Fading effect when readings jump between high and low to reduce variablility - c++

I have created a circuit using an arduino that powers LED strips that listen to microphone inputs, and output the number of LEDs to light up depending on the noise level in the room. This works great for music etc.
My issue is that the output from the microphone is highly variable, and the LEDs are quite "flashy" in the sense that they respond too much to changes in decibel readings.
The levels I'm using are fine, and I'm happy with my gain settings.
The image above shows an example of a level meter (specifically for Logic Pro X). This level meter does the same as mine, however it has a "holding" period where the peak stays where it is and gradually drops off if the level reported by the audio is low.
This effect is important because it suits reduces the flashing between high and low volumes.
Mine currently does not have this effect, which is why the LED's are so variable.
Does anyone know of any smoothing/fading methods I could investigate the use case of so my level meter doesn't appear so jumpy?

Smoothing to make the readings less sporadic and gradually dropping the peak are two different effects commonly used in sound level meters like those on a graphic equalizer.
Smoothing can be pretty simple if you're reading a sensor at regular intervals. (You should probably check the datasheet to determine whether your sensor is already doing some filtering.) Instead of displaying the actual reading, you incorporate each reading into a weighted average, effectively making a low-pass filter.
current_reading = read_the_sensor();
value_to_display = k1 * value_to_display + k2 * current_reading;
You choose two constants k1 and k2 such that k1 + k2 == 1 and k1 > k2. If you're working with integer arithmetic, you can approximate this by using integers for k1 and k2 and dividing the the result by their sum:
value_to_display = (k1 * value_to_display + k2 * current_reading) / (k1 + k2);
I usually start with values like k1 = 4 and k2 = 1 and adjust them until the displayed value feels right.
The falling peak effect can be accomplished in similar way.
if (value_to_display > peak) {
peak = value_to_display;
} else {
peak = k3 * peak / k4;
}
In this case, you want k3 to be slightly less than k4, such as k3 = 9 and k4 = 10. The exact values will depend on how frequently you're updating the values and how fast you want it to fall.
If the value is climbing, the peak rides it up. When the value drops, the peak will drop slowly.

Related

Basic example of how to do numerical integration in C++

I think most people know how to do numerical derivation in computer programming, (as limit --> 0; read: "as the limit approaches zero").
//example code for derivation of position over time to obtain velocity
float currPosition, prevPosition, currTime, lastTime, velocity;
while (true)
{
prevPosition = currPosition;
currPosition = getNewPosition();
lastTime = currTime;
currTime = getTimestamp();
// Numerical derivation of position over time to obtain velocity
velocity = (currPosition - prevPosition)/(currTime - lastTime);
}
// since the while loop runs at the shortest period of time, we've already
// achieved limit --> 0;
This is the basic building block for most derivation programming.
How can I do this with integrals? Do I use a for loop and add or what?
Numerical derivation and integration in code for physics, mapping, robotics, gaming, dead-reckoning, and controls
Pay attention to where I use the words "estimate" vs "measurement" below. The difference is important.
Measurements are direct readings from a sensor.
Ex: a GPS measures position (meters) directly, and a speedometer measures speed (m/s) directly.
Estimates are calculated projections you can obtain through integrating and derivating (deriving) measured values.
Ex: you can derive position measurements (m) with respect to time to obtain speed or velocity (m/s) estimates, and you can integrate speed or velocity measurements (m/s) with respect to time to obtain position or displacement (m) estimates.
Wait, aren't all "measurements" actually just "estimates" at some fundamental level?
Yeah--pretty much! But, they are not necessarily produced through derivations or integrations with respect to time, so that is a bit different.
Also note that technically, virtually nothing can truly be measured directly. All sensors get reduced down to a voltage or a current, and guess how you measure a current?--a voltage!--either as a voltage drop across a tiny resistance, or as a voltage induced through an inductive coil due to current flow. So, everything boils down to a voltage. Even devices which "measure speed directly" may be using pressure (pitot-static tube on airplane), doppler/phase shift (radar or sonar), or looking at distance over time and then outputting speed. Fluid speed, or speed with respect to fluid such as air or water, can even be measured via a hot wire anemometer by measuring the current required to keep a hot wire at a fixed temperature, or by measuring the temperature change of the hot wire at a fixed current. And how is that temperature measured? Temperature is just a thermo-electrically-generated voltage, or a voltage drop across a diode or other resistance.
As you can see, all of these "measurements" and "estimates", at the low level, are intertwined. However, if a given device has been produced, tested, and calibrated to output a given "measurement", then you can accept it as a "source of truth" for all practical purposes and call it a "measurement". Then, anything you derive from that measurement, with respect to time or some other variable, you can consider an "estimate". The irony of this is that if you calibrate your device and output derived or integrated estimates, someone else could then consider your output "estimates" as their input "measurements" in their system, in a sort of never-ending chain down the line. That's being pedantic, however. Let's just go with the simplified definitions I have above for the time being.
The following table is true, for example. Read the 2nd line, for instance, as: "If you take the derivative of a velocity measurement with respect to time, you get an acceleration estimate, and if you take its integral, you get a position estimate."
Derivatives and integrals of position
Measurement, y Derivative Integral
Estimate (dy/dt) Estimate (dy*dt)
----------------------- ----------------------- -----------------------
position [m] velocity [m/s] - [m*s]
velocity [m/s] acceleration [m/s^2] position [m]
acceleration [m/s^2] jerk [m/s^3] velocity [m/s]
jerk [m/s^3] snap [m/s^4] acceleration [m/s^2]
snap [m/s^4] crackle [m/s^5] jerk [m/s^3]
crackle [m/s^5] pop [m/s^6] snap [m/s^4]
pop [m/s^6] - [m/s^7] crackle [m/s^5]
For jerk, snap or jounce, crackle, and pop, see: https://en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth_derivatives_of_position.
1. numerical derivation
Remember, derivation obtains the slope of the line, dy/dx, on an x-y plot. The general form is (y_new - y_old)/(x_new - x_old).
In order to obtain a velocity estimate from a system where you are obtaining repeated position measurements (ex: you are taking GPS readings periodically), you must numerically derivate your position measurements over time. Your y-axis is position, and your x-axis is time, so dy/dx is simply (position_new - position_old)/(time_new - time_old). A units check shows this might be meters/sec, which is indeed a unit for velocity.
In code, that would look like this, for a system where you're only measuring position in 1-dimension:
double position_new_m = getPosition(); // m = meters
double position_old_m;
// `getNanoseconds()` should return a `uint64_t timestamp in nanoseconds, for
// instance
double time_new_sec = NS_TO_SEC((double)getNanoseconds());
double time_old_sec;
while (true)
{
position_old_m = position_new_m;
position_new_m = getPosition();
time_old_sec = time_new_sec;
time_new_sec = NS_TO_SEC((double)getNanoseconds());
// Numerical derivation of position measurements over time to obtain
// velocity in meters per second (mps)
double velocity_mps =
(position_new_m - position_old_m)/(time_new_sec - time_old_sec);
}
2. numerical integration
Numerical integration obtains the area under the curve, dy*dx, on an x-y plot. One of the best ways to do this is called trapezoidal integration, where you take the average dy reading and multiply by dx. This would look like this: (y_old + y_new)/2 * (x_new - x_old).
In order to obtain a position estimate from a system where you are obtaining repeated velocity measurements (ex: you are trying to estimate distance traveled while only reading the speedometer on your car), you must numerically integrate your velocity measurements over time. Your y-axis is velocity, and your x-axis is time, so (y_old + y_new)/2 * (x_new - x_old) is simply velocity_old + velocity_new)/2 * (time_new - time_old). A units check shows this might be meters/sec * sec = meters, which is indeed a unit for distance.
In code, that would look like this. Notice that the numerical integration obtains the distance traveled over that one tiny time interval. To obtain an estimate of the total distance traveled, you must sum all of the individual estimates of distance traveled.
double velocity_new_mps = getVelocity(); // mps = meters per second
double velocity_old_mps;
// `getNanoseconds()` should return a `uint64_t timestamp in nanoseconds, for
// instance
double time_new_sec = NS_TO_SEC((double)getNanoseconds());
double time_old_sec;
// Total meters traveled
double distance_traveled_m_total = 0;
while (true)
{
velocity_old_mps = velocity_new_mps;
velocity_new_mps = getVelocity();
time_old_sec = time_new_sec;
time_new_sec = NS_TO_SEC((double)getNanoseconds());
// Numerical integration of velocity measurements over time to obtain
// a distance estimate (in meters) over this time interval
double distance_traveled_m =
(velocity_old_mps + velocity_new_mps)/2 * (time_new_sec - time_old_sec);
distance_traveled_m_total += distance_traveled_m;
}
See also: https://en.wikipedia.org/wiki/Numerical_integration.
Going further:
high-resolution timestamps
To do the above, you'll need a good way to obtain timestamps. Here are various techniques I use:
In C++, use my uint64_t nanos() function here.
If using Linux in C or C++, use my uint64_t nanos() function which uses clock_gettime() here. Even better, I have wrapped it up into a nice timinglib library for Linux, in my eRCaGuy_hello_world repo here:
timinglib.h
timinglib.c
Here is the NS_TO_SEC() macro from timing.h:
#define NS_PER_SEC (1000000000L)
/// Convert nanoseconds to seconds
#define NS_TO_SEC(ns) ((ns)/NS_PER_SEC)
If using a microcontroller, you'll need to read an incrementing periodic counter from a timer or counter register which you have configured to increment at a steady, fixed rate. Ex: on Arduino: use micros() to obtain a microsecond timestamp with 4-us resolution (by default, it can be changed). On STM32 or others, you'll need to configure your own timer/counter.
use high data sample rates
Taking data samples as fast as possible in a sample loop is a good idea, because then you can average many samples to achieve:
Reduced noise: averaging many raw samples reduces noise from the sensor.
Higher-resolution: averaging many raw samples actually adds bits of resolution in your measurement system. This is known as oversampling.
I write about it on my personal website here: ElectricRCAircraftGuy.com: Using the Arduino Uno’s built-in 10-bit to 16+-bit ADC (Analog to Digital Converter).
And Atmel/Microchip wrote about it in their white-paper here: Application Note AN8003: AVR121: Enhancing ADC resolution by oversampling.
Taking 4^n samples increases your sample resolution by n bits of resolution. For example:
4^0 = 1 sample at 10-bits resolution --> 1 10-bit sample
4^1 = 4 samples at 10-bits resolution --> 1 11-bit sample
4^2 = 16 samples at 10-bits resolution --> 1 12-bit sample
4^3 = 64 samples at 10-bits resolution --> 1 13-bit sample
4^4 = 256 samples at 10-bits resolution --> 1 14-bit sample
4^5 = 1024 samples at 10-bits resolution --> 1 15-bit sample
4^6 = 4096 samples at 10-bits resolution --> 1 16-bit sample
See:
So, sampling at high sample rates is good. You can do basic filtering on these samples.
If you process raw samples at a high rate, doing numerical derivation on high-sample-rate raw samples will end up derivating a lot of noise, which produces noisy derivative estimates. This isn't great. It's better to do the derivation on filtered samples: ex: the average of 100 or 1000 rapid samples. Doing numerical integration on high-sample-rate raw samples, however, is fine, because as Edgar Bonet says, "when integrating, the more samples you get, the better the noise averages out." This goes along with my notes above.
Just using the filtered samples for both numerical integration and numerical derivation, however, is just fine.
use reasonable control loop rates
Control loop rates should not be too fast. The higher the sample rates, the better, because you can filter them to reduce noise. The higher the control loop rate, however, not necessarily the better, because there is a sweet spot in control loop rates. If your control loop rate is too slow, the system will have a slow frequency response and won't respond to the environment fast enough, and if the control loop rate is too fast, it ends up just responding to sample noise instead of to real changes in the measured data.
Therefore, even if you have a sample rate of 1 kHz, for instance, to oversample and filter the data, control loops that fast are not needed, as the noise from readings of real sensors over very small time intervals will be too large. Use a control loop anywhere from 10 Hz ~ 100 Hz, perhaps up to 400+ Hz for simple systems with clean data. In some scenarios you can go faster, but 50 Hz is very common in control systems. The more-complicated the system and/or the more-noisy the sensor measurements, generally, the slower the control loop must be, down to about 1~10 Hz or so. Self-driving cars, for instance, which are very complicated, frequently operate at control loops of only 10 Hz.
loop timing and multi-tasking
In order to accomplish the above, independent measurement and filtering loops, and control loops, you'll need a means of performing precise and efficient loop timing and multi-tasking.
If needing to do precise, repetitive loops in Linux in C or C++, use the sleep_until_ns() function from my timinglib above. I have a demo of my sleep_until_us() function in-use in Linux to obtain repetitive loops as fast as 1 KHz to 100 kHz here.
If using bare-metal (no operating system) on a microcontroller as your compute platform, use timestamp-based cooperative multitasking to perform your control loop and other loops such as measurements loops, as required. See my detailed answer here: How to do high-resolution, timestamp-based, non-blocking, single-threaded cooperative multi-tasking.
full, numerical integration and multi-tasking example
I have an in-depth example of both numerical integration and cooperative multitasking on a bare-metal system using my CREATE_TASK_TIMER() macro in my Full coulomb counter example in code. That's a great demo to study, in my opinion.
Kalman filters
For robust measurements, you'll probably need a Kalman filter, perhaps an "unscented Kalman Filter," or UKF, because apparently they are "unscented" because they "don't stink."
See also
My answer on Physics-based controls, and control systems: the many layers of control

How to sample a value n from one distribution and take n values from another distribution

Disclaimer: I have no idea what I'm doing, in either pymc3 or Bayesian statistics, but I'm trying to learn by diving straight in...
What I think I want to do is:
I have one distribution, A, representing a frequency of events
I have another distribution, B, representing a "cost" of each event
I want to use a sampled frequency, n, from A and sample n costs from B
The result I care about from each draw is the sum of costs
So each draw I would have a variable number of values from B.
My naive attempt to code this was:
with pm.Model() as model:
events = pm.Poisson("events", mu=5)
count = events.random()
losses = [
pm.Lognormal(f"loss[{i}]", 1.2, 0.2)
for i in range(count)
]
year_loss = pm.Deterministic("year_loss", pm.math.sum(losses))
trace = pm.sample(draws=500, chains=1)
total_loss = trace.get_values("year_loss").sum()
print(f"total_loss: {total_loss}")
mean_loss = total_loss / 500
print(f"mean_loss: {mean_loss}")
This "sort of works" in that I can get some output like:
Sequential sampling (1 chains in 1 job)
CompoundStep
>Metropolis: [events]
>NUTS: [loss[4], loss[3], loss[2], loss[1], loss[0]]
Sampling 1 chain for 1_000 tune and 500 draw iterations (1_000 + 500 draws total) took 2 seconds.02<00:00 Sampling chain 0, 0 divergences]
Only one chain was sampled, this makes it impossible to run some convergence checks
total_loss: 8431.667563769252
mean_loss: 16.8633351275385
But what is really happening is that count only has a single value across all draws in the trace.
Instead I wanted it to have an independent value for each draw.
Can someone kindly point me in the right direction?

C++ mathematical function generation

In working on a project I came across the need to generate various waves, accurately. I thought that a simple sine wave would be the easiest to begin with, but it appears that I am mistaken. I made a simple program that generates a vector of samples and then plays those samples back so that the user hears the wave, as a test. Here is the relevant code:
vector<short> genSineWaveSample(int nsamples, float freq, float amp) {
vector<short> samples;
for(float i = 0; i <= nsamples; i++) {
samples.push_back(amp * sinx15(freq*i));
}
return samples;
}
I'm not sure what the issue with this is. I understand that there could be some issue with the vector being made of shorts, but that's what my audio framework wants, and I am inexperienced with that kind of library and so do not know what to expect.
The symptoms are as follows:
frequency not correct
ie: given freq=440, A4 is not the note played back
strange distortion
Most frequencies do not generate a clean wave. 220, 440, 880 are all clean, most others are distorted
Most frequencies are shifted upwards considerably
Can anyone give advice as to what I may be doing wrong?
Here's what I've tried so far:
Making my own sine function, for greater accuracy.
I used a 15th degree Taylor Series expansion for sin(x)
Changed the sample rate, anything from 256 to 44100, no change can be heard given the above errors, the waves are simply more distorted.
Thank you. If there is any information that can help you, I'd be obliged to provide it.
I suspect that you are passing incorrect values to your sin15x function. If you are familiar with the basics of signal processing the Nyquist frequency is the minimum frequency at which you can faithful reconstruct (or in your case construct) a sampled signal. The is defined as 2x the highest frequency component present in the signal.
What this means for your program is that you need at last 2 values per cycle of the highest frequency you want to reproduce. At 20Khz you'd need 40,000 samples per second. It looks like you are just packing a vector with values and letting the playback program sort out the timing.
We will assume you use 44.1Khz as your playback sampling frequency. This means that a snipet of code producing one second of a 1kHz wave would look like
DataStructure wave = new DataStructure(44100) // creates some data structure of 44100 in length
for(int i = 0; i < 44100; i++)
{
wave[i] = sin(2*pi * i * (frequency / 44100) + pi / 2) // sin is in radians, frequency in Hz
}
You need to divide by the frequency, not multiply. To see this, take the case of a 22,050 Hz frequency value is passed. For i = 0, you get sin(0) = 1. For i = 1, sin(3pi/2) = -1 and so on are so forth. This gives you a repeating sequence of 1, -1, 1, -1... which is the correct representation of a 22,050Hz wave sampled at 44.1Khz. This works as you go down in frequency but you get more and more samples per cycle. Interestingly though this does not make a difference. A sinewave sampled at 2 samples per cycle is just as accurately recreated as one that is sampled 1000 times per second. This doesn't take into account noise but for most purposes works well enough.
I would suggest looking into the basics of digital signal processing as it a very interesting field and very useful to understand.
Edit: This assumes all of those parameters are evaluated as floating point numbers.
Fundamentally, you're missing a piece of information. You don't specify the amount of time over which you want your samples taken. This could also be thought of as the rate at which the samples will be played by your system. Something roughly in this direction will get you closer, for now, though.
samples.push_back(amp * std::sin(M_PI / freq *i));

Applying some filter on my accelerometer data - Windows phone 8, C++

I'm placing data from the accelerometer X into a spaceship so that when you tilt the phone left and right, it rolls left and right (slightly).
I have made a ratio because I want my spaceship to only rotate half way if the phone is tilted to -1 or 1 (full tilt).
// accelerometer = Accelerometer::GetDefault();
// player->maxTitle = 0.5 (half of full accelerometer tilt)
double accelX = accelerometer->GetX();
player->currentRotation = ( accelX * player->maxTilt );
Originally this worked really jolty and poorly, so I had a play with the interval settings, vast improvement but still junk... it's rather sensitive now.
accelerometer = Accelerometer::GetDefault();
int reportInterval = 16;
if( accelerometer->MinimumReportInterval > reportInterval )
{
accelerometer->ReportInterval = reportInterval;
}
So I am assuming that I need to do some kind of low filter thing, wiener filter is it? to smooth out the value... can I have some hints and tips on doing such an operation?
I've tried a few formulas but am having difficulties getting them to work... http://forum.arduino.cc/index.php/topic,10716.0.html
The discrete equivalent of a low-pass filter is to limit the difference between multiple readings. This difference should not be too large, else you get the jerky behavior. So, if it is, ignore the accelerometer value, and substitute the previous value plus the maximum allowed difference.
Assume readings 1 6 9 and a maximum change of 4, you'd substitute the 6 with a 5. The differences have now become 4 4 instead of 5 3, which indeed is smoother. There are even smoother filters (using more state), but this should already help.

Converting an FFT to a spectogram

I have an audio file and I am iterating through the file and taking 512 samples at each step and then passing them through an FFT.
I have the data out as a block 514 floats long (Using IPP's ippsFFTFwd_RToCCS_32f_I) with real and imaginary components interleaved.
My problem is what do I do with these complex numbers once i have them? At the moment I'm doing for each value
const float realValue = buffer[(y * 2) + 0];
const float imagValue = buffer[(y * 2) + 1];
const float value = sqrt( (realValue * realValue) + (imagValue * imagValue) );
This gives something slightly usable but I'd rather some way of getting the values out in the range 0 to 1. The problem with he above is that the peaks end up coming back as around 9 or more. This means things get viciously saturated and then there are other parts of the spectrogram that barely shows up despite the fact that they appear to be quite strong when I run the audio through audition's spectrogram. I fully admit I'm not 100% sure what the data returned by the FFT is (Other than that it represents the frequency values of the 512 sample long block I'm passing in). Especially my understanding is lacking on what exactly the compex number represents.
Any advice and help would be much appreciated!
Edit: Just to clarify. My big problem is that the FFT values returned are meaningless without some idea of what the scale is. Can someone point me towards working out that scale?
Edit2: I get really nice looking results by doing the following:
size_t count2 = 0;
size_t max2 = kFFTSize + 2;
while( count2 < max2 )
{
const float realValue = buffer[(count2) + 0];
const float imagValue = buffer[(count2) + 1];
const float value = (log10f( sqrtf( (realValue * realValue) + (imagValue * imagValue) ) * rcpVerticalZoom ) + 1.0f) * 0.5f;
buffer[count2 >> 1] = value;
count2 += 2;
}
To my eye this even looks better than most other spectrogram implementations I have looked at.
Is there anything MAJORLY wrong with what I'm doing?
The usual thing to do to get all of an FFT visible is to take the logarithm of the magnitude.
So, the position of the output buffer tells you what frequency was detected. The magnitude (L2 norm) of the complex number tells you how strong the detected frequency was, and the phase (arctangent) gives you information that is a lot more important in image space than audio space. Because the FFT is discrete, the frequencies run from 0 to the nyquist frequency. In images, the first term (DC) is usually the largest, and so a good candidate for use in normalization if that is your aim. I don't know if that is also true for audio (I doubt it)
For each window of 512 sample, you compute the magnitude of the FFT as you did. Each value represents the magnitude of the corresponding frequency present in the signal.
mag
/\
|
| ! !
| ! ! !
+--!---!----!----!---!--> freq
0 Fs/2 Fs
Now we need to figure out the frequencies.
Since the input signal is of real values, the FFT is symmetric around the middle (Nyquist component) with the first term being the DC component. Knowing the signal sampling frequency Fs, the Nyquist frequency is Fs/2. And therefore for the index k, the corresponding frequency is k*Fs/512
So for each window of length 512, we get the magnitudes at specified frequency. The group of those over consecutive windows form the spectrogram.
Just so people know I've done a LOT of work on this whole problem. The main thing I've discovered is that the FFT requires normalisation after doing it.
To do this you average all the values of your window vector together to get a value somewhat less than 1 (or 1 if you are using a rectangular window). You then divide that number by the number of frequency bins you have post the FFT transform.
Finally you divide the actual number returned by the FFT by the normalisation number. Your amplitude values should now be in the -Inf to 1 range. Log, etc, as you please. You will still be working with a known range.
There are a few things that I think you will find helpful.
The forward FT will tend to give larger numbers in the output than in the input. You can think of it as all of the intensity at a certain frequency being displayed at one place rather than being distributed through the dataset. Does this matter? Probably not because you can always scale the data to fit your needs. I once wrote an integer based FFT/IFFT pair and each pass required rescaling to prevent integer overflow.
The real data that are your input are converted into something that is almost complex. As it turns out buffer[0] and buffer[n/2] are real and independent. There is a good discussion of it here.
The input data are sound intensity values taken over time, equally spaced. They are said to be, appropriately enough, in the time domain. The output of the FT is said to be in the frequency domain because the horizontal axis is frequency. The vertical scale remains intensity. Although it isn't obvious from the input data, there is phase information in the input as well. Although all of the sound is sinusoidal, there is nothing that fixes the phases of the sine waves. This phase information appears in the frequency domain as the phases of the individual complex numbers, but often we don't care about it (and often we do too!). It just depends upon what you are doing. The calculation
const float value = sqrt((realValue * realValue) + (imagValue * imagValue));
retrieves the intensity information but discards the phase information. Taking the logarithm essentially just dampens the big peaks.
Hope this is helpful.
If you are getting strange results then one thing to check is the documentation for the FFT library to see how the output is packed. Some routines use a packed format where real/imaginary values are interleaved, or they may begin at the N/2 element and wrap around.
For a sanity check I would suggest creating sample data with known characteristics, eg Fs/2, Fs/4 (Fs = sample frequency) and compare the output of the FFT routine with what you'd expect. Try creating both a sine and cosine at the same frequency, as these should have the same magnitude in the spectrum, but have different phases (ie the realValue/imagValue will differ, but the sum of squares should be the same.
If you're intending on using the FFT though then you really need to know how it works mathematically, otherwise you're likely to encounter other strange problems such as aliasing.