Unordered map where key is a pair - c++

I have an unordered map where my key is a pair of <int, const Foo*> and value is a vector. I do not see any compilation or runtime error during insertion or lookup but I am not sure if this is most efficient code. Will the compiler create an efficient hash function for computing hash value of the key or should I use boost::hash?
class Foo {
public:
Foo():var1(0){};
~Foo();
void func(int a) {
var1 = a;
}
int var1;
}
int main()
{
Foo f1;
f1.func(10);
const Foo* fp = &f1;
std::unordered_map<std::pair<uint,const Foo*>,std::vector<uint>> umap1;
umap1[std::make_pair(1,fp)].emplace_back(100);
}

std::hash<T> has no std::pair<X,Y> specialization. You have to provide one.
Boost's one isn't as bad as the first one you are likely to write, so feel free to use it. (It isn't perfect, but it isn't horrid).
The hashing trick I use is to first start with an ADL helper:
namespace MyNS {
template<class T, class...Unused>
std::size_t hash( T const& t, Unused... )->decltype( std::hash<T>{}(std::declval<T const&>()) ) {
return std::hash<T>{}(t);
}
struct hasher {
template<class T>
std::size_t operator()(T const& t)const {
return hash(t);
}
}
}
as written, MyNS::Hasher passed to a std::unordered_map<X,Y, MyNS::Hasher> will invoke std::hash<X> as its hasher.
But if you override hash in the namespace of X or in MyNS you'll call it instead. This allows us to extend stuff nicely.
namespace MyNS {
std::size_t hash_combine( std::size_t lhs, std::size_t rhs ) {
return ((lhs<<6)+(lhs>>3)) + rhs;
}
template<class...Szs>
std::size_t hash_combine( std::size_t lhs ) {
return lhs;
}
template<class...More>
std::size_t hash_combine( std::size_t lhs, std::size_t rhs, More...more ) {
return hash_combine( hash_combine(lhs, rhs), more... );
}
template<class T, class U>
std::size_T hash( std::pair<T, U> const& p ) {
return hash_combine( hash(p.first), hash(p.second) );
}
}
I then add this. hash_combine can be written better (boost has an example of a better one), but it combines two size_t hashes into one. But the above one is better than nothing.
It takes 1 or more arguments and combines their hashes into one hash.
I then add an overload to hash for std::pair It invokes hash on its elements; this means pairs of pairs are supported. We can add tuple support:
template<std::size_t...Is, class Tup>
std::size_T hash( std::index_sequence<Is...>, Tup const& tup ) {
return hash_combine( std::get<Is>(tup)... );
}
template<class...Ts>
std::size_T hash( std::tuple<Ts...> const& tup ) {
return hash_combine( std::make_index_sequence<sizeof...(Ts)>{}, tup );
}
and vector support:
template<class Seq>
std::size_t hash_sequence(Seq const& v) {
std::size_t r = 0;
for (auto const& e:v) {
r = hash_combine( r, hash(e) );
}
return r;
}
template<class T, class A>
std::size_t hash(std::vector<T,A> const& v) {
return hash_sequence(v);
}
and similar for other containers.
Any class you need to support hash for is easy:
namespace SomeRandomNS {
struct some_random_type {
int state;
};
inline std::size_t hash( some_random_type const& x ) {
using MyNS::hash;
return hash(x.state);
}
}
and done. For something more complex:
namespace SomeRandomNS {
struct some_random_type {
int state;
double more_state;
std::string even_more;
};
inline std::size_t hash( some_random_type const& x ) {
using MyNS::hash;
return hash(std::tie(x.state, x.more_state, x.even_more));
}
}
and we are done (the tuple hash does the work for us).

Related

Get total number of elements in a nested STL-like container

I would like to write a C++ function that can count the total number of "atomic" elements in a generic nested STL-like container, with the following conditions:
Each level may be any type of container.
The number of levels is not given a priori.
I wrote the following recursive function (using code from here):
template <typename T>
size_t get_total_size(const T & var)
{
if ( is_container<typeof(var)>::value ) { // From https://stackoverflow.com/a/9407521/2707864
typename T::const_iterator iter;
size_t sumsize = 0;
for ( iter = var.begin() ; iter!= var.end() ; iter++ ) {
sumsize += get_total_size(*iter);
}
return sumsize;
} else {
return 1;
}
};
Compiling/linking this may work.
The problem is that upon using it (otherwise, there wouldn't be any point in writing it!) does not compile, as the instantiation gets at the "atomic" level to a type that does not have iterators, e.g., in this code
typedef vector<int> vint;
typedef vector<vint> vvint;
vvint vec_heap;
for (int i=0; i < 12; i++) {
vec_heap.push_back(vint(2, i));
}
cout << get_total_size(vec_heap) << endl; // Instantiation leads to compilation errors
Is this possible?
EDIT:
As per one comment, it can be done with c++17...
Is the recursive function I wrote an overkill for the objective?
With C++17, you might use if constexpr:
template <typename T>
size_t get_total_size(const T& var)
{
if constexpr (is_container<T>::value) {
return std::accumulate(var.begin(),
var.end(),
0u,
[](int acc, const auto& e){ return acc + get_total_size(e); });
} else {
return 1u;
}
};
Before that, you might use overloads and SFINAE:
// this will be called when T is not a container (it is the "atomic" type)
template <typename T, std::enable_if_t<!is_container<T>::value, int> = 0>
size_t get_total_size(const T& var)
{
return 1u;
};
// this will be called for all container types, except for maps
template <typename T, std::enable_if_t<is_container<T>::value, int> = 0>
size_t get_total_size(const T& var)
{
return std::accumulate(var.begin(),
var.end(),
0u,
[](int acc, const auto& e){ return acc + get_total_size(e); });
};
// this will be called for maps
template <typename Key, typename T>
size_t get_total_size(const std::map<Key, T> & var)
{
return std::accumulate(var.begin(),
var.end(),
0u,
[](int acc, const auto& e){ return acc + get_total_size_sfinae(e.second); });
}
If you can't use C++17, or just want to open up what standard can be used with your function then you can switch to using two overloads and use SFINAE to determine when to call each overload. Using
// this will be called when T is not a container (it is the "atomic" type)
template <typename T, typename std::enable_if<!is_container<T>::value, bool>::type = true>
size_t get_total_size(const T & var)
{
return 1;
}
// forward declare of pair function for associative containers
template <typename T, typename U>
size_t get_total_size(const std::pair<T, U> & var);
// this will be called for all container types
template <typename T, typename std::enable_if<is_container<T>::value, bool>::type = true>
size_t get_total_size(const T & var)
{
size_t sumsize = 0;
for ( auto iter = var.begin() ; iter != var.end() ; ++iter ) {
sumsize += get_total_size(*iter);
}
return sumsize;
}
// this will be called for pair to handle associative containers
template <typename T, typename U>
size_t get_total_size(const std::pair<T, U> & var)
{
return get_total_size(var.first) + get_total_size(var.second);
}
This will work from C++11 on up which you can see in this live example

How to create a for loop to go through vectors using the c++11 syntax

I have a class which contains some vectors (minimal code here):
class Foo
{
public:
Foo() = default;
private:
void DoStuff();
std::vector<int>& mBarInt;
std::vector<double> mBarDouble;
int do_something_with_int;
double do_something_with_double;
};
On my DoStuff() method I have:
void Foo::DoStuff()
{
for(auto &val : mBarInt)
{
// do something here...
do_something_with_int = val + ....
}
}
I would like to do something like this, accessing the two vectors on the same for, but (see below after code) ...
for(int i = 0 ; i < mBarInt.size() ; i++)
{
// do something here...
do_something_with_int = mBarInt[i] + ....
do_something_with_double = mBarDouble[i] + .... // I know mBarDouble has the same size has mBarInt
}
... keeping the same c++11 syntax with the: for(auto &val : mBarInt)
Something like this below:
void Foo::DoStuff()
{
for(auto &val1, auto val2 : mBarInt, mBarDouble) //?????<---- How can I do this?
{
// do something with val1 and val2, which I know that will point to different vectors, but on the same index.
}
}
template<class It>
struct indexing_iterator {
It it = {};
using value_type = It;
using reference = value_type;
It operator*() const { return it; }
indexing_iterator& operator++() { ++it; return *this; }
friend bool operator==( indexing_iterator const& lhs, indexing_iterator const& rhs ) {
return lhs.it == rhs.it;
}
friend bool operator!=( indexing_iterator const& lhs, indexing_iterator const& rhs ) {
return !(lhs==rhs);
}
};
template<class F, class It_in>
struct transform_iterator_t:indexing_iterator<It_in> {
F f = {};
using reference = decltype(std::declval<F&>()( *std::declval<It_in&>() ) );
using value_type = std::decay_t<reference>;
using pointer = value_type*;
reference operator*() { return f(*this->it); }
transform_iterator_t( F f_in, It_in it_in ):
indexing_iterator<It_in>{it_in},
f(f_in)
{}
};
template<class F, class It_in>
transform_iterator_t<F,It_in> transform_iterator(
F f, It_in it
) {
return {f, it};
}
indexing_iterator<std::size_t> index( std::size_t n ) {
return {n};
}
template<class It>
struct range_t {
It b,e;
It begin() const { return b; }
It end() const { return b; }
};
template<class It>
range_t<It> range( It b, It e ) { return {b,e}; }
auto range_upto( std::size_t n ) {
return range( index(0), index(n) );
}
template<class C>
auto to_range( C&& c ) {
using std::begin; using std::end;
return range( begin(c), end(c) );
}
template<class It, class F>
range_t< transform_iterator< F, It > >
transform_range( F f, range_t<It> range ) {
return {
transform_iterator( f, range.begin() ),
transform_iterator( f, range.end() )
};
}
template<class F>
auto generator_range( F f, std::size_t count ) {
return transform_range( f, range_upto(count) );
}
template<class C1, class C2>
auto zip_over( C1& c1, C2& c2 ) {
return generator_range(
[&](std::size_t i) {
return std::tie( c1[i], c2[i] );
},
(std::min)(c1.size(), c2.size())
);
}
then in C++17 we have
void Foo::DoStuff() {
for(auto&&[val1, val2] : zip_over(mBarInt, mBarDouble)) {
}
}
or you can manually unpack the tuple in C++14.
Seems like a lot of work.
There are implementations of zip and the like in boost and other libraries, including Rangev3.
Code not tested. Design should be sound.
There is probably a shorter way to do it more directly, but I find generator via transform and indexing, and zip via generator, easier to understand and write with fewer bugs.
An indexing_iterator takes an incrementable comparable object, and iterates over it. The It can be an integer-like or an interator.
A transform_iterator takes an iterator and a transformation, and returns the transformation on each element.
Neither are full iterators; I skipped the boilerplate. But they are enough for for(:) loops.
A range holds 2 iterators and exposes them to for(:).
An indexing_iterator<std::size_t> is otherwise known as a counting iterator.
A generator iterator is a transformation of a counting iterator. It takes a function that takes an index, and generates an element for that index.
We zip over two random access containers by generating a generator iterator that calls operator[] on both, then returns a tuple. Fancier zipping handles non-random access containers.
The zip of two containers then lets you iterate in parallel over two different containers.
I then use C++17 structured bindings in the for(:) statement to unpack them into two different variables. We could instead just manually unpack as the first 2 statements in our for loop.
You can use boost::make_iterator_range and boost::zip_iterator like this:
std::vector<int> ints{1,2,3,4,5};
std::vector<double> doubles{1,2,3,4,5.1};
int do_something_with_int{0};
double do_something_with_double{0};
for (const auto& ref :
boost::make_iterator_range(
boost::make_zip_iterator(boost::make_tuple(ints.cbegin(), doubles.cbegin())),
boost::make_zip_iterator(boost::make_tuple(ints.cend(), doubles.cend()))))
{
do_something_with_int += boost::get<0>(ref);
do_something_with_double+= boost::get<1>(ref);
}
Live example.

Is it Possible to Use Casting as "array slicing" in C++11

I have some shared memory populated by specialized hardware. It's declared as an array of structs, like:
struct port {
int data[10];
char port_id[8];
}
struct bus {
port ports[5];
char bus_id[8];
}
struct bus busses[10];
I'm (re)learning C++, and wanted to use C++11's ranged for loops to iterate over the data.
HOWEVER: That last dimension of the array (data[10]), I only care about the first 4 elements. Is there a way to take a slice of the data and use it in the for() statement?
Like
for (auto & b : busses) {
for (auto & p : bus.ports) {
for (auto & d : port.data[0 through 3]) {
store_the_address_of_d_for_use_elsewhere(d);
}
}
}
Is there a way to use a cast in the innermost for loop, so that it appears like there's only 4 elements? The address of the data is important because I'm going to refer directly to it later using pointers.
This is probably one of those times when a good old-fashioned for (int i = 0; i < 4; i++) is your best bet.
Don't overthink it, and don't try to use "new" features just for the sake of it, creating more complexity and more work in the process.
template<class T>
struct array_view {
T* b = 0;
T* e = 0;
T* begin() const { return b; }
T* end() const { return e; }
std::size_t size() const { return end()-begin(); }
T& front() const { return *begin(); }
T& back() const { return *(end()-1); }
// basic constructors:
array_view(T* s, T* f):b(s), e(f) {}
array_view(T* s, std::size_t N):array_view(s, s+N) {}
// default ctors: (no need for move)
array_view()=default;
array_view(array_view const&)=default;
array_view& operator=(array_view const&)=default;
// advanced constructors:
template<class U>
using is_compatible = std::integral_constant<bool,
std::is_same<U, T*>{} || std::is_same<U, T const*>{} ||
std::is_same<U, T volatile*>{} || std::is_same<U, T volatile const*>{}
>;
// this one consumes containers with a compatible .data():
template<class C,
typename std::enable_if<is_compatible< decltype(std::declval<C&>().data()) >{}, int>::type = 0
>
array_view( C&& c ): array_view( c.data(), c.size() ) {}
// this one consumes compatible arrays:
template<class U, std::size_t N,
typename std::enable_if<is_compatible< U* >{}, int>::type = 0
>
array_view( U(&arr)[N] ):
array_view( arr, N )
{}
// create a modified view:
array_view without_front( std::size_t N = 1 ) const {
return {begin()+(std::min)(size(), N), end()};
}
array_view without_back( std::size_t N = 1 ) const {
return {begin(), end()-(std::min)(size(), N)};
}
array_view only_front( std::size_t N = 1 ) const {
return {begin(), begin()+(std::min)(size(), N)};
}
array_view only_back( std::size_t N = 1 ) const {
return {end()-(std::min)(size(), N), end()};
}
};
Now some functions that let you easily create it:
template<class T, std::size_t N>
array_view<T> array_view_of( T(&arr)[N] ) {
return arr;
}
template<class C,
class Data = decltype( std::declval<C&>().data() ),
class T = typename std::remove_pointer<Data>::type
>
array_view<T> array_view_of( C&& c ) {
return std::forward<C>(c);
}
template<class T>
array_view<T> array_view_of( T* s, std::size_t N ) {
return {s, N};
}
template<class T>
array_view<T> array_view_of( T* s, T* e ) {
return {s, e};
}
and we are done the boilerplate part.
for (auto & b : bus) {
for (auto & p : bus.port) {
for (auto & d : array_view_of(bus.data).only_front(4)) {
store_the_address_of_d_for_use_elsewhere(d);
}
}
}
live example
Now I would only advocate this approach because array_view is shockingly useful in many different applications. Writing it just for this case is silly.
Note that the above array_view is a multiply-iterated class; I've written it here before. This one is, in my opinion, better than the previous ones, other than the annoying c++11-isms I had to use.
for (auto & d : reinterpret_cast<int (&)[4]>(p))

Should std::hash<T> work when T is std::pair<two simpler types also supported by std::hash>?

I was using an ordered set declared as so:
std::set<std::pair<const std::string, const myClass *> > myset;
After doing some analysis of the way I was using the set, I concluded that an unordered_set would be a smarter choice. But when I changed std::set to std::unordered_set, I got a vast spew of error messages from my compiler (g++ 4.8.1) complaining of an
invalid use of incomplete type struct std::hash<std::pair<const std::basic_string<char>, const myClass * > >
I figured out that std::hash didn't know how to deal with a type which was std::pair, despite the fact that the two types that made up the pair were each hashable. I think error for hash function of pair of ints contains relevant information about the C++11 standard that explains why things went awry. (There's no good explanation for the impenetrable wall of error text that g++ emits for this.)
It would seem to me that
std::hash<std::pair<T1, T2>> hasher(make_pair(x,y))
= some_func(std::hash<T1>hasher(x), std::hash<T2>hasher(y) )
where some_func() could be as simple as XOR (or not; see Why is XOR the default way to combine hashes?)
Is there a good reason for the standard to not require std::hash to know how to construct a hash value for an object which is a pair of types that are each hashable?
The reason is simple, it was not added to the standard. The same is true of hashing other structures like tuple.
Things tend to be added to the standard when they are good enough, not when they are perfect, as perfection is the enemy of the good. More specializations of std::hash are not things that will break code (that often), so adding new ones is relatively harmless.
In any case, to that end, we can write our own hash extenders. As an example:
namespace hashers {
constexpr size_t hash_combine( size_t, size_t ); // steal from boost, or write your own
constexpr size_t hash_combine( size_t a ) { return a; }
constexpr size_t hash_combine() { return 0; }
template<class...Sizes>
constexpr size_t hash_combine( size_t a, size_t b, Sizes... sizes ) {
return hash_combine( hash_combine(a,b), sizes... );
}
template<class T=void> struct hash;
template<class A, class B>
constexpr size_t custom_hash( std::pair<A,B> const& p ) {
return hash_combine( hash<size_t>{}(2), hash<std::decay_t<A>>{}(p.first), hash<std::decay_t<B>>{}(p.second) );
}
template<class...Ts, size_t...Is>
constexpr size_t custom_hash( std::index_sequence<Is...>, std::tuple<Ts...> const& p ) {
return hash_combine( hash<size_t>{}(sizeof...(Ts)), hash<std::decay_t<Ts>>{}(std::get<Is>(p))... );
}
template<class...Ts>
constexpr size_t custom_hash( std::tuple<Ts...> const& p ) {
return custom_hash( std::index_sequence_for<Ts...>{}, p );
}
template<class T0, class C>
constexpr size_t custom_hash_container( size_t n, C const& c) {
size_t retval = hash<size_t>{}(n);
for( auto&& x : c)
retval = hash_combine( retval, hash<T>{}(x) );
return retval;
}
template<class T0, class C>
constexpr size_t custom_hash_container( C const& c) {
return custom_hash_container( c.size(), c );
}
template<class T, class...Ts>
size_t custom_hash( std::vector<T, Ts...> const& v ) {
return custom_hash_container<T>(v);
}
template<class T, class...Ts>
size_t custom_hash( std::basic_string<T, Ts...> const& v ) {
return custom_hash_container<T>(v);
}
template<class T, size_t n>
constexpr size_t custom_hash( std::array<T, n> const& v ) {
return custom_hash_container<T>(n, v);
}
template<class T, size_t n>
constexpr size_t custom_hash( T (const& v)[n] ) {
return custom_hash_container<T>(n, v);
}
// etc -- list, deque, map, unordered map, whatever you want to support
namespace details {
template<class T, class=void>
struct hash : std::hash<T> {};
using hashers::custom_hash;
template<class T>
struct hash<T,decltype(void(
custom_hash(declval<T const&>())
)) {
constexpr size_t operator()(T const& t)const {
return custom_hash(t);
}
};
}
template<class T>
struct hash : details::hash<T> {};
template<>
struct hash<void> {
template<class T>
constexpr size_t operator()(T const& t)const { return hash<T>{}(t); }
}
}
and now hashers::hash<T> will recursively use either an ADL-looked up custom_hash function, or std::hash if that fails, to hash T and its components, and hashers::hash<> is a universal hasher that tries to hash anything passed to it.
Code may not compile as shown.
I chose to hash all containers and tuples as hash their length, followed by hashing the combination of their contents. As a side effect, array<int, 3> hashes the same as tuple<int,int,int>, and tuple<int,int> hashes the same as pair<int,int>, and std::vector<char>{'a','b','c', '\0'} hashes the same as "abc", which I think is a nice property. The empty array/tuple/vector/etc hashes like size_t(0).
You can extend the above system for your own types by simply overriding custom_hash in the namespace of the type in question, or specializing either std::hash<X> or hashers::hash<X> to do your custom hash (I would go with std::hash for the principle of least surprise myself). For advanced use, you can specialize hashers::details::hash<X,void> with SFINAE, but I'd say do it for custom_hash instead.

Which C++ Standard Library wrapper functions do you use?

This question, asked this morning, made me wonder which features you think are missing from the C++ Standard Library, and how you have gone about filling the gaps with wrapper functions. For example, my own utility library has this function for vector append:
template <class T>
std::vector<T> & operator += ( std::vector<T> & v1,
const std::vector <T> & v2 ) {
v1.insert( v1.end(), v2.begin(), v2.end() );
return v1;
}
and this one for clearing (more or less) any type - particularly useful for things like std::stack:
template <class C>
void Clear( C & c ) {
c = C();
}
I have a few more, but I'm interested in which ones you use? Please limit answers to wrapper functions - i.e. no more than a couple of lines of code.
Quite often I'd use vector as a set of items in no particular order (and, obviously, when I don't need fast is-this-element-in-the-set checks). In these cases, calling erase() is a waste of time since it will reorder the elements and I don't care about order. That's when the O(1) function below comes in handy - just move the last element at the position of the one you'd want to delete:
template<typename T>
void erase_unordered(std::vector<T>& v, size_t index)
{
v[index] = v.back();
v.pop_back();
}
boost::array
contains(container, val) (quite simple, but convenient).
template<typename C, typename T>
bool contains(const C& container, const T& val) {
return std::find(std::begin(container), std::end(container), val) != std::end(container);
}
remove_unstable(begin, end, value)
A faster version of std::remove with the exception that it doesn't preserve the order of the remaining objects.
template <typename T>
T remove_unstable(T start, T stop, const typename T::value_type& val){
while(start != stop) {
if (*start == val) {
--stop;
::std::iter_swap(start, stop);
} else {
++start;
}
}
return stop;
}
(in the case of a vector of pod types (int, float etc) and almost all objects are removed, std::remove might be faster).
template < class T >
class temp_value {
public :
temp_value(T& var) : _var(var), _original(var) {}
~temp_value() { _var = _original; }
private :
T& _var;
T _original;
temp_value(const temp_value&);
temp_value& operator=(const temp_value&);
};
Ok, since it seems this isn't as straight-forward as I thought, here's an explanation:
In its constructor temp_value stores a reference to a variable and a copy of the variable's original value. In its destructor it restores the referenced variable to its original value. So, no matter what you did to the variable between construction and destruction, it will be reset when the temp_value object goes out of scope.
Use it like this:
void f(some_type& var)
{
temp_value<some_type> restorer(var); // remembers var's value
// change var as you like
g(var);
// upon destruction restorer will restore var to its original value
}
Here's another approach that uses the scope-guard trick:
namespace detail
{
// use scope-guard trick
class restorer_base
{
public:
// call to flag the value shouldn't
// be restored at destruction
void dismiss(void) const
{
mDismissed = true;
}
protected:
// creation
restorer_base(void) :
mDismissed(false)
{}
restorer_base(const restorer_base& pOther) :
mDismissed(pOther.is_dismissed())
{
// take "ownership"
pOther.dismiss();
}
~restorer_base(void) {} // non-virtual
// query
bool is_dismissed(void) const
{
return mDismissed;
}
private:
// not copy-assignable, copy-constructibility is ok
restorer_base& operator=(const restorer_base&);
mutable bool mDismissed;
};
// generic single-value restorer, could be made
// variadic to store and restore several variables
template <typename T>
class restorer_holder : public restorer_base
{
public:
restorer_holder(T& pX) :
mX(pX),
mValue(pX)
{}
~restorer_holder(void)
{
if (!is_dismissed())
mX = mValue;
}
private:
// not copy-assignable, copy-constructibility is ok
restorer_holder& operator=(const restorer_holder&);
T& mX;
T mValue;
};
}
// store references to generated holders
typedef const detail::restorer_base& restorer;
// generator (could also be made variadic)
template <typename T>
detail::restorer_holder<T> store(T& pX)
{
return detail::restorer_holder<T>(pX);
}
It's just a bit more boiler-plate code, but allows a cleaner usage:
#include <iostream>
template <typename T>
void print(const T& pX)
{
std::cout << pX << std::endl;
}
void foo(void)
{
double d = 10.0;
double e = 12.0;
print(d); print(e);
{
restorer f = store(d);
restorer g = store(e);
d = -5.0;
e = 3.1337;
print(d); print(e);
g.dismiss();
}
print(d); print(e);
}
int main(void)
{
foo();
int i = 5;
print(i);
{
restorer r = store(i);
i *= 123;
print(i);
}
print(i);
}
It removes its ability to be used in a class, though.
Here's a third way to achieve the same effect (which doesn't suffer from the problems of potentially throwing destructors):
Implementation:
//none -- it is built into the language
Usage:
#include <iostream>
template <typename T>
void print(const T& pX)
{
std::cout << pX << std::endl;
}
void foo(void)
{
double d = 10.0;
double e = 12.0;
print(d); print(e);
{
double f(d);
double g(e);
f = -5.0;
g = 3.1337;
print(f); print(g);
e = std::move(g);
}
print(d); print(e);
}
int main(void)
{
foo();
int i = 5;
print(i);
{
int r(i);
r *= 123;
print(r);
}
print(i);
}
Not really a wrapper, but the infamous missing copy_if. From here
template<typename In, typename Out, typename Pred>
Out copy_if(In first, In last, Out res, Pred Pr)
{
while (first != last) {
if (Pr(*first)) {
*res++ = *first;
}
++first;
}
return res;
}
template< typename T, std::size_t sz >
inline T* begin(T (&array)[sz]) {return array;}
template< typename T, std::size_t sz >
inline T* end (T (&array)[sz]) {return array + sz;}
Sometimes I feel like I'm in begin() and end() hell. I'd like to have some functions like:
template<typename T>
void sort(T& x)
{
std::sort(x.begin(), x.end());
}
and other similar ones for std::find, std::for_each, and basically all the STL algorithms.
I feel that sort(x) is much quicker to read/understand than sort(x.begin(), x.end()).
I don't use this one nearly as much anymore, but it used to be a staple:
template<typename T>
std::string make_string(const T& data) {
std::ostringstream stream;
stream << data;
return stream.str();
}
Will update with more as I remember them. :P
The utility function in everyones toolbox is of course copy_if. Not really a wrapper though.
Another helper I commonly use is deleter, a functor I use with std::for_each to delete all pointers in a container.
[edit]
Digging through my "sth.h" I also found vector<wstring> StringSplit(wstring const&, wchar_t);
I have a header which puts the following in the "util" namespace:
// does a string contain another string
inline bool contains(const std::string &s1, const std::string &s2) {
return s1.find(s2) != std::string::npos;
}
// remove trailing whitespace
inline std::string &rtrim(std::string &s) {
s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
return s;
}
// remove leading whitespace
inline std::string &ltrim(std::string &s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(), std::not1(std::ptr_fun<int, int>(std::isspace))));
return s;
}
// remove whitespace from both ends
inline std::string &trim(std::string &s) {
return ltrim(rtrim(s));
}
// split a string based on a delimeter and return the result (you pass an existing vector for the results)
inline std::vector<std::string> &split(const std::string &s, char delim, std::vector<std::string> &elems) {
std::stringstream ss(s);
std::string item;
while(std::getline(ss, item, delim)) {
elems.push_back(item);
}
return elems;
}
// same as above, but returns a vector for you
inline std::vector<std::string> split(const std::string &s, char delim) {
std::vector<std::string> elems;
return split(s, delim, elems);
}
// does a string end with another string
inline bool endswith(const std::string &s, const std::string &ending) {
return ending.length() <= s.length() && s.substr(s.length() - ending.length()) == ending;
}
// does a string begin with another string
inline bool beginswith(const std::string &s, const std::string &start) {
return s.compare(0, start.length(), start) == 0;
}
The infamously missing erase algorithm:
template <
class Container,
class Value
>
void erase(Container& ioContainer, Value const& iValue)
{
ioContainer.erase(
std::remove(ioContainer.begin(),
ioContainer.end(),
iValue),
ioContainer.end());
} // erase
template <
class Container,
class Pred
>
void erase_if(Container& ioContainer, Pred iPred)
{
ioContainer.erase(
std::remove_if(ioContainer.begin(),
ioContainer.end(),
iPred),
ioContainer.end());
} // erase_if
Wrapping sprintf
string example = function("<li value='%d'>Buffer at: 0x%08X</li>", 42, &some_obj);
// 'function' is one of the functions below: Format or stringf
The goal is decoupling formatting from output without getting into trouble with sprintf and its ilk. It's not pretty, but it's very useful, especially if your coding guidelines ban iostreams.
Here is a version which allocates as needed, from Neil Butterworth. [View revision history for Mike's version, which I removed as a subset of the remaining two. It is similar to Neil's, except the latter is exception-safe by using vector instead of delete[]: string's ctor will throw on allocation failure. Mike's also uses the same technique shown later to determine size up front. –RP]
string Format( const char * fmt, ... ) {
const int BUFSIZE = 1024;
int size = BUFSIZE, rv = -1;
vector <char> buf;
do {
buf.resize( size );
va_list valist;
va_start( valist, fmt );
// if _vsnprintf() returns < 0, the buffer wasn't big enough
// so increase buffer size and try again
// NOTE: MSFT's _vsnprintf is different from C99's vsnprintf,
// which returns non-negative on truncation
// http://msdn.microsoft.com/en-us/library/1kt27hek.aspx
rv = _vsnprintf( &buf[0], size, fmt, valist );
va_end( valist );
size *= 2;
}
while( rv < 0 );
return string( &buf[0] );
}
Here is a version which determines the needed size up front, from Roger Pate. This requires writable std::strings, which are provided by popular implementations, but are explicitly required by C++0x. [View revision history for Marcus' version, which I removed as it is slightly different but essentially a subset of the below. –RP]
Implementation
void vinsertf(std::string& s, std::string::iterator it,
char const* fmt, int const chars_needed, va_list args
) {
using namespace std;
int err; // local error code
if (chars_needed < 0) err = errno;
else {
string::size_type const off = it - s.begin(); // save iterator offset
if (it == s.end()) { // append to the end
s.resize(s.size() + chars_needed + 1); // resize, allow snprintf's null
it = s.begin() + off; // iterator was invalidated
err = vsnprintf(&*it, chars_needed + 1, fmt, args);
s.resize(s.size() - 1); // remove snprintf's null
}
else {
char saved = *it; // save char overwritten by snprintf's null
s.insert(it, chars_needed, '\0'); // insert needed space
it = s.begin() + off; // iterator was invalidated
err = vsnprintf(&*it, chars_needed + 1, fmt, args);
*(it + chars_needed) = saved; // restore saved char
}
if (err >= 0) { // success
return;
}
err = errno;
it = s.begin() + off; // above resize might have invalidated 'it'
// (invalidation is unlikely, but allowed)
s.erase(it, it + chars_needed);
}
string what = stringf("vsnprintf: [%d] ", err);
what += strerror(err);
throw runtime_error(what);
}
Public interface
std::string stringf(char const* fmt, ...) {
using namespace std;
string s;
va_list args;
va_start(args, fmt);
int chars_needed = vsnprintf(0, 0, fmt, args);
va_end(args);
va_start(args, fmt);
try {
vinsertf(s, s.end(), fmt, chars_needed, args);
}
catch (...) {
va_end(args);
throw;
}
va_end(args);
return s;
}
// these have nearly identical implementations to stringf above:
std::string& appendf(std::string& s, char const* fmt, ...);
std::string& insertf(std::string& s, std::string::iterator it,
char const* fmt, ...);
The is_sorted utility, to test containers before applying algorithms like include which expect a sorted entry:
template <
class FwdIt
>
bool is_sorted(FwdIt iBegin, FwdIt iEnd)
{
typedef typename std::iterator_traits<FwdIt>::value_type value_type;
return adjacent_find(iBegin, iEnd, std::greater<value_type>()) == iEnd;
} // is_sorted
template <
class FwdIt,
class Pred
>
bool is_sorted_if(FwdIt iBegin, FwdIt iEnd, Pred iPred)
{
if (iBegin == iEnd) return true;
FwdIt aIt = iBegin;
for (++aIt; aIt != iEnd; ++iBegin, ++aIt)
{
if (!iPred(*iBegin, *aIt)) return false;
}
return true;
} // is_sorted_if
Yeah, I know, would be better to negate the predicate and use the predicate version of adjacent_find :)
Definitely boost::addressof
//! \brief Fills reverse_map from map, so that all keys of map
// become values of reverse_map and all values become keys.
//! \note This presumes that there is a one-to-one mapping in map!
template< typename T1, typename T2, class TP1, class TA1, class TP2, class TA2 >
inline void build_reverse_map( const std::map<T1,T2,TP1,TA1>& map
, std::map<T2,T1,TP2,TA2>& reverse_map)
{
typedef std::map<T1,T2,TP1,TA1> map_type;
typedef std::map<T2,T1,TP2,TA2> r_map_type;
typedef typename r_map_type::value_type r_value_type;
for( typename map_type::const_iterator it=map.begin(),
end=map.end(); it!=end; ++it ) {
const r_value_type v(it->second,it->first);
const bool was_new = reverse_map.insert(v).second;
assert(was_new);
}
}
Looking at my stl_util.h, many of the classics (deleter functions, copy_if), and also this one (probably also quite common, but I don't see it given in the responses so far) for searching through a map and returning either the found value or a default, ala get in Python's dict:
template<typename K, typename V>
inline V search_map(const std::map<K, V>& mapping,
const K& key,
const V& null_result = V())
{
typename std::map<K, V>::const_iterator i = mapping.find(key);
if(i == mapping.end())
return null_result;
return i->second;
}
Using the default null_result of a default-constructed V is much as same as the behavior of std::map's operator[], but this is useful when the map is const (common for me), or if the default-constructed V isn't the right thing to use.
Here's my set of extra-utils, built on top of a boost.range'ish std-algo wrapper that you might need for some functions. (that's trivial to write, this is the interesting stuff)
#pragma once
/** #file
#brief Defines various utility classes/functions for handling ranges/function objects
in addition to bsRange (which is a ranged version of the \<algorithm\> header)
Items here uses a STL/boost-style naming due to their 'templatised' nature.
If template variable is R, anything matching range_concept can be used.
If template variable is C, it must be a container object (supporting C::erase())
*/
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/smart_ptr.hpp>
namespace boost
{
struct use_default;
template<class T>
class iterator_range;
#pragma warning(disable: 4348) // redeclaration of template default parameters (this clashes with fwd-decl in boost/transform_iterator.hpp)
template <
class UnaryFunction
, class Iterator
, class Reference = use_default
, class Value = use_default
>
class transform_iterator;
template <
class Iterator
, class Value = use_default
, class Category = use_default
, class Reference = use_default
, class difference = use_default
>
class indirect_iterator;
template<class T>
struct range_iterator;
template <
class Incrementable
, class CategoryOrTraversal = use_default
, class difference = use_default
>
class counting_iterator;
template <class Predicate, class Iterator>
class filter_iterator;
}
namespace orz
{
/// determines if any value that compares equal exists in container
template<class R, class T>
inline bool contains(const R& r, const T& v)
{
return std::find(boost::begin(r), boost::end(r), v) != boost::end(r);
}
/// determines if predicate evaluates to true for any value in container
template<class R, class F>
inline bool contains_if(const R& r, const F& f)
{
return std::find_if(boost::begin(r), boost::end(r), f) != boost::end(r);
}
/// insert elements in range r at end of container c
template<class R, class C>
inline void insert(C& c, const R& r)
{
c.insert(c.end(), boost::begin(r), boost::end(r));
}
/// copy elements that match predicate
template<class I, class O, class P>
inline void copy_if(I i, I end, O& o, const P& p)
{
for (; i != end; ++i) {
if (p(*i)) {
*o = *i;
++o;
}
}
}
/// copy elements that match predicate
template<class R, class O, class P>
inline void copy_if(R& r, O& o, const P& p)
{
copy_if(boost::begin(r), boost::end(r), o, p);
}
/// erases first element that compare equal
template<class C, class T>
inline bool erase_first(C& c, const T& v)
{
typename C::iterator end = boost::end(c);
typename C::iterator i = std::find(boost::begin(c), end, v);
return i != c.end() ? c.erase(i), true : false;
}
/// erases first elements that match predicate
template<class C, class F>
inline bool erase_first_if(C& c, const F& f)
{
typename C::iterator end = boost::end(c);
typename C::iterator i = std::find_if(boost::begin(c), end, f);
return i != end ? c.erase(i), true : false;
}
/// erase all elements (doesn't deallocate memory for std::vector)
template<class C>
inline void erase_all(C& c)
{
c.erase(c.begin(), c.end());
}
/// erase all elements that compare equal
template<typename C, typename T>
int erase(C& c, const T& value)
{
int n = 0;
for (boost::range_iterator<C>::type i = boost::begin(c); i != boost::end(c);) {
if (*i == value) {
i = c.erase(i);
++n;
} else {
++i;
}
}
return n;
}
/// erase all elements that match predicate
template<typename C, typename F>
int erase_if(C& c, const F& f)
{
int n = 0;
for (boost::range_iterator<C>::type i = boost::begin(c); i != boost::end(c);) {
if (f(*i)) {
i = c.erase(i);
++n;
} else {
++i;
}
}
return n;
}
/// erases all consecutive duplicates from container (sort container first to get all)
template<class C>
inline int erase_duplicates(C& c)
{
boost::range_iterator<C>::type i = std::unique(c.begin(), c.end());
typename C::size_type n = std::distance(i, c.end());
c.erase(i, c.end());
return n;
}
/// erases all consecutive duplicates, according to predicate, from container (sort container first to get all)
template<class C, class F>
inline int erase_duplicates_if(C& c, const F& f)
{
boost::range_iterator<C>::type i = std::unique(c.begin(), c.end(), f);
typename C::size_type n = std::distance(i, c.end());
c.erase(i, c.end());
return n;
}
/// fill but for the second value in each pair in range
template<typename R, typename V>
inline void fill_second(R& r, const V& v)
{
boost::range_iterator<R>::type i(boost::begin(r)), end(boost::end(r));
for (; i != end; ++i) {
i->second = v;
}
}
/// applying function to corresponding pair through both ranges, min(r1.size(), r2,size()) applications
template<typename R1, typename R2, typename F>
void for_each2(R1& r1, R2& r2, const F& f)
{
boost::range_iterator<R1>::type i(boost::begin(r1)), i_end(boost::end(r1));
boost::range_iterator<R2>::type j(boost::begin(r2)), j_end(boost::end(r2));
for(;i != i_end && j != j_end; ++i, ++j) {
f(*i, *j);
}
}
/// applying function to corresponding pair through both ranges, min(r1.size(), r2,size()) applications
template<typename R1, typename R2, typename R3, typename F>
void for_each3(R1& r1, R2& r2, R3& r3, const F& f)
{
boost::range_iterator<R1>::type i(boost::begin(r1)), i_end(boost::end(r1));
boost::range_iterator<R2>::type j(boost::begin(r2)), j_end(boost::end(r2));
boost::range_iterator<R3>::type k(boost::begin(r3)), k_end(boost::end(r3));
for(;i != i_end && j != j_end && k != k_end; ++i, ++j, ++k) {
f(*i, *j, *k);
}
}
/// applying function to each possible permutation of objects, r1.size() * r2.size() applications
template<class R1, class R2, class F>
void for_each_permutation(R1 & r1, R2& r2, const F& f)
{
typedef boost::range_iterator<R1>::type R1_iterator;
typedef boost::range_iterator<R2>::type R2_iterator;
R1_iterator end_1 = boost::end(r1);
R2_iterator begin_2 = boost::begin(r2);
R2_iterator end_2 = boost::end(r2);
for(R1_iterator i = boost::begin(r1); i != end_1; ++i) {
for(R2_iterator j = begin_2; j != end_2; ++j) {
f(*i, *j);
}
}
}
template <class R>
inline boost::iterator_range<boost::indirect_iterator<typename boost::range_iterator<R>::type > >
make_indirect_range(R& r)
{
return boost::iterator_range<boost::indirect_iterator<typename boost::range_iterator<R>::type > > (r);
}
template <class R, class F>
inline boost::iterator_range<boost::transform_iterator<F, typename boost::range_iterator<R>::type> >
make_transform_range(R& r, const F& f)
{
return boost::iterator_range<boost::transform_iterator<F, typename boost::range_iterator<R>::type> >(
boost::make_transform_iterator(boost::begin(r), f),
boost::make_transform_iterator(boost::end(r), f));
}
template <class T>
inline boost::iterator_range<boost::counting_iterator<T> >
make_counting_range(T begin, T end)
{
return boost::iterator_range<boost::counting_iterator<T> >(
boost::counting_iterator<T>(begin), boost::counting_iterator<T>(end));
}
template <class R, class F>
inline boost::iterator_range<boost::filter_iterator<F, typename boost::range_iterator<R>::type> >
make_filter_range(R& r, const F& f)
{
return boost::iterator_range<boost::filter_iterator<F, typename boost::range_iterator<R>::type> >(
boost::make_filter_iterator(f, boost::begin(r), boost::end(r)),
boost::make_filter_iterator(f, boost::end(r), boost::end(r)));
}
namespace detail {
template<class T>
T* get_pointer(T& p) {
return &p;
}
}
/// compare member function/variable equal to value. Create using #ref mem_eq() to avoid specfying types
template<class P, class V>
struct mem_eq_type
{
mem_eq_type(const P& p, const V& v) : m_p(p), m_v(v) { }
template<class T>
bool operator()(const T& a) const {
using boost::get_pointer;
using orz::detail::get_pointer;
return (get_pointer(a)->*m_p) == m_v;
}
P m_p;
V m_v;
};
template<class P, class V>
mem_eq_type<P,V> mem_eq(const P& p, const V& v)
{
return mem_eq_type<P,V>(p, v);
}
/// helper macro to define function objects that compare member variables of a class
#define ORZ_COMPARE_MEMBER(NAME, OP) \
template <class P> \
struct NAME##_type \
{ \
NAME##_type(const P&p) : m_p(p) {} \
template<class T> \
bool operator()(const T& a, const T& b) const { \
return (a.*m_p) OP (b.*m_p); \
} \
P m_p; \
}; \
template <class P> \
NAME##_type<P> NAME(const P& p) { return NAME##_type<P>(p); }
#define ORZ_COMPARE_MEMBER_FN(NAME, OP) \
template <class P> \
struct NAME##_type \
{ \
NAME##_type(const P&p) : m_p(p) {} \
template<class T> \
bool operator()(const T& a, const T& b) const { \
return (a.*m_p)() OP (b.*m_p)(); \
} \
P m_p; \
}; \
template <class P> \
NAME##_type<P> NAME(const P& p) { return NAME##_type<P>(p); }
/// helper macro to wrap range functions as function objects (value return)
#define ORZ_RANGE_WRAP_VALUE_2(FUNC, RESULT) \
struct FUNC##_ \
{ \
typedef RESULT result_type; \
template<typename R, typename F> \
inline RESULT operator() (R& r, const F& f) const \
{ \
return FUNC(r, f); \
} \
};
/// helper macro to wrap range functions as function objects (void return)
#define ORZ_RANGE_WRAP_VOID_2(FUNC) \
struct FUNC##_ \
{ \
typedef void result_type; \
template<typename R, typename F> \
inline void operator() (R& r, const F& f) const \
{ \
FUNC(r, f); \
} \
};
/// helper macro to wrap range functions as function objects (void return, one argument)
#define ORZ_RANGE_WRAP_VOID_1(FUNC) \
struct FUNC##_ \
{ \
typedef void result_type; \
template<typename R> \
inline void operator() (R& r) const \
{ \
FUNC(r); \
} \
};
ORZ_RANGE_WRAP_VOID_2(for_each);
ORZ_RANGE_WRAP_VOID_1(erase_all);
ORZ_RANGE_WRAP_VALUE_2(contains, bool);
ORZ_RANGE_WRAP_VALUE_2(contains_if, bool);
ORZ_COMPARE_MEMBER(mem_equal, ==)
ORZ_COMPARE_MEMBER(mem_not_equal, !=)
ORZ_COMPARE_MEMBER(mem_less, <)
ORZ_COMPARE_MEMBER(mem_greater, >)
ORZ_COMPARE_MEMBER(mem_lessequal, <=)
ORZ_COMPARE_MEMBER(mem_greaterequal, >=)
ORZ_COMPARE_MEMBER_FN(mem_equal_fn, ==)
ORZ_COMPARE_MEMBER_FN(mem_not_equal_fn, !=)
ORZ_COMPARE_MEMBER_FN(mem_less_fn, <)
ORZ_COMPARE_MEMBER_FN(mem_greater_fn, >)
ORZ_COMPARE_MEMBER_FN(mem_lessequal_fn, <=)
ORZ_COMPARE_MEMBER_FN(mem_greaterequal_fn, >=)
#undef ORZ_COMPARE_MEMBER
#undef ORZ_RANGE_WRAP_VALUE_2
#undef ORZ_RANGE_WRAP_VOID_1
#undef ORZ_RANGE_WRAP_VOID_2
}
I seem to need a Cartesian product, for example {A, B}, {1, 2} -> {(A,1), (A,2), (B,1), (B,2)}
// OutIt needs to be an iterator to a container of std::pair<Type1, Type2>
template <typename InIt1, typename InIt2, typename OutIt>
OutIt
cartesian_product(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt out)
{
for (; first1 != last1; ++first1)
for (InIt2 it = first2; it != last2; ++it)
*out++ = std::make_pair(*first1, *it);
return out;
}
I would call such an append function by its name and would use operator+= , operator*= and so on for element-wise operations, such as:
template<typename X> inline void operator+= (std::vector<X>& vec1, const X& value)
{
std::transform( vec1.begin(), vec1.end(), vec1.begin(), std::bind2nd(std::plus<X>(),value) );
}
template<typename X> inline void operator+= (std::vector<X>& vec1, const std::vector<X>& vec2)
{
std::transform( vec1.begin(), vec1.end(), vec2.begin(), vec1.begin(), std::plus<X>() );
}
some other simple and obvious wrappers as implied before:
template<typename X> inline void sort_and_unique(std::vector<X> &vec)
{
std::sort( vec.begin(), vec.end() );
vec.erase( std::unique( vec.begin(), vec.end() ), vec.end() );
}
template<typename X> inline void clear_vec(std::vector<X> &vec)
{
std::vector<X>().swap(vec);
}
template<typename X> inline void trim_vec(std::vector<X> &vec, std::size_t new_size)
{
if (new_size<vec.size())
std::vector<X>(vec.begin(),vec.begin() + new_size).swap(vec);
else
std::vector<X>(vec).swap(vec);
}
Insert a new item and return it, useful for simple move semantics like push_back(c).swap(value) and related cases.
template<class C>
typename C::value_type& push_front(C& container) {
container.push_front(typename C::value_type());
return container.front();
}
template<class C>
typename C::value_type& push_back(C& container) {
container.push_back(typename C::value_type());
return container.back();
}
template<class C>
typename C::value_type& push_top(C& container) {
container.push(typename C::value_type());
return container.top();
}
Pop and return an item:
template<class C>
typename C::value_type pop_front(C& container) {
typename C::value_type copy (container.front());
container.pop_front();
return copy;
}
template<class C>
typename C::value_type pop_back(C& container) {
typename C::value_type copy (container.back());
container.pop_back();
return copy;
}
template<class C>
typename C::value_type pop_top(C& container) {
typename C::value_type copy (container.top());
container.pop();
return copy;
}
IMO there needs to be more functionality for pair:
#ifndef pair_iterator_h_
#define pair_iterator_h_
#include <boost/iterator/transform_iterator.hpp>
#include <functional>
#include <utility>
// pair<T1, T2> -> T1
template <typename PairType>
struct PairGetFirst : public std::unary_function<PairType, typename PairType::first_type>
{
typename typename PairType::first_type& operator()(PairType& arg) const
{ return arg.first; }
const typename PairType::first_type& operator()(const PairType& arg) const
{ return arg.first; }
};
// pair<T1, T2> -> T2
template <typename PairType>
struct PairGetSecond : public std::unary_function<PairType, typename PairType::second_type>
{
typename PairType::second_type& operator()(PairType& arg) const
{ return arg.second; }
const typename PairType::second_type& operator()(const PairType& arg) const
{ return arg.second; }
};
// iterator over pair<T1, T2> -> iterator over T1
template <typename Iter>
boost::transform_iterator<PairGetFirst<typename std::iterator_traits<Iter>::value_type>, Iter>
make_first_iterator(Iter i)
{
return boost::make_transform_iterator(i,
PairGetFirst<typename std::iterator_traits<Iter>::value_type>());
}
// iterator over pair<T1, T2> -> iterator over T2
template <typename Iter>
boost::transform_iterator<PairGetSecond<typename std::iterator_traits<Iter>::value_type>, Iter>
make_second_iterator(Iter i)
{
return boost::make_transform_iterator(i,
PairGetSecond<typename std::iterator_traits<Iter>::value_type>());
}
// T1 -> pair<T1, T2>
template <typename FirstType, typename SecondType>
class InsertIntoPair1st : public std::unary_function<FirstType, std::pair<FirstType, SecondType> >
{
public:
InsertIntoPair1st(const SecondType& second_element) : second_(second_element) {}
result_type operator()(const FirstType& first_element)
{
return result_type(first_element, second_);
}
private:
SecondType second_;
};
// T2 -> pair<T1, T2>
template <typename FirstType, typename SecondType>
class InsertIntoPair2nd : public std::unary_function<SecondType, std::pair<FirstType, SecondType> >
{
public:
InsertIntoPair2nd(const FirstType& first_element) : first_(first_element) {}
result_type operator()(const SecondType& second_element)
{
return result_type(first_, second_element);
}
private:
FirstType first_;
};
#endif // pair_iterator_h_
template <typename T> size_t bytesize(std::vector<T> const& v) { return sizeof(T) * v.size(); }
If you need to use a lot of functions that take pointer + number of bytes, it's always just
fun(vec.data(), bytesize(vec));
Duplicate a string with *:
std::string operator*(std::string s, size_t n)
{
std::stringstream ss;
for (size_t i=0; i<n; i++) ss << s;
return ss.str();
}
One of my favorite is the Transposer that finds a transpose of a tuple of containers of the same size. That is, if you have a tuple<vector<int>,vector<float>>, it converts it into a vector<tuple<int, float>>. Comes handy in XML programming. Here is how I did it.
#include <iostream>
#include <iterator>
#include <vector>
#include <list>
#include <algorithm>
#include <stdexcept>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include <boost/type_traits.hpp>
using namespace boost;
template <class TupleOfVectors>
struct GetTransposeTuple;
template <>
struct GetTransposeTuple<tuples::null_type>
{
typedef tuples::null_type type;
};
template <class TupleOfVectors>
struct GetTransposeTuple
{
typedef typename TupleOfVectors::head_type Head;
typedef typename TupleOfVectors::tail_type Tail;
typedef typename
tuples::cons<typename remove_reference<Head>::type::value_type,
typename GetTransposeTuple<Tail>::type> type;
};
template <class TupleOfVectors,
class ValueTypeTuple =
typename GetTransposeTuple<TupleOfVectors>::type,
unsigned int TUPLE_INDEX = 0>
struct Transposer
: Transposer <typename TupleOfVectors::tail_type,
ValueTypeTuple,
TUPLE_INDEX + 1>
{
typedef typename remove_reference<typename TupleOfVectors::head_type>::type
HeadContainer;
typedef typename TupleOfVectors::tail_type Tail;
typedef Transposer<Tail, ValueTypeTuple, TUPLE_INDEX + 1> super;
typedef std::vector<ValueTypeTuple> Transpose;
Transposer(TupleOfVectors const & tuple)
: super(tuple.get_tail()),
head_container_(tuple.get_head()),
head_iter_(head_container_.begin())
{}
Transpose get_transpose ()
{
Transpose tran;
tran.reserve(head_container_.size());
for(typename HeadContainer::const_iterator iter = head_container_.begin();
iter != head_container_.end();
++iter)
{
ValueTypeTuple vtuple;
this->populate_tuple(vtuple);
tran.push_back(vtuple);
}
return tran;
}
private:
HeadContainer const & head_container_;
typename HeadContainer::const_iterator head_iter_;
protected:
void populate_tuple(ValueTypeTuple & vtuple)
{
if(head_iter_ == head_container_.end())
throw std::runtime_error("Container bound exceeded.");
else
{
vtuple.get<TUPLE_INDEX>() = *head_iter_++;
super::populate_tuple (vtuple);
}
}
};
template <class ValueTypeTuple,
unsigned int INDEX>
struct Transposer <tuples::null_type, ValueTypeTuple, INDEX>
{
void populate_tuple(ValueTypeTuple &) {}
Transposer (tuples::null_type const &) {}
};
template <class TupleOfVectors>
typename Transposer<TupleOfVectors>::Transpose
transpose (TupleOfVectors const & tupleofv)
{
return Transposer<TupleOfVectors>(tupleofv).get_transpose();
}
int main (void)
{
typedef std::vector<int> Vint;
typedef std::list<float> Lfloat;
typedef std::vector<long> Vlong;
Vint vint;
Lfloat lfloat;
Vlong vlong;
std::generate_n(std::back_inserter(vint), 10, rand);
std::generate_n(std::back_inserter(lfloat), 10, rand);
std::generate_n(std::back_inserter(vlong), 10, rand);
typedef tuples::tuple<Vint, Lfloat, Vlong> TupleOfV;
typedef GetTransposeTuple<TupleOfV>::type TransposeTuple;
Transposer<TupleOfV>::Transpose tran =
transpose(make_tuple(vint, lfloat, vlong));
// Or alternatively to avoid copying
// transpose(make_tuple(ref(vint), ref(lfloat), ref(vlong)));
std::copy(tran.begin(), tran.end(),
std::ostream_iterator<TransposeTuple>(std::cout, "\n"));
return 0;
}
Not sure if these qualify as std wrappers, but my commonly used helper functions are:
void split(string s, vector<string> parts, string delims);
string join(vector<string>& parts, string delim);
int find(T& array, const V& value);
void assert(bool condition, string message);
V clamp(V value, V minvalue, V maxvalue);
string replace(string s, string from, string to);
const char* stristr(const char* a,const char*b);
string trim(string str);
T::value_type& dyn(T& array,int index);
T and V here are template arguments. The last function works the same way as []-operator, but with automating resizing to fit needed index.
Similar to what people posted before, I have convenience overloads of algorithms for simplifying passing iterator arguments. I call algorithms like this:
for_each(iseq(vec), do_it());
I overloaded all the algorithms such that they take a single parameter of type input_sequence_range<> instead of the two input iterators (input as in anything that isn't mere output).
template<typename In>
struct input_sequence_range
: public std::pair<In,In>
{
input_sequence_range(In first, In last)
: std::pair<In,In>(first, last)
{ }
};
And this is how iseq() works:
template<typename C>
input_sequence_range<typename C::const_iterator> iseq(const C& c)
{
return input_sequence_range<typename C::const_iterator>(c.begin(),
c.end());
}
Similarly, I have specializations for
const_iterators
pointers (primitive arrays)
stream iterators
any range [begin,end) just for a uniform use: use iseq() for everything
Unordered erase for std::vector. The most efficient way to erase an element from a vector but it does not preserve the order of elements. I didn't see the point of extending it to other containers since most don't have the same penalty for removing items from the middle. It's similar to some other templates already posted but it uses std::swap to move items instead of copying.
template<typename T>
void unordered_erase(std::vector<T>& vec, const typename std::vector<T>::iterator& it)
{
if (it != vec.end()) // if vec is empty, begin() == end()
{
std::swap(vec.back(), *it);
vec.pop_back();
}
}
Signum returns the sign of a type. Returns -1 for negative, 0 for zero and 1 for positive.
template <typename T>
int signum(T val)
{
return (val > T(0)) - (val < T(0));
}
Clamp is pretty self explanatory, it clamps a value so that it lies within the given range. It boggles my mind that the Standard Library includes min and max but not clamp
template<typename T>
T clamp(const T& value, const T& lower, const T& upper)
{
return value < lower ? lower : (value > upper ? upper : value);
}