Fast plane rotation algorithm? - c++

I am working on an application that detects the most prominent rectangle in an image, then seeks to rotate it so that the bottom left of the rectangle rests at the origin, similar to how IUPR's OSCAR system works. However, once the most prominent rectangle is detected, I am unsure how to take into account the depth component or z-axis, as the rectangle won't always be "head-on". Any examples to further my understanding would be greatly appreciated. Seen below is an example from IUPR's OSCAR system.
alt text http://quito.informatik.uni-kl.de/oscar/oscar.php?serverimage=img_0324.jpg&montage=use

You don't actually need to deal with the 3D information in this case, it's just a mappping function, from one set of coordinates to another.
Look at affine transformations, they're capable of correcting simple skew and perspective effects. You should be able to find code somewhere that will calculate a transform from the 4 points at the corners of your rectangle.
Almost forgot - if "fast" is really important, you could simplify the system to only use simple shear transformations in combination, though that'll have a bad impact on image quality for highly-tilted subjects.

Actually, I think you can get away with something much simpler than Mark's approach.
Once you have the 2D coordinates on the skewed image, re-purpose those coordinates as texture coordinates.
In a renderer, draw a simple rectangle where each corner's vertices are texture mapped to the vertices found on the skewed 2D image (normalized and otherwise transformed to your rendering system's texture coordinate plane).
Now you can rely on hardware (using OpenGL or similar) to do the correction for you, or you can write your own texture mapper:
The aspect ratio will need to be guessed at since we are disposing of the actual 3D info. However, you can get away with just taking the max width and max height of your skewed rectangle.
Perspective Texture Mapping by Chris Hecker

Related

OpenGL/OpenTK Fill Interior Space

I am looking for a way to "fill" three-dimensional geometry with color, and quite possibly a texture at some time later on.
Suppose for a moment that you could physically phase your head into a concrete wall, logically you would see only darkness. In OpenGL, however, when you do this the world is naturally hollow and transparent due to culling and because of how the geometry is drawn. I want to simulate the darkness/color/texture within it instead.
I know some games do this by overlaying a texture/color directly over the hud--therefore blinding the player.
Is there another way to do this, though? Suppose the player is standing half in water; they can partially see below the waves. How would you fill it to prevent them from being able to see clearly below what is now half of their screen?
What is this concept even called?
A problem with the texture-in-front-of-the-camera method is a texture is 2D but you want to visualize a slice of a 3D volume. For the first thing you talk about, the head-inside-a-wall idea, I'll point you to "3D/volume texturing". For standing-half-in-water, you're after "volume rendering" with "absorption" (discussed by #user3670102).
3D texturing
The general idea here is you have some function that defines a colour everywhere in a 3D space, not just on a surface (as with regular texture mapping). This is nice because you can put geometry anywhere and colour it in the fragment shader based on the 3D position. Think of taking a slice through the volume and looking at the intersection colour.
For the head-in-a-wall effect you could draw a full screen polygon in front of the player (right on the near clipping plane, although you might want to push this forwards a bit so its not too small) and colour it based on a 3D function. Now it'll look properly solid and move ad the player does and not like you've cheaply stuck a texture over the screen.
The actual function could be defined with a 3D texture but that's very memory intensive. Instead, you could look into either procedural 3D colour (a procedural wood or brick shader is pretty common as an example). Even assuming a 2D texture is "extruded" through the volume will work, or better yet weight 3 textures (one for each axis) based on the angle of the intersection/surface you're drawing on.
Detecting an intersection with the geometry and the near clipping plane is probably the hardest bit here. If I were you I'd look at tricks with the z-buffer and make sure to draw everything as solid non-self-intersecting geometry. A simple idea might be to draw back faces only after drawing everything with front faces. If you can see back faces that part of the near plane must be inside something. For these pixels you could calculate the near clipping plane position in world space and apply a 3D texture. Though I suspect there are faster ways than drawing everything twice.
In reality there would probably be no light getting to what you see and it should be black, but I guess just ignore this and render the colour directly, unlit.
Absorption
This sounds way harder than it actually is. If you have some transparent solid that's all the one colour ("homogeneous") then it removes light the further light has to travel through it. Think of many alpha-transparent surfaces, take the limit and you have an exponential. The light remaining is close to 1/exp(dist) or exp(-dist). Google "Beer's Law". From here,
vec3 Absorbance = WaterColor * WaterDensity * -WaterDepth;
vec3 Transmittance = exp(Absorbance);
A great way to find distances through something is to render the back faces (or seabed/water floor) with additive blending using a shader that draws distance to a floating point texture. Then switch to subtractive blending and render all the front faces (or water surface). You're left with a texture containing distances/depth for the above equation.
Volume Rendering
Combining the two ideas, the material is both a transparent solid but the colour (and maybe density) varies throughout the volume. This starts to get pretty complicated if you have large amounts of data and want it to be fast. A straight forward way to render this is to numerically integrate a ray through the 3D texture (or procedural function, whatever you're using), at the same time applying the absorption function. A basic brute force Euler integration might start a ray for each pixel on the near plane, then march forwards at even distances. Over each step while you march you assume the colour remains constant and apply absorption, keeping track of how much light you have left. A quick google brings up this.
This seems related to looking through what's called "participating media". On the less extreme end, you'd have light fog, or smoky haze. In the middle could be, say, dirty water. And the extreme case would be your head-in-the-wall example.
Doing this in a physically accurate way isn't trivial, because the darkening effect is more pronounced when the thickness of the media is greater.
But you can fake this by making some assumptions and giving the interior geometry (under the water or inside the wall) darker by reduced lighting or using darker colors. If you care about the depth effect, look at OpenGL and fog.
For underwater, you can make the back side of the water a semi-transparent color that causes stuff above it to have a suitable change in color.
If you really want to go nuts with accuracy, look at Kajia's Rendering Equation. That covers everything (including stuff that glows), but generally needs simplification and approximations to be more useful.

OpenGL lighting question?

Greetings all,
As seen in the image , I draw lots of contours using GL_LINE_STRIP.
But the contours look like a mess and I wondering how I can make this look good.(to see the depth..etc )
I must render contours so , i have to stick with GL_LINE_STRIP.I am wondering how I can enable lighting for this?
Thanks in advance
Original image
http://oi53.tinypic.com/287je40.jpg
Lighting contours isn't going to do much good, but you could use fog or manually set the line colors based on distance (or even altitude) to give a depth effect.
Updated:
umanga, at first I thought lighting wouldn't work because lighting is based on surface normal vectors - and you have no surfaces. However #roe pointed out that normal vectors are actually per vertex in OpenGL, and as such, any POLYLINE can have normals. So that would be an option.
It's not entirely clear what the normal should be for a 3D line, as #Julien said. The question is how to define normals for the contour lines such that the resulting lighting makes visual sense and helps clarify the depth?
If all the vertices in each contour are coplanar (e.g. in the XY plane), you could set the 3D normal to be the 2D normal, with 0 as the Z coordinate. The resulting lighting would give a visual sense of shape, though maybe not of depth.
If you know the slope of the surface (assuming there is a surface) at each point along the line, you could use the surface normal and do a better job of showing depth; this is essentially like a hill-shading applied only to the contour lines. The question then is why not display the whole surface?
End of update
+1 to Ben's suggestion of setting the line colors based on altitude (is it topographic contours?) or based on distance from viewer. You could also fill the polygon surrounded by each contour with a similar color, as in http://en.wikipedia.org/wiki/File:IsraelCVFRtopography.jpg
Another way to make the lines clearer would be to have fewer of them... can you adjust the density of the contours? E.g. one contour line per 5ft height difference instead of per 1ft, or whatever the units are. Depending on what it is you're drawing contours of.
Other techniques for elucidating depth include stereoscopy, and rotating the image in 3D while the viewer is watching.
If your looking for shading then you would normally convert the contours to a solid. The usual way to do that is to build a mesh by setting up 4 corner points at zero height at the bounds or beyond then dropping the contours into the mesh and getting the mesh to triangulate the coords in. Once done you then have a triangulated solid hull for which you can find the normals and smooth them over adjacent faces to create smooth terrain.
To triangulate the mesh one normally uses the Delaunay algorithm which is a bit of a beast but there does exist libraries for doing it. The best of which I know of is the ones based on Guibas as Stolfi papers since its pretty optimal.
To generate the normals you do a simple cross product and ensure the facing is correct and manually renormalize them before feeding into the glNormal.
The in the old days you used to make a glList out of the result but the newer way is to make a vertex array. If you want to be extra flash then you can look for coincident planar faces and optimize the mesh down for faster redraw but thats a bit of a black art - good for games, not so good for CAD.
(thx for bonus last time)

Can someone describe the algorithm used by Ken Silverman's Voxlap engine?

From what I gathered he used sparse voxel octrees and raycasting. It doesn't seem like he used opengl or direct3d and when I look at the game Voxelstein it appears that miniature cubes are actually being drawn instead of just a bunch of 2d square. Which caught me off guard I'm not sure how he is doing that without opengl or direct3d.
I tried to read through the source code but it was difficult for me to understand what was going on. I would like to implement something similar and would like the algorithm to do so.
I'm interested in how he performed rendering, culling, occlusion, and lighting. Any help is appreciated.
The algorithm is closer to ray-casting than ray-tracing. You can get an explanation from Ken Silverman himself here:
https://web.archive.org/web/20120321063223/http://www.jonof.id.au/forum/index.php?topic=30.0
In short: on a grid, store an rle list of surface voxels for each x,y stack of voxels (if z means 'up'). Assuming 4 degrees of freedom, ray-cast across it for each vertical line on the screen, and maintain a list of visible spans which is clipped as each cube is drawn. For 6 degrees of freedom, do something similar but with scanlines which are tilted in screenspace.
I didn't look at the algorithm itself, but I can tell the following based off the screenshots:
it appears that miniature cubes are actually being drawn instead of just a bunch of 2d square
Yep, that's how ray-tracing works. It doesn't draw 2d squares, it traces rays. If you trace your rays against many miniature cubes, you'll see many miniature cubes. The scene is represented by many miniature cubes (voxels), hence you see them when you look up close. It would be nice to actually smoothen the data somehow (trace against smoothed energy function) to make them look smoother.
I'm interested in how he performed rendering
by ray-tracing
culling
no need for culling when ray-tracing, particularly in a voxel scene. As you move along the ray you check only the voxels that the ray intersects.
occlusion
voxel-voxel occlusion is handled naturally by ray-tracing; it would return the first voxel hit, which is the closest. If you draw sprites you can use a Z-buffer generated by the ray-tracer.
and lighting
It's possible to approximate the local normal by looking at nearby cells and looking which are occupied and which are not. Then performing the lighting calculation. Alternatively each voxel can store the normal along with its color or other material properties.

GPU Render onto sphere

I am trying to write an optimized code that renders a 3D scene using OpenGL onto a sphere and then displays the unwrapped sphere on the screen ie producing a planar map of a purely reflective sphere. In math terms, I would like to produce a projection map where the x axis is the polar angle and y axis is the azimuth.
I am trying to do this by placing the camera at the center of the sphere probe and taking planar shots around so as to approximate spherical quads with planar tiles of the frustum. Then I can use this as texture to apply to a distorted planar patch.
Seems to me this is pretty tedious approach. I wonder if there is way to take this on using shaders or some GPU-smart method.
Thank you
S.
I can give you two solutions.
The first is to make a standard render-to-texture, but with a cubemap attached as the destination buffer. If your hardware is recent enough, it can be done in a single pass. This will deal with all the needed math in HW for you, but data repartition of cubemaps aren't ideal (quite a lot of distortion if the corners). In most cases, it should be enough though.
After this, you render a quad to the screen, and in a shader you map your UV coordinates to xyz vectors using staightforwad spherical mapping. The HW will compute for you which side of the cubemap to take, at which UV.
The second is more or less the same, but with a custom deformation and less HW support : dual paraboloids. Two paraboloids may not be enough, but you are free to slightly modify the equations and make 6 passes. The rendering pass is the same, but this time you're all by yourself to choose the right texture and compute the UVs.
By the time you've bothered to build the model, take the planar shots, apply non-affine transformations and stitch the whole thing together, you've probably gained no performance and considerable complexity. Just project the planar image mathematically and be done with it.
You seem to be asking for OpenGL's sphere mapping. NeHe has a tutorial on sphere mapping that might be useful.

Compute bounding quad of a sphere with vertex shader

I'm trying to implement an algorithm from a graphics paper and part of the algorithm is rendering spheres of known radius to a buffer. They say that they render the spheres by computing the location and size in a vertex shader and then doing appropriate shading in a fragment shader.
Any guesses as to how they actually did this? The position and radius are known in world coordinates and the projection is perspective. Does that mean that the sphere will be projected as a circle?
I found a paper that describes what you need - calculating the bounding quadric. See:
http://web4.cs.ucl.ac.uk/staff/t.weyrich/projects/quadrics/pbg06.pdf
Section 3.2, Bounding Box calculation. The paper also mentions doing it on the vertex shader, so it might be what you're after.
Some personal thought:
You can approximate the bounding box by approximating the size of the sphere by its radius, though. Transform that to screen space and you'll get a slightly larger than correct bounding box, but it won't be that far off. This fails when the camera is too close to the point, or when the sphere it too large, of course. But otherwise should be quite optimal to calculate, as it would be simply a ratio between two similar, right triangles.
If you can figure out the chord length, then the ratio will yield the precise answer, but that's a little beyond me at the moment.
alt text http://xavierho.com/temp/Sphere-Screen-Space.png
Of course, that's just a rough approximation, and has a large error sometimes, but it would get things going quickly, easy.
Otherwise, see paper linked above and use the correct way. =]
The sphere will be projected as an ellipse unless it's at the cameras center as brainjam says.
The article that Xavier Ho links to describes the generalization of sphere projection (That is, quadratic projection). It is a very good read and I recommend it too. However, if you are only interested in sphere projection and more precisely the quadrilateral that bounds the projection then The Mechanics of Robust Stencil Shadows, page 6: Scissor Optimization details how to do it.
A Note on Xavier Ho's Approximation
I would like to add that the approximation that Xavier Ho suggests is, as he notes too, very approximative. I actually used it for a tile-based forward renderer to approximate light bounds in screen space. The following image shows how it neatly enables good performance with 400 omni (spherically bound) lights in a scene: Tile-based Rendering - Far View. However, just like Xavier Ho predicted the inaccuracy of the light bounds causes artifacts up close as seen here when zoomed in: Tile-based Rendering - Close view. The overlapping quadrilaterals fail to bound the lights completely and instead clip the edges revealing the tile grid.
In general, a sphere is seen as an ellipse in perspective:
(source: jrank.org)
The above image is at the bottom of this article.
Section 6 of this article describes how the bounding trapezoid of the sphere's projection is obtained. Before computers, artists and draftsmen has to figure this out by hand.