Ensuring that Exceptions are always caught - c++

Exceptions in C++ don't need to be caught (no compile time errors) by the calling function. So it's up to developer's judgment whether to catch them using try/catch (unlike in Java).
Is there a way one can ensure that the exceptions thrown are always caught using try/catch by the calling function?

No.
See A Pragmatic Look at Exception Specifications for reasons why not.
The only way you can "help" this is to document the exceptions your function can throw, say as a comment in the header file declaring it. This is not enforced by the compiler or anything. Use code reviews for that purpose.

You shouldn't be using an exception here. This obviously isn't an exceptional case if you need to be expecting it everywhere you use this function!
A better solution would be to get the function to return an instance of something like this. In debug builds (assuming developers exercise code paths they've just written), they'll get an assert if they forget to check whether the operation succeded or not.
class SearchResult
{
private:
ResultType result_;
bool succeeded_;
bool succeessChecked_;
public:
SearchResult(Result& result, bool succeeded)
: result_(result)
, succeeded_(succeeded)
, successChecked_(false)
{
}
~SearchResult()
{
ASSERT(successChecked_);
}
ResultType& Result() { return result_; }
bool Succeeded() { successChecked_ = true; return succeeded_; }
}

Outside the scope of your question so I debated not posting this but in Java there are actually 2 types of exceptions, checked and unchecked. The basic difference is that, much like in c[++], you dont have to catch an unchecked exception.
For a good reference try this

Chris' probably has the best pure answer to the question:
However, I'm curious about the root of the question. If the user should always wrap the call in a try/catch block, should the user-called function really be throwing exceptions in the first place?
This is a difficult question to answer without more context regarding the code-base in question. Shooting from the hip, I think the best answer here is to wrap the function up such that the recommended (if not only, depending on the overall exception style of the code) public interface does the try/catch for the user. If you're just trying to ensure that there are no unhandled exceptions in your code, unit tests and code review are probably the best solution.

There was once an attempt to add dynamic exception specifications to a function's signature, but since the language could not enforce their accuracy, they were later depreciated.
In C++11 and forward, we now have the noexcept specifier.
Again, if the signature is marked to throw, there is still not requriement that it be handled by the caller.
Depending on the context, you can ensure that exceptional behaviour be handled by coding it into the type system.
See: std::optional as part of the library fundamentals.

Is there a way one can ensure that the
exceptions thrown are always caught
using try/catch by the calling
function?
I find it rather funny, that the Java crowd - including myself - is trying to avoid checked Exceptions. They are trying to work their way around being forced to catch Exceptions by using RuntimeExceptions.

Or you could start throwing critical exceptions. Surely, an access violation exception will catch your users' attention.

Related

Alternative to C++ exception

I'm writing a reactive software, which repeatedly recieves input, processes it and emits relevant output. The main loop looks something like:
initialize();
while (true) {
Message msg,out;
recieve(msg);
process(msg,out);
//no global state is saved between loop iterations!
send(out);
}
I want that whatever error occured during the proccess phase, whetehr it is out of memory error, logical error, invalid assertion etc, the program will clean up whatever it did, and keep running. I'll assume it is invalid input, and simply ignore it.
C++'s exception are exceptionally good for that situation, I could surround process with try/catch clause, and throw exception whenever something goes wrog. The only thing I need to make sure that I clean up all my resources before throwing an exception. This could be verified by RAII, or by writing a global resource allocator (for instance, if your destructor might throw an exception), and use it exclusively for all resources.
Socket s = GlobalResourceHandler.manageSocket(new Socket());
...
try {
process(msg,out);
catch (...) {
GlobalResourceHandler.cleanUp();
}
However, using exception is forbidden in our coding standard (also in Google's C++ standard BTW), as a result all the code is compiled with exceptions off, and I believe nobody's going to change the way everything work just for my design problem.
Also, this is code for embedded platform, so the less C++ extra feature we use, the faster the code becomes, and the more portable it is.
Is there an alternative design I can consider?
update:
I appreciate everyones answer about idiotic code standard. The only thing I can say is, in big organizations you have to have strict and sometimes illogical rules, to make sure no idiot would come and make your good code unmaintainable. The standard is more about people than about technicalities. Yes, bad man can make every code a mess, but it's much worse if you give him extra tools for the task.
I'm still looking for a technical answer.
Coding these kind of services all day long I understand your problem. Although we do have exceptions within our code, we don't return them to the external libraries that invoke it, instead we have a simple 'tribool'.
enum ReturnCode
{
OK = 0, // OK (there is a reason for it to be 0)
KO, // An error occurred, wait for next message
FATAL // A critical error occurred, reboot
};
I must say FATAL is... exceptional. There isn't any code path in the application that returns it, apart from the initialization (can't do much if you're not initialized properly).
C++ here brings much with RAII, since it laughs multiple paths of return off and guarantees deterministic release of the objects it holds.
For the actual code checking, you can simply use some macros:
// Here is the reason for OK being 0 and KO and Fatal being something else
#define CHECK_RETURN(Expr) if (ReturnCode code = (Expr)) return code;
#define CHECK_BREAK(Expr) if (ReturnCode code = (Expr)) \
if (KO == code) break; else return code;
Then you can use them like so:
CHECK_RETURN( initialize() )
while(true)
{
Message msg,out;
CHECK_BREAK( receive(msg) )
CHECK_BREAK( process(msg,out) )
CHECK_BREAK( send(out) )
}
As noted, the real bummer is about constructors. You can't have "normal" constructors with such a situation.
Perhaps can you use boost::optional, if you can't, I would really suggest duplicating the functionality. Combine that with systemic factory functions in lieu of constructors and you're off to go:
boost::optional<MyObject> obj = MyObject::Build(1, 2, 3);
if (!obj) return KO;
obj->foo();
Looks much like a pointer, except that it's stack allocated and thus involves near zero overhead.
If you can't throw an exception, then the alternative is to return (or to return false or similar error code).
Whether you throw or return, you still use C++ deterministic destructors to release resources.
The one thing that you can't easily just 'return' from is a constructor. If you have an unrecoverable error in a constructor, then it's a good time to throw; but if you're not allowed to throw, then instead you must return, and in that case you need some other way to signal construction failure:
Have private constructors and static factory methods; have the factory method return null on construction failure; don't forget to check for a null return when you call a factory method
Have a "get_isConstructedOk()" property which you invoke after each constructor (and don't forget to invoke/check it on every newly-constructed object)
Implement 'two-stage' construction: in which you say that any code which might fail mustn't be in a constructor, and must instead be in a separate bool initialize() method that's called after the constructor (and don't forget to call initialize and don't forget to check its return value).
However, using exception is forbidden
in our coding standard (also in
Google's C++ standard BTW). Is there
an alternative design I can consider?
Short answer is no.
Long answer yes :). You can make all functions return an error code (similar to the implementation of Microsoft's COM platform.
The main disadvantages of this approach are:
you have to handle all exceptional cases explicitly
your code size increases dramatically
the code becomes more difficult to read.
Instead of:
initialize();
while (true) {
Message msg,out;
recieve(msg);
process(msg,out);
//no global state is saved between loop iterations!
send(out);
}
you have:
if( !succeedded( initialize() ) )
return SOME_ERROR;
while (true) {
Message msg,out;
if( !succeeded( RetVal rv = recieve(msg) ) )
{
SomeErrorHandler(rv);
break;
}
if( !succeeded( RetVal rv = process(msg,out) ) )
{
SomeErrorHandler(rv);
break;
}
//no global state is saved between loop iterations!
if( !succeeded( RetVal rv = send(out) ) )
{
SomeErrorHandler(rv);
break;
}
}
furthermore, the implementation all your functions will have to do the same: surround each function call with an if.
In the example above, you also have to decide if the rv value on each iteration constitutes an error for the current function and (eventually) return it directly from the while, or break the while on any error, and return the value.
In short, except for possibly using RAII in your code and templates (are you allowed to use them?), you end up close to "C code, using the C++ compiler".
Your code transforms each function from a two-liner into an eight-liner and so on. You can improve this with use of extra functions and #defined macros but macros have their own idiosyncrasies that you have to be really careful about.
In short, your coding standards are making your code unnecessarily longer, more error prone, harder to understand and more difficult to maintain.
This is a good case to present to whoever is in charge of the coding standards in your company :(
Edit: You can also implement this with signals but they are a bad replacement for exceptions: they do the same thing as exceptions, only they also disable RAII completely and make your code even less elegant and more error prone.
Just because using exceptions is forbidden in your current coding standards this does not mean that you should dismiss them out of hand for future problems you encounter such as this. It may the case that your current coding standards did not envisage such a scenario arising. If they did they would probably give you help as to what the alternative implementation would be.
This sounds to me like a good time to challenge your current coding standards. If the people that wrote them are still there then speak to them directly as they will either be able to answer your question as to alternative strategies or they will accept that this is a valid use-case for exceptions.
However, using exception is forbidden in our coding standard (also in Google's C++ standard BTW). Is there an alternative design I can consider?
Coding standards like that are nuts.
I suggest that you ask the person / people who developed and mandated that standard how to solve your problem. If they have no good answer, use this as justification for ignoring that part of the coding standard ... with your bosses permission of course.
If you are running under windows, you could use SEH exceptions. They also have the advantage of pre-stack-unwind handler which can stop unwind (EXCEPTION_CONTINUE_EXECUTION).
Off the top of my head, you might be able to achieve something similar with signals.
Set up a signal handler to catch appropriate signals and have it clean things up. For example, if your code generates a SIGSEGV as a result of something that would otherwise have thrown an exception a little earlier, you can try catching it with the signal handler.
There may be more to it than this as I have not thought it through.
Hope this helps.
Do you call any libraries that could raise exceptions? If it's the case, you will need a try catch anyway. For your internal errors, each method will need to return an error code (use return only for error code, use reference parameters to return the actual values). If you want to make memory cleanup 100% reliable, you could start your application using a monitor application. If your application crash, the monitor start it again. You still need to close files and DB connection, tho.
Another approach is, instead of throwing exception, set a global error indicator, and return a legal but arbitary input. Then checking in every loop iteration whether or not the global error indicator is set, and if it is - return.
If you're careful enough, you can make sure that returning legal data will never cause you to crash or to cause undefined behaviour. Thus you shouldn't care that the software will keep running a bit until it reaches to the nearest error checking condition.
For example
#define WHILE_R(cond,return_value) while (cond) {\
if (exception_thrown) return return_value
#define ENDWHILE() }
bool isPolyLegal(Poly p) {
PolyIter it(p);
WHILE_R(it.next(),true) //return value is arbitary
...
if (not_enough_memory) exception_thrown = true;
...
ENDWHILE()
}

Correct Exceptions in C++

I am just learning how to handle errors in my C++ code. I wrote this example that looks for a text file called some file, and if its not found will throw an exception.
#include <iostream>
#include <fstream>
using namespace std;
int main()
{
int array[90];
try
{
ifstream file;
file.open("somefile.txt");
if(!file.good())
throw 56;
}
catch(int e)
{
cout<<"Error number "<<e<<endl;
}
return 0;
}
Now I have two questions. First I would like to know if I am using Exceptions correctly. Second, (assuming the first is true) what is the benefit to using them vs an If else statement?
"Correctly" is a value judgment, but (unlike other classes) there's a major benefit from exceptions classes being a monolithic hierarchy, so I'd generally advise throwing something derived from std::exception, not simply an int.
Second, it's open to question whether an incorrect file name is sufficiently unexpected to qualify as a good reason to throw an exception at all.
As to benefits vs. an if/else statement: there are a couple. First, exceptions let you segregate the code that deals with errors, so the main idea and readability of the code don't get lost in a maze of error handling. Second, when you have several layers of code between throwing and catching the exception, the code that throws the exception may not know how it should really be handled. Your code, for example, uses std::cout to report the problem -- but most such code would report errors on std::cerr instead. You can change from one to the other without any change to the code that tried to open the file (which might be deep in a library, and have no clue of which should be used for this application -- and might be used in an application where both are wrong, and MessageBox was preferred).
First I would like to know if I am using Exceptions correctly.
Yes, though generally you want your exceptions to derive from std::exception.
Second, (assuming the first is true) what is the benefit to using them vs an If else statement?
For the given example, nothing. The benefit of exceptions comes when you have
many deep nested functions, like this.
#include <stdexcept>
#include <iostream>
#include <string>
void anErrorFunc(const std::string& x)
{
ifstream file;
file.open(x);
if (!file)
throw std::runtime_error("Could not open file");
}
void someOtherFunction(const std::string& y)
{
//Do stuff
anErrorFunc(y);
//Do other stuff
}
int main()
{
try {
someOtherFunction("somefile.txt");
} catch (std::exception &ex) {
std::cout << "Ouch! That hurts, because: "
<< ex.what() << "!\n";
}
}
Note that the exception will be caught in main(), and someOtherFunction
does not have to worry about dealing with passing through failure return codes.
Well, you are using exception correctly in that there is nothing wrong with your code. That said, typically we do not throw primitive types around (even though you can). It is generally a better idea to throw an object that derives from std::exception, and even better to throw an std::exception that is also a boost::exception.
When things are very simple and the handling code and the throwing code are in the same function, then there really is no reason to use exceptions instead of if statements (and, indeed, it would be faster and more efficient to use if...else in that particular case). However, in most situations, the point where the error is discovered and you need to report it is far removed from the logic where the error is to be handled. In many cases the error-recovery logic is specific to the application in question and the logic where the error is discovered cannot make a sensible choice about how to recover from the error, hence the need to throw.
Another benefit of exception handling is that the type of the exception can be used to convey the type of error that occurred. Usually the types in exception hierarchies are much more meaningful than those error codes that end up being used in C code. Also, you cannot ignore an exception as easily as you can ignore an error code; while you can ignore an exception, it will cause the program to die a horrible death. By contrast, if a C function returns an error status code, and you ignore it, it's possible to continue executing and get silently wrong results... in that sense, the use of exceptions is much safer than using error codes.
You may also be interested in reading about exceptions and error handling from the C++ FAQ Lite.
You are not using exceptions correctly. Your code has a much simpler equivalent, without exceptions, which provides the same behaviour.
Exceptions are for when you can't test the results of a function call with other methods. In this case you can, so you shouldn't use exceptions.
As a corollary, you shouldn't throw and catch the exception in the same function body - just do whatever you want to do instead of throwing it.
Syntactically speaking, your code is correct. Idiomatically speaking, maybe not so much -- or at least this depends on the context. When a file can't open then we might do our handling right there inside that if( !file.good() ) if it's perfectly common and possible to happen. For example, if the user asks to open a file in a text editor then it's perfectly plausible and common that the file doesn't exist. On the other hand, if the editor can't find the spelling corpus file then that means something is (arguably) terribly wrong. The program wasn't probably installed, or the user messed around with that file -- anything is possible.
In C++ we use exceptions for exceptional cases. That is, cases that are really not meant to happen and that we don't "accept" to happen. This is as opposed to a user file not opening, or an invalid user input, or no internet connection: these are all examples of perfectly valid things happening, common situations, things we expect to happen sooner or later in a program's run. They aren't exceptional.
Now, what are the benefits of using exceptions compared to conditionals? Allow me to extend this question to any other jump (goto) mechanism: returns as well as conditionals. Exceptions are more expressive if that's what you want to say: if you are dealing with an exceptional case then use exceptions. Exceptions also get more done than plain conditionals, in an analogous way to that of virtual functions getting more done than conditionals. The right code-block will be executed depending on the exception, but also the right scope will handle the exception depending on the handlers.
There are other advantages to exceptions compared with conditionals: exceptions separate error-handling from other code. They allow associating arbitrary data and actions with an error state. They allow communicating success states (via a return) as well as error state (via a throw). And the list goes on...
Technically speaking and at the lowest level exceptions are a sophisticated jump mechanism. Back in the butterfly-days people invented the if conditional as a somewhat-sophisticated goto in order to enhance expressiveness (because a goto can be used for anything really) and to reduce programmer errors. The looping constructs such as the C for loop are also in essence a sophisticated jump with sparkles and rainbow colours, again for reducing errors and enhancing expressiveness. C++ introduced its new casting operators for the same reasons.
So there: exceptions aren't magic, just something somewhat new in the scene compared to conditionals and loops. Don't use them when you don't mean to, just like you don't use a loop when you really mean to use a conditional.
Syntactically what you're doing is right. Style-wise, as others have noted, you should be throwing something descended from std::exception.
As to part two of your question, I'd like to go into more detail on that.
The whole point of exceptions is to separate policy from implementation. As Billy ONeal said, you get no benefit at all from using exceptions within the same function that an if statement wouldn't make better. You need to be deeply nested in function calls for it to make sense.
In most code, your high level code has enough information and context to know what to do about errors, but no mechanism to detect them. Your low level code can detect the errors but has none of the information needed to deal with them.
The traditional means of coping with this -- returning error codes -- has a few problems:
It clutters up the code with error handling code to the point that the actual logic is obfuscated.
It relies on programmers not being lazy and checking EVERY error code return, an often foolhardy assumption. (C programmers, be honest here: when was the last time you checked the return value of printf?)
It adds the overhead of error checking and handling to EVERY function call whether there's an error or not.
Exceptions solve these issues (with varying degrees of success).
Exceptions solve #1 by only having exception-related code at the point of detection and at the point of handling. Intervening functions don't get cluttered with handling for obscure errors that they themselves have no interest in nor capability of dealing with.
They solve #2 by forcing handling. You can't ignore an exception. You have to take action on them. (Lazy programmers can still catch all exceptions and then ignore them, but here their crippling inability to program is now highlighted for all to see.)
They solve #3 (when not naively implemented) by having near-zero costs when not used, albeit often at a very, very high cost when actually used.
This is not to say that exceptions are the end-all/be-all of error handling. The disadvantages:
Exceptions are usually very costly when used. They have to be eschewed, despite their advantages, if performance is paramount.
Exceptions lead to very opaque code at times. They are non-local transfers of control -- effectively slightly safer versions of goto statements, but across functions. An exception can transfer control from hundreds of layers deep in your code in source files not even slightly related to the ones you're working on (and, in fact, quite possibly not even accessible to you). This kind of "spooky action at a distance" can make code very difficult to figure out.
"Checked exceptions" can actually be worse for noise generation than the old-style if handling. They tend to be more verbose, you see, than if or switch statements and the fact that you must handle checked exceptions for the code to even compile makes them a liability to many situations.
Because of their often high cost of use, carelessly using them for all error handling can make your code slow and bloated.

Why are my C++ exceptions not being caught?

I have some C++ code that uses a very standard exception pattern:
try {
// some code that throws a std::exception
}
catch (std::exception &e) {
// handle the exception
}
The problem is that the exceptions are not being caught and I cannot figure out why.
The code compiles to a static library in OS X (via Xcode). The library is linked into a Cocoa application, with a call to the function in question happening via an Objective-C++ thunk. I suspect that the interplay between Objective-C and C++ is the culprit but all my attempts to pin this down have failed.
I have not been able to create a simple example that reproduces this behavior in a simple example. When I take the relevant code out of the context of my big program everything works.
Can anyone suggest why my exceptions are not being caught?
C++ allows you a variety of options for catching: value, reference or pointer.
Note that this code only catches std::exceptions passed by reference or value:
try {
// some code that throws a std::exception
}
catch (std::exception &e) {
// handle the exception
}
It's likely that the exception is being passed by pointer:
catch (std::exception* e)
Check the code that is throwing the exception, and see how it's doing it.
As Mark points out, if you catch by value instead of by reference you risk slicing your object.
Try a catch(...) {} block, see if an exception is really thrown.
I suspect that the interplay between Objective-C and C++ is the culprit but all my attempts to pin this down have failed.
You're probably right, although it's hard to track down.
First, GCC explicitly does not allow you to throw exceptions in Objective C++ and catch them in C++ ("when used from Objective-C++, the Objective-C exception model does not interoperate with C++ exceptions at this time. This means you cannot #throw an exception from Objective-C and catch it in C++, or vice versa (i.e., throw ... #catch).")
However, I think you're describing a case where Objective C++ calls C++ code, the C++ code throws and you're hoping for C++ code to catch the exception. Unfortunately I'm having difficulty finding documentation for this specific case. There is some hope because, "It is believed to be safe to throw a C++ exception from one file through another file compiled for the Java exception model, or vice versa, but there may be bugs in this area." If they can do it for Java, there is a chance they can do it for Objective C++.
At the very least, you'll need to specify -fexceptions at compile time ("you may need to enable this option when compiling C code that needs to interoperate properly with exception handlers written in C++"). Again, that doesn't specifically mention Objective C++ but it may apply.
One little known gotcha with exceptions relates to the access of the base class.
If you are actually throwing a class that derives privately from std::exception then the std::exception handler will not be chosen.
For example:
#include <iostream>
class A { };
class B : private A { } ;
int main ()
{
try
{
throw B ();
}
catch (A & )
{
std::cout << "Caught an 'A'" << std::endl;
}
catch (B & )
{
std::cout << "Caught an 'B'" << std::endl;
}
}
Usually, such an order of handlers would result in the 'B' handler never being selected, but in this case 'B' dervies from 'A' privately and so the catch handler for type 'A' is not considered.
I can offer two theories:
the exception gets caught before it comes your catch clause; any function on the stack might be the culprit. As Michael proposes, try catching everything.
exception unwinding fails to locate your handler. To analyze this in more detail, you would have to step through the exception unwinding code, which is very hairy. See whether compiling the Objective-C code with -fobjc-exceptions helps.
This might be a long shot, but in Visual Studio's compiler settings there is an option to switch off exceptions entirely. Perhaps there's something similar in GCC / XCode.
C++ exceptions can be just about anything, quite frequently a char*. As suggested before add catch (...) to at least get it to break and see what's going on.
Thanks for the input from everyone. Those are good suggestions for anyone who runs into a similar problem. It's working now, but I'm not 100% sure which of various changes I made caused things to become sane again. Once again, the approach of simplifying down to something that works and building back up from there paid off.
One thing that wasn't mentioned in the responses, and which I think was part of my confusion, is to make sure that the handler makes it obvious that it actually caught the exception. I think that in some of my formulations of the handler it was masking that fact and passing the exception on to a higher level handler.

In C++ what are the benefits of using exceptions and try / catch instead of just returning an error code?

I've programmed C and C++ for a long time and so far I've never used exceptions and try / catch. What are the benefits of using that instead of just having functions return error codes?
Possibly an obvious point - a developer can ignore (or not be aware of) your return status and go on blissfully unaware that something failed.
An exception needs to be acknowledged in some way - it can't be silently ignored without actively putting something in place to do so.
The advantage of exceptions are two fold:
They can't be ignored. You must deal with them at some level, or they will terminate your program. With error code, you must explicitly check for them, or they are lost.
They can be ignored. If an error can't be dealt with at one level, it will automatically bubble up to the next level, where it can be. Error codes must be explicitly passed up until they reach the level where it can be dealt with.
The advantage is that you don't have to check the error code after each potentially failing call. In order for this to work though, you need to combine it with RAII classes so that everything gets automatically cleaned up as the stack unwinds.
With error messages:
int DoSomeThings()
{
int error = 0;
HandleA hA;
error = CreateAObject(&ha);
if (error)
goto cleanUpFailedA;
HandleB hB;
error = CreateBObjectWithA(hA, &hB);
if (error)
goto cleanUpFailedB;
HandleC hC;
error = CreateCObjectWithA(hB, &hC);
if (error)
goto cleanUpFailedC;
...
cleanUpFailedC:
DeleteCObject(hC);
cleanUpFailedB:
DeleteBObject(hB);
cleanUpFailedA:
DeleteAObject(hA);
return error;
}
With Exceptions and RAII
void DoSomeThings()
{
RAIIHandleA hA = CreateAObject();
RAIIHandleB hB = CreateBObjectWithA(hA);
RAIIHandleC hC = CreateCObjectWithB(hB);
...
}
struct RAIIHandleA
{
HandleA Handle;
RAIIHandleA(HandleA handle) : Handle(handle) {}
~RAIIHandleA() { DeleteAObject(Handle); }
}
...
On first glance, the RAII/Exceptions version seems longer, until you realize that the cleanup code needs to be written only once (and there are ways to simplify that). But the second version of DoSomeThings is much clearer and maintainable.
DO NOT try and use exceptions in C++ without the RAII idiom, as you will leak resources and memory. All your cleanup needs to be done in destructors of stack-allocated objects.
I realize there are other ways to do the error code handling, but they all end up looking somewhat the same. If you drop the gotos, you end up repeating clean up code.
One point for error codes, is that they make it obvious where things can fail, and how they can fail. In the above code, you write it with the assumption that things are not going to fail (but if they do, you'll be protected by the RAII wrappers). But you end up paying less heed to where things can go wrong.
Exception handling is useful because it makes it easy to separate the error handling code from the code written to handle the function of the program. This makes reading and writing the code easier.
return an error code when an error condition is expected in some cases
throw an exception when an error condition is not expected in any cases
in the former case the caller of the function must check the error code for the expected failure; in the latter case the exception can be handled by any caller up the stack (or the default handler) as is appropriate
Aside from the other things that were mentioned, you can't return an error code from a constructor. Destructors either, but you should avoid throwing an exception from a destructor too.
I wrote a blog entry about this (Exceptions make for Elegant Code), which was subsequently published in Overload. I actually wrote this in response to something Joel said on the StackOverflow podcast!
Anyway, I strongly believe that exceptions are preferable to error codes in most circumstances. I find it really painful to use functions that return error codes: you have to check the error code after each call, which can disrupt the flow of the calling code. It also means you can't use overloaded operators as there is no way to signal the error.
The pain of checking error codes means that people often neglect to do so, thus rendering them completely pointless: at least you have to explicitly ignore exceptions with a catch statement.
The use of destructors in C++ and disposers in .NET to ensure that resources are correctly freed in the presence of exceptions can also greatly simplify code. In order to get the same level of protection with error codes you either need lots of if statements, lots of duplicated cleanup code, or goto calls to a common block of cleanup at the end of a function. None of these options are pleasant.
Here's a good explanation of EAFP ("Easier to Ask for Forgiveness than Permission."), which I think applies here even if it's a Python page in Wikipedia. Using exceptions leads to a more natural style of coding, IMO -- and in the opinion of many others, too.
When I used to teach C++, our standard explanation was that they allowed you to avoid tangling sunny-day and rainy-day scenarios. In other words, you could write a function as if everything would work ok, and catch the exception in the end.
Without exceptions, you would have to get a return value from each call and ensure that it is still legitimate.
A related benefit, of course, is that you don't "waste" your return value on exceptions (and thus allow methods that should be void to be void), and can also return errors from constructors and destructors.
Google's C++ Style Guide has a great, thorough analysis of the pros and cons of exception use in C++ code. It also indicates some of the larger questions you should be asking; i.e. do I intend to distribute my code to others (who may have difficulty integrating with an exception-enabled code base)?
Sometimes you really have to use an exception in order to flag an exceptional case. For example, if something goes wrong in a constructor and you find it makes sense to notify the caller about this then you have no choice but to throw an exception.
Another example: Sometimes there is no value your function can return to denote an error; any value the function may return denotes success.
int divide(int a, int b)
{
if( b == 0 )
// then what? no integer can be used for an error flag!
else
return a / b;
}
The fact that you have to acknowledge exceptions is correct but this can also be implemented using error structs.
You could create a base error class that checks in its dtor whether a certain method ( e.g. IsOk ) has been called. If not, you could log something and then exit, or throw an exception, or raise an assert, etc...
Just calling the IsOk on the error object without reacting to it, would then be the equivalent of writing catch( ... ) {}
Both statement would display the same lack of programmer good will.
The transport of the error code up to the correct level is a greater concern. You would basically have to make almost all methods return an error code for the sole reason of propagation.
But then again, a function or method should always be annotated with the exceptions it can generate. So basically you have to same problem, without an interface to support it.
As #Martin pointed out throwing exceptions forces the programmer to handle the error. For example, not checking return codes is one of the biggest sources of security holes in C programs. Exceptions make sure that you handle the error (hopefully) and provide some kind of recover path for your program. And if you choose to ignore an exception rather than introduce a security hole your program crashes.

Finding out the source of an exception in C++ after it is caught?

I'm looking for an answer in MS VC++.
When debugging a large C++ application, which unfortunately has a very extensive usage of C++ exceptions. Sometimes I catch an exception a little later than I actually want.
Example in pseudo code:
FunctionB()
{
...
throw e;
...
}
FunctionA()
{
...
FunctionB()
...
}
try
{
Function A()
}
catch(e)
{
(<--- breakpoint)
...
}
I can catch the exception with a breakpoint when debugging. But I can't trace back if the exception occurred in FunctionA() or FunctionB(), or some other function. (Assuming extensive exception use and a huge version of the above example).
One solution to my problem is to determine and save the call stack in the exception constructor (i.e. before it is caught). But this would require me to derive all exceptions from this base exception class. It would also require a lot of code, and perhaps slow down my program.
Is there an easier way that requires less work? Without having to change my large code base?
Are there better solutions to this problem in other languages?
You pointed to a breakpoint in the code. Since you are in the debugger, you could set a breakpoint on the constructor of the exception class, or set Visual Studio debugger to break on all thrown exceptions (Debug->Exceptions Click on C++ exceptions, select thrown and uncaught options)
If you are just interested in where the exception came from, you could just write a simple macro like
#define throwException(message) \
{ \
std::ostringstream oss; \
oss << __FILE __ << " " << __LINE__ << " " \
<< __FUNC__ << " " << message; \
throw std::exception(oss.str().c_str()); \
}
which will add the file name, line number and function name to the exception text (if the compiler provides the respective macros).
Then throw exceptions using
throwException("An unknown enum value has been passed!");
There's an excellent book written by John Robbins which tackles many difficult debugging questions. The book is called Debugging Applications for Microsoft .NET and Microsoft Windows. Despite the title, the book contains a host of information about debugging native C++ applications.
In this book, there is a lengthy section all about how to get the call stack for exceptions that are thrown. If I remember correctly, some of his advice involves using structured exception handling (SEH) instead of (or in addition to) C++ exceptions. I really cannot recommend the book highly enough.
Put a breakpoint in the exception object constructor. You'll get your breakpoint before the exception is thrown.
There is no way to find out the source of an exception after it's caught, unless you include that information when it is thrown. By the time you catch the exception, the stack is already unwound, and there's no way to reconstruct the stack's previous state.
Your suggestion to include the stack trace in the constructor is your best bet. Yes, it costs time during construction, but you probably shouldn't be throwing exceptions often enough that this is a concern. Making all of your exceptions inherit from a new base may also be more than you need. You could simply have the relevant exceptions inherit (thank you, multiple inheritance), and have a separate catch for those.
You can use the StackTrace64 function to build the trace (I believe there are other ways as well). Check out this article for example code.
Here's how I do it in C++ using GCC libraries:
#include <execinfo.h> // Backtrace
#include <cxxabi.h> // Demangling
vector<Str> backtrace(size_t numskip) {
vector<Str> result;
std::vector<void*> bt(100);
bt.resize(backtrace(&(*bt.begin()), bt.size()));
char **btsyms = backtrace_symbols(&(*bt.begin()), bt.size());
if (btsyms) {
for (size_t i = numskip; i < bt.size(); i++) {
Aiss in(btsyms[i]);
int idx = 0; Astr nt, addr, mangled;
in >> idx >> nt >> addr >> mangled;
if (mangled == "start") break;
int status = 0;
char *demangled = abi::__cxa_demangle(mangled.c_str(), 0, 0, &status);
Str frame = (status==0) ? Str(demangled, demangled+strlen(demangled)) :
Str(mangled.begin(), mangled.end());
result.push_back(frame);
free(demangled);
}
free(btsyms);
}
return result;
}
Your exception's constructor can simply call this function and store away the stack trace. It takes the param numskip because I like to slice off the exception's constructor from my stack traces.
There's no standard way to do this.
Further, the call stack must typically be recorded at the time of the exception being thrown; once it has been caught the stack has unrolled, so you no longer know what was going on at the point of being thrown.
In VC++ on Win32/Win64, you might get usable-enough results by recording the value from the compiler intrinsic _ReturnAddress() and ensuring that your exception class constructor is __declspec(noinline). In conjunction with the debug symbol library, I think you could probably get the function name (and line number, if your .pdb contains it) that corresponds to the return address using SymGetLineFromAddr64.
In native code you can get a shot at walking the callstack by installing a Vectored Exception handler. VC++ implements C++ exceptions on top of SEH exceptions and a vectored exception handler is given first shot before any frame based handlers. However be really careful, problems introduced by vectored exception handling can be difficult to diagnose.
Also Mike Stall has some warnings about using it in an app that has managed code. Finally, read Matt Pietrek's article and make sure you understand SEH and vectored exception handling before you try this. (Nothing feels quite so bad as tracking down a critical problem to code you added help track down critical problems.)
I believe MSDev allows you to set break points when an exception is thrown.
Alternatively put the break point on the constructor of your exception object.
If you're debugging from the IDE, go to Debug->Exceptions, click Thrown for C++ exceptions.
Other languages? Well, in Java you call e.printStackTrace(); It doesn't get much simpler than that.
In case anyone is interested, a co-worker replied to this question to me via email:
Artem wrote:
There is a flag to MiniDumpWriteDump() that can do better crash dumps that will allow seeing full program state, with all global variables, etc. As for call stacks, I doubt they can be better because of optimizations... unless you turn (maybe some) optimizations off.
Also, I think disabling inline functions and whole program optimization will help quite a lot.
In fact, there are many dump types, maybe you could choose one small enough but still having more info
http://msdn.microsoft.com/en-us/library/ms680519(VS.85).aspx
Those types won't help with call stack though, they only affect the amount of variables you'll be able to see.
I noticed some of those dump types aren't supported in dbghelp.dll version 5.1 that we use. We could update it to the newest, 6.9 version though, I've just checked the EULA for MS Debugging Tools -- the newest dbghelp.dll is still ok to redistribute.
I use my own exceptions. You can handle them quite simple - also they contain text. I use the format:
throw Exception( "comms::serial::serial( )", "Something failed!" );
Also I have a second exception format:
throw Exception( "comms::serial::serial( )", ::GetLastError( ) );
Which is then converted from a DWORD value to the actual message using FormatMessage. Using the where/what format will show you what happened and in what function.
By now, it has been 11 years since this question was asked and today, we can solve this problem using only standard C++11, i.e. cross-platform and without the need for a debugger or cumbersome logging.
You can trace the call stack that led to an exception
Use std::nested_exception and std::throw_with_nested
This won't give you a stack unwind, but in my opinion the next best thing.
It is described on StackOverflow here and here, how you can get a backtrace on your exceptions inside your code without need for a debugger or cumbersome logging, by simply writing a proper exception handler which will rethrow nested exceptions.
It will, however, require that you insert try/catch statements at the functions you wish to trace (i.e. functions without this will not appear in your trace).
You could automate this with macros, reducing the amount of code you have to write/change.
Since you can do this with any derived exception class, you can add a lot of information to such a backtrace!
You may also take a look at my MWE on GitHub, where a backtrace would look something like this:
Library API: Exception caught in function 'api_function'
Backtrace:
~/Git/mwe-cpp-exception/src/detail/Library.cpp:17 : library_function failed
~/Git/mwe-cpp-exception/src/detail/Library.cpp:13 : could not open file "nonexistent.txt"