how do I do it?
EDIT: I found out how to do it with using arrays. Here is how I did it:
MyClass **myVar;
myVar = new MyClass *[num];
for(i = 0;i < num;i++)
myVar[0] = new MyClass(0,0);
I would use vectors and such but my teacher has told us to use basic arrays whenever possible. The above solution I actually got from some code my teacher wrote. Thank you all for your help!
MyClass *myVar;
myVar = new MyClass[num];
Actually in this form you cannot invoke constructor which takes parameter(s). It is not allowed by the language specification.
However, if you use std::vector, which I recommend you to use, then you can create a vector calling non-default constructor as:
#include <vector> //header file where std::vector is defined
std::vector<MyClass> arr(num, MyClass(10,20));
It creates a vector of num elements, each element is created by calling copy-constructor of the class, passing MyClass(10,20) as argument to it.
The vector is also good because now you dont need to manage memory yourself. Neither manual allocation, nor manual deallocation. Plus, you can know the number of elements by calling arr.size() anytime. You always know how many elements the vector contains. You can also add elements anytime, just by calling .push_back() member function as:
arr.push_back(MyClass(20,30));
And now you can access elements, just like you access array, i.e by using index:
f(arr[i]); // 0 <= i < arr.size();
Additionally, you can use iterators which facilitate idiomatic programming, enabling you to use various algorithmic functions from <algorithm> header as:
#include <algorithm> //header file where std::for_each is defined
std::for_each(arr.begin(), arr.end(), f);
where f is function which takes one argument of type MyClass& (or MyClass const &) depending on what you want to do in f.
In C++11, you can use lambda as:
std::for_each(arr.begin(), arr.end(), [](const MyClass & m)
{
//working with m
});
In C++0x, this grammar works, which can call the non-default constructor in new expression:
MyClass *myVar;
myVar = new MyClass[2]{{10, 20},{20, 30}};
But I doubt if it works when the number of elements in available only at run time.
The vector approach would be better, as shown in Nawaz's answer.
Pointer to pointer is equivalent to 1. array of pointers, and 2. vector<T*> vector of pointers. One way I've done this in the past is using a double pointer. This approach eliminates the overhead of vector data structure and preferred memory efficient is needed.
MyClass ** myvar;
myvar = new Myclass*[num]
for(int i = 0; i < num; i++){
*(myvar+i) = new Myclass(i);}
Works with pretty much any control structure you can imagine. The drawback is that the allocation of memory is not contiguous and my affect speed for large number of num.
You can do something like this too:
MyClass *myVar[num];
for(int i = 0; i < num; i += 1)
{
myVar[i] = new MyClass(0, 0);
}
Actually, you can use a placement new to handle this:
MyClass * myVar;
myVar = reinterpret_cast<MyClass *>(new char[num * sizeof(MyClass)]);
int i = 0;
for (i = 0; i < num; i++) {
new(&myVar[i]) MyClass(0,0);
}
#Nawaz answer is really good about using vectors, but didn't work for me because it create vector of the same objects (all of them reference to the same object)
class Graph
{
public:
Graph(long V); // none default Constructor
}
std::vector<Graph> myGraph;
for (int i = 0; i < T; i++) // read all graphs
{
Graph newGraph(N);
myGraph.push_back(newGraph);
}
If I have a C type raw pointer, is it possible to create a std::vector from the same type that owns the pointer's data without any data copy (only moving)? What motivates me for asking this question is the existence of data() member function for std::vector which means vector's elements are residing somewhere in the memory consecutively.
Edit: I have to add that the hope I had was also intensified by the existence of functions like std::make_shared.
I don't think that this is directly possible, although you're not the first one to miss this feature. It is even more painful with std::string which doesn't have a non-const data member. Hopefully, this will change in C++17.
If you are allocating the buffer yourself, there is a solution, though. Just use a std::vector up-front. For example, assume you have the following C-style function,
extern void
fill_in_the_numbers(double * buffer, std::size_t count);
then you can do the following.
std::vector<double>
get_the_numbers_1st(const std::size_t n)
{
auto numbers = std::vector<double> (n);
fill_in_the_numbers(numbers.data(), numbers.size());
return numbers;
}
Alternatively, if you're not so lucky and your C-style function insists in allocating the memory itself,
extern double *
allocate_the_buffer_and_fill_in_the_numbers(std::size_t n);
you could resort to a std::unique_ptr, which is sadly inferior.
std::unique_ptr<double[], void (*)(void *)>
get_the_numbers_2nd(const std::size_t n)
{
return {
allocate_the_buffer_and_fill_in_the_numbers(n),
&std::free
};
}
No, std::vector is not designed to be able to assume/utilize a pre-existing array for its internal storage.
Yes, provided that you've created and populated the vector before getting the pointers and that you will not
erase any element
you will not add new elements when vec.size() == vec.capacity() - 1 ,,, doing so will change the address of the elements
Example
#include <iostream>
void fill_my_vector<std::vector<double>& vec){
for(int i=0; i<300; i++){
vec.push_back(i);
}
}
void do_something(double* d, int size)
{ /* ..... */ }
int main(){
std::vector<double> vec;
fill_my_vector(vec);
//You hereby promise to follow the contract conditions, then you are safe doing this
double* ptr;
int ptr_len = vec.size();
ptr = &vec[0];
//call do_something
do_something(ptr, ptr_len);
//ptr will be alive until this function scope exits
}
EDIT
If you mean managing the data from an already created array, you can't... vector manages its own array... It cannot take ownership of an array that wasn't created by its class (vector).
I have tried to access the members of a class Part that are vector elements of type integer inside the vector tasks.
#include <iostream>
#include <vector>
using namespace std;
class Part{
vector<int> tasks;
public:
void setTasks(void);
void getTasks(void);
};
void Part::setTasks(void){
vector<int>::iterator it;
int i=1;
for (it = this->tasks.begin(); it != this->tasks.end(); ++it)
{
*it=i;
i=i+1;
}
}
void Part::getTasks(void){
vector<int>::iterator it;
for (it = this->tasks.begin(); it != this->tasks.end(); ++it)
cout<<*it<<"\t";
}
int main()
{
Part one;
one.setTasks();
one.getTasks();
return 0;
}
I am simply trying to access the values and print them yet failing. There is no compilation error. In run-time, nothing is outputted in the terminal. Where is the error?
A default constructed vector has zero size, so the for loop in setTasks is never entered (since the begin() and end() iterators are the same at that point). If you set an initial size to the vector your code will work as intended. For instance, try adding the following at the beginning of setTasks
tasks.resize(10); // sets vector size to 10 elements, each initialized to 0
Another way to write that function would be
#include <numeric>
...
void Part::setTasks(void){
tasks.resize(10);
std::iota(tasks.begin(), tasks.end(), 1); // requires C++11
}
You could also set the initial size of the vector in the default constructor of Part if you wanted to. In that case add the following public constructor
Part() : tasks(10)
{}
Yet another way to achieve setting the size upon construction would be
class Part{
vector<int> tasks = vector<int>(10); // requires C++11
The size of your vector is 0 when you call setTasks(). Your iterator doesn't get you into the for loop at all. You need to think about what exactly you want your setTasks() to do. How many elements of the vector did you intend to set? You should either define your vector with that size, or use that many number of push_backs instead to set your vector to the desired value.
Your vector is empty. Try giving it a size. For example, vector<int> tasks(10). See option 3 in this.
Alternatively, you can use a "back-insert" iterator (#include <iterator>), which internally calls std::vector::push_back, like this:
void Part::setTasks(void){
auto back_it = std::back_inserter(tasks);
for(int i = 0; i < 10; ++i)
*back_it++ = i;
}
This kind of iterator is especially useful in algorithms where your destination size is unknown. Although if you know the size in advance, you should use reserve/resize or specify the size at construction, since push-ing back into a vector can sometimes be slow due to re-allocation.
Well I am questioning myself if there is a way to pass a vector directly in a parameter, with that I mean, like this:
int xPOS = 5, yPOS = 6, zPOS = 2;
//^this is actually a struct but
//I simplified the code to this
std::vector <std::vector<int>> NodePoints;
NodePoints.push_back(
std::vector<int> {xPOS,yPOS,zPOS}
);
This code ofcourse gives an error; typename not allowed, and expected a ')'
I would have used a struct, but I have to pass the data to a Abstract Virtual Machine where I need to access the node positions as Array[index][index] like:
public GPS_WhenRouteIsCalculated(...)
{
for(new i = 0; i < amount_of_nodes; ++i)
{
printf("Point(%d)=NodeID(%d), Position(X;Y;Z):{%f;%f;%f}",i,node_id_array[i],NodePosition[i][0],NodePosition[i][1],NodePosition[i][2]);
}
return 1;
}
Ofcourse I could do it like this:
std::vector <std::vector<int>> NodePoints;//global
std::vector<int> x;//local
x.push_back(xPOS);
x.push_back(yPOS);
x.push_back(zPOS);
NodePoints.push_back(x);
or this:
std::vector <std::vector<int>> NodePoints;//global
std::vector<int> x;//global
x.push_back(xPOS);
x.push_back(yPOS);
x.push_back(zPOS);
NodePoints.push_back(x);
x.clear()
but then I'm wondering which of the two would be faster/more efficient/better?
Or is there a way to get my initial code working (first snippet)?
Use C++11, or something from boost for this (also you can use simple v.push_back({1,2,3}), vector will be constructed from initializer_list).
http://liveworkspace.org/code/m4kRJ$0
You can use boost::assign as well, if you have no C++11.
#include <vector>
#include <boost/assign/list_of.hpp>
using namespace boost::assign;
int main()
{
std::vector<std::vector<int>> v;
v.push_back(list_of(1)(2)(3));
}
http://liveworkspace.org/code/m4kRJ$5
and of course you can use old variant
int ptr[1,2,3];
v.push_back(std::vector<int>(ptr, ptr + sizeof(ptr) / sizeof(*ptr));
If you don't have access to either Boost or C++11 then you could consider quite a simple solution based around a class. By wrapping a vector to store your three points within a class with some simple access controls, you can create the flexibility you need. First create the class:
class NodePoint
{
public:
NodePoint( int a, int b, int c )
{
dim_.push_back( a );
dim_.push_back( b );
dim_.push_back( c );
}
int& operator[]( size_t i ){ return dim_[i]; }
private:
vector<int> dim_;
};
The important thing here is to encapsulate the vector as an aggregate of the object. The NodePoint can only be initialised by providing the three points. I've also provided operator[] to allow indexed access to the object. It can be used as follows:
NodePoint a(5, 6, 2);
cout << a[0] << " " << a[1] << " " << a[2] << endl;
Which prints:
5 6 2
Note that this will of course throw if an attempt is made to access an out of bounds index point but that's still better than a fixed array which would most likely seg fault. I don't see this as a perfect solution but it should get you reasonably safely to where you want to be.
If your main goal is to avoid unnecessary copies of vector<> then here how you should deal with it.
C++03
Insert an empty vector into the nested vector (e.g. Nodepoints) and then use std::swap() or std::vector::swap() upon it.
NodePoints.push_back(std::vector<int>()); // add an empty vector
std::swap(x, NodePoints.back()); // swaps contents of `x` and last element of `NodePoints`
So after the swap(), the contents of x will be transferred to NodePoints.back() without any copying.
C++11
Use std::move() to avoid extra copies
NodePoints.push_back(std::move(x)); // #include<utility>
Here is the explanation of std::move and here is an example.
Both of the above solutions have somewhat similar effect.
This question already has answers here:
Initialization of all elements of an array to one default value in C++?
(12 answers)
Closed 4 months ago.
I'm trying to initialize an int array with everything set at -1.
I tried the following, but it doesn't work. It only sets the first value at -1.
int directory[100] = {-1};
Why doesn't it work right?
I'm surprised at all the answers suggesting vector. They aren't even the same thing!
Use std::fill, from <algorithm>:
int directory[100];
std::fill(directory, directory + 100, -1);
Not concerned with the question directly, but you might want a nice helper function when it comes to arrays:
template <typename T, size_t N>
T* end(T (&pX)[N])
{
return pX + N;
}
Giving:
int directory[100];
std::fill(directory, end(directory), -1);
So you don't need to list the size twice.
I would suggest using std::array. For three reasons:
1. array provides runtime safety against index-out-of-bound in subscripting (i.e. operator[]) operations,
2. array automatically carries the size without requiring to pass it separately
3. And most importantly, array provides the fill() method that is required for
this problem
#include <array>
#include <assert.h>
typedef std::array< int, 100 > DirectoryArray;
void test_fill( DirectoryArray const & x, int expected_value ) {
for( size_t i = 0; i < x.size(); ++i ) {
assert( x[ i ] == expected_value );
}
}
int main() {
DirectoryArray directory;
directory.fill( -1 );
test_fill( directory, -1 );
return 0;
}
Using array requires use of "-std=c++0x" for compiling (applies to the above code).
If that is not available or if that is not an option, then the other options like std::fill() (as suggested by GMan) or hand coding the a fill() method may be opted.
If you had a smaller number of elements you could specify them one after the other. Array initialization works by specifying each element, not by specifying a single value that applies for each element.
int x[3] = {-1, -1, -1 };
You could also use a vector and use the constructor to initialize all of the values. You can later access the raw array buffer by specifying &v.front()
std::vector directory(100, -1);
There is a C way to do it also using memset or various other similar functions. memset works for each char in your specified buffer though so it will work fine for values like 0 but may not work depending on how negative numbers are stored for -1.
You can also use STL to initialize your array by using fill_n. For a general purpose action to each element you could use for_each.
fill_n(directory, 100, -1);
Or if you really want you can go the lame way, you can do a for loop with 100 iterations and doing directory[i] = -1;
If you really need arrays, you can use boosts array class. It's assign member does the job:
boost::array<int,N> array; // boost arrays are of fixed size!
array.assign(-1);
It does work right. Your expectation of the initialiser is incorrect. If you really wish to take this approach, you'll need 100 comma-separated -1s in the initialiser. But then what happens when you increase the size of the array?
use vector of int instead a array.
vector<int> directory(100,-1); // 100 ints with value 1
It is working right. That's how list initializers work.
I believe 6.7.8.10 of the C99 standard covers this:
If an object that has automatic
storage duration is not initialized
explicitly, its value is
indeterminate. If an object that has
static storage duration is not
initialized explicitly, then:
if it has pointer type, it is initialized to a null pointer;
if it has arithmetic type, it is initialized to (positive or unsigned)
zero;
if it is an aggregate, every member is initialized (recursively) according
to these rules;
if it is a union, the first named member is initialized (recursively)
according to these rules.
If you need to make all the elements in an array the same non-zero value, you'll have to use a loop or memset.
Also note that, unless you really know what you're doing, vectors are preferred over arrays in C++:
Here's what you need to realize about containers vs. arrays:
Container classes make programmers more productive. So if you insist on using arrays while those around are willing to use container classes, you'll probably be less productive than they are (even if you're smarter and more experienced than they are!).
Container classes let programmers write more robust code. So if you insist on using arrays while those around are willing to use container classes, your code will probably have more bugs than their code (even if you're smarter and more experienced).
And if you're so smart and so experienced that you can use arrays as fast and as safe as they can use container classes, someone else will probably end up maintaining your code and they'll probably introduce bugs. Or worse, you'll be the only one who can maintain your code so management will yank you from development and move you into a full-time maintenance role — just what you always wanted!
There's a lot more to the linked question; give it a read.
u simply use for loop as done below:-
for (int i=0; i<100; i++)
{
a[i]= -1;
}
as a result as u want u can get
A[100]={-1,-1,-1..........(100 times)}
I had the same question and I found how to do, the documentation give the following example :
std::array<int, 3> a1{ {1, 2, 3} }; // double-braces required in C++11 (not in C++14)
So I just tried :
std::array<int, 3> a1{ {1} }; // double-braces required in C++11 (not in C++14)
And it works all elements have 1 as value. It does not work with the = operator. It is maybe a C++11 issue.
Can't do what you're trying to do with a raw array (unless you explicitly list out all 100 -1s in the initializer list), you can do it with a vector:
vector<int> directory(100, -1);
Additionally, you can create the array and set the values to -1 using one of the other methods mentioned.
Just use this loop.
for(int i =0 ; i < 100 ; i++) directory[i] =0;
the almighty memset() will do the job for array and std containers in C/C++/C++11/C++14
The reason that int directory[100] = {-1} doesn't work is because of what happens with array initialization.
All array elements that are not initialized explicitly are initialized implicitly the same way as objects that have static storage duration.
ints which are implicitly initialized are:
initialized to unsigned zero
All array elements that are not initialized explicitly are initialized implicitly the same way as objects that have static storage duration.
C++11 introduced begin and end which are specialized for arrays!
This means that given an array (not just a pointer), like your directory you can use fill as has been suggested in several answers:
fill(begin(directory), end(directory), -1)
Let's say that you write code like this, but then decide to reuse the functionality after having forgotten how you implemented it, but you decided to change the size of directory to 60. If you'd written code using begin and end then you're done.
If on the other hand you'd done this: fill(directory, directory + 100, -1) then you'd better remember to change that 100 to a 60 as well or you'll get undefined behavior.
If you are allowed to use std::array, you can do the following:
#include <iostream>
#include <algorithm>
#include <array>
using namespace std;
template <class Elem, Elem pattern, size_t S, size_t L>
struct S_internal {
template <Elem... values>
static array<Elem, S> init_array() {
return S_internal<Elem, pattern, S, L - 1>::init_array<values..., pattern>();
}
};
template <class Elem, Elem pattern, size_t S>
struct S_internal<Elem, pattern, S, 0> {
template <Elem... values>
static array<Elem, S> init_array() {
static_assert(S == sizeof...(values), "");
return array<Elem, S> {{values...}};
}
};
template <class Elem, Elem pattern, size_t S>
struct init_array
{
static array<Elem, S> get() {
return S_internal<Elem, pattern, S, S>::init_array<>();
}
};
void main()
{
array<int, 5> ss = init_array<int, 77, 5>::get();
copy(cbegin(ss), cend(ss), ostream_iterator<int>(cout, " "));
}
The output is:
77 77 77 77 77
Just use the fill_n() method.
Example
int n;
cin>>n;
int arr[n];
int value = 9;
fill_n(arr, n, value); // 9 9 9 9 9...
Learn More about fill_n()
or
you can use the fill() method.
Example
int n;
cin>>n;
int arr[n];
int value = 9;
fill(arr, arr+n, value); // 9 9 9 9 9...
Learn More about fill() method.
Note: Both these methods are available in algorithm library (#include<algorithm>). Don't forget to include it.
Starting with C++11 you could also use a range based loop:
int directory[10];
for (auto& value: directory) value = -1;