Related
I am doing some easy exercises to get a feel for the language.
is_list([]).
is_list([_|_]).
my_flatten([],[]).
my_flatten([X|Xs],RR) :-
my_flatten(Xs,R),
(is_list(X), !, append(X,R,RR); RR = [X | R]).
Here is a version using cut, for a predicate that flattens a list one level.
my_flatten([],[]).
my_flatten([X|Xs],RR) :-
my_flatten(Xs,R),
if_(is_list(X), append(X,R,RR), RR = [X | R]).
Here is how I want to write it, but it does not work. Neither does is_list(X) = true as the if_ condition. How am I intended to use if_ here?
(Sorry, I somewhat skipped this)
Please refer to P07. It clearly states that it flattens out [a, [b, [c, d], e]], but you and #Willem produce:
?- my_flatten([a, [b, [c, d], e]], X).
X = [a,b,[c,d],e]. % not flattened!
And the solution given there succeeds for
?- my_flatten(non_list, X).
X = [non_list]. % unexpected, nothing to flatten
Your definition of is_list/1 succeeds for is_list([a|non_list]). Commonly, we want this to fail.
What you need is a safe predicate to test for lists. So let's concentrate on that first:
What is wrong with is_list/1 and if-then-else? It is as non-monotonic, as many other impure type testing predicates.
?- Xs = [], is_list([a|Xs]).
Xs = [].
?- is_list([a|Xs]). % generalization, Xs = [] removed
false. % ?!? unexpected
While the original query succeeds correctly, a generalization of it unexpectedly fails. In the monotonic part of Prolog, we expect that a generalization will succeed (or loop, produce an error, use up all resources, but never ever fail).
You have now two options to improve upon this highly undesirable situation:
Stay safe with safe inferences, _si!
Just take the definition of list_si/1 in place of is_list/1. In problematic situations, your program will now abort with an instantiation error, meaning "well sorry, I don't know how to answer this query". Be happy for that response! You are saved from being misled by incorrect answers.
In other words: There is nothing wrong with ( If_0 -> Then_0 ; Else_0 ), as long as the If_0 handles the situation of insufficient instantiations correctly (and does not refer to a user defined program since otherwise you will be again in non-monotonic behavior).
Here is such a definition:
my_flatten(Es, Fs) :-
list_si(Es),
phrase(flattenl(Es), Fs).
flattenl([]) --> [].
flattenl([E|Es]) -->
( {list_si(E)} -> flattenl(E) ; [E] ),
flattenl(Es).
?- my_flatten([a, [b, [c, d], e]], X).
X = [a,b,c,d,e].
So ( If_0 -> Then_0 ; Else_0 ) has two weaknesses: The condition If_0 might be sensible to insufficient instantiations, and the Else_0 may be the source of non-monotonicity. But otherwise it works. So why do we want more than that?
In many more general situations this definition will now bark back: "Instantiation error"! While not incorrect, this still can be improved. This exercise is not the ideal example for this, but we will give it a try.
Use a reified condition
In order to use if_/3 you need a reified condition, that is, a definition that carries it's truth value as an explicit extra argument. Let's call it list_t/2.
?- list_t([a,b,c], T).
T = true.
?- list_t([a,b,c|non_list], T).
T = false.
?- list_t(Any, T).
Any = [],
T = true
; T = false,
dif(Any,[]),
when(nonvar(Any),Any\=[_|_])
; Any = [_],
T = true
; Any = [_|_Any1],
T = false,
dif(_Any1,[]),
when(nonvar(_Any1),_Any1\=[_|_])
; ... .
So list_t can also be used to enumerate all true and false situations. Let's go through them:
T = true, Any = [] that's the empty list
T = false, dif(Any, []), Any is not [_|_] note how this inequality uses when/2
T = true, Any = [_] that's all lists with one element
T = true, Any = [_|_Any1] ... meaning: we start with an element, but then no list
list_t(Es, T) :-
if_( Es = []
, T = true
, if_(nocons_t(Es), T = false, ( Es = [_|Fs], list_t(Fs, T) ) )
).
nocons_t(NC, true) :-
when(nonvar(NC), NC \= [_|_]).
nocons_t([_|_], false).
So finally, the reified definition:
:- meta_predicate( if_(1, 2, 2, ?,?) ).
my_flatten(Es, Fs) :-
phrase(flattenl(Es), Fs).
flattenl([]) --> [].
flattenl([E|Es]) -->
if_(list_t(E), flattenl(E), [E] ),
flattenl(Es).
if_(C_1, Then__0, Else__0, Xs0,Xs) :-
if_(C_1, phrase(Then__0, Xs0,Xs), phrase(Else__0, Xs0,Xs) ).
?- my_flatten([a|_], [e|_]).
false.
?- my_flatten([e|_], [e|_]).
true
; true
; true
; ... .
?- my_flatten([a|Xs], [a]).
Xs = []
; Xs = [[]]
; Xs = [[],[]]
; ... .
?- my_flatten([X,a], [a]).
X = []
; X = [[]]
; X = [[[]]]
; X = [[[[]]]]
; ... .
?- my_flatten(Xs, [a]).
loops. % at least it does not fail
In Prolog, the equivalen of an if … then … else … in other languages is:
(condition -> if-true; if-false)
With condition, if-true and if-false items you need to fill in.
So in this specific case, you can implement this with:
my_flatten([],[]).
my_flatten([X|Xs],RR) :-
my_flatten(Xs,R),
( is_list(X)
-> append(X,R,RR)
; RR = [X | R] ).
or we can flatten recursively with:
my_flatten([],[]).
my_flatten([X|Xs],RR) :-
my_flatten(Xs,R),
( flatten(X, XF)
-> append(XF,R,RR)
; RR = [X | R] ).
Your if_/3 predicate is used for reified predicates.
This worked for me:
myflat([], []).
myflat([H|T], L) :-
myflat(H, L1),
myflat(T, L2),
append(L1, L2, L).
myflat(L, [L]).
My confusion mainly lies around understanding singleton variables.
I want to implement the predicate noDupl/2 in Prolog. This predicate can be used to identify numbers in a list that appear exactly once, i. e., numbers which are no duplicates. The first argument of noDupl is the list to analyze. The
second argument is the list of numbers which are no duplicates, as described below.
As an example, for the list [2, 0, 3, 2, 1] the result [0, 3, 1] is computed (because 2 is a duplicate).
In my implementation I used the predefined member predicate and used an auxiliary predicate called helper.
I'll explain my logic in pseudocode, so you can help me spot where I went wrong.
First off, If the first element is not a member of the rest of the list, add the first element to the new result List (as it's head).
If the first element is a member of T, call the helper method on the rest of the list, the first element H and the new list.
Helper method, if H is found in the tail, return list without H, i. e., Tail.
noDupl([],[]).
noDupl([H|T],L) :-
\+ member(H,T),
noDupl(T,[H|T]).
noDupl([H|T],L) :-
member(H,T),
helper(T,H,L).
helper([],N,[]).
helper([H|T],H,T). %found place of duplicate & return list without it
helper([H|T],N,L) :-
helper(T,N,[H|T1]).%still couldn't locate the place, so add H to the new List as it's not a duplicate
While I'm writing my code, I'm always having trouble with deciding to choose a new variable or use the one defined in the predicate arguments when it comes to free variables specifically.
Thanks.
Warnings about singleton variables are not the actual problem.
Singleton variables are logical variables that occur once in some Prolog clause (fact or rule). Prolog warns you about these variables if they are named like non-singleton variables, i. e., if their name does not start with a _.
This convention helps avoid typos of the nasty kind—typos which do not cause syntax errors but do change the meaning.
Let's build a canonical solution to your problem.
First, forget about CamelCase and pick a proper predicate name that reflects the relational nature of the problem at hand: how about list_uniques/2?
Then, document cases in which you expect the predicate to give one answer, multiple answers or no answer at all. How?
Not as mere text, but as queries.
Start with the most general query:
?- list_uniques(Xs, Ys).
Add some ground queries:
?- list_uniques([], []).
?- list_uniques([1,2,2,1,3,4], [3,4]).
?- list_uniques([a,b,b,a], []).
And add queries containing variables:
?- list_uniques([n,i,x,o,n], Xs).
?- list_uniques([i,s,p,y,i,s,p,y], Xs).
?- list_uniques([A,B], [X,Y]).
?- list_uniques([A,B,C], [D,E]).
?- list_uniques([A,B,C,D], [X]).
Now let's write some code! Based on library(reif) write:
:- use_module(library(reif)).
list_uniques(Xs, Ys) :-
list_past_uniques(Xs, [], Ys).
list_past_uniques([], _, []). % auxiliary predicate
list_past_uniques([X|Xs], Xs0, Ys) :-
if_((memberd_t(X,Xs) ; memberd_t(X,Xs0)),
Ys = Ys0,
Ys = [X|Ys0]),
list_past_uniques(Xs, [X|Xs0], Ys0).
What's going on?
list_uniques/2 is built upon the helper predicate list_past_uniques/3
At any point, list_past_uniques/3 keeps track of:
all items ahead (Xs) and
all items "behind" (Xs0) some item of the original list X.
If X is a member of either list, then Ys skips X—it's not unique!
Otherwise, X is unique and it occurs in Ys (as its list head).
Let's run some of the above queries using SWI-Prolog 8.0.0:
?- list_uniques(Xs, Ys).
Xs = [], Ys = []
; Xs = [_A], Ys = [_A]
; Xs = [_A,_A], Ys = []
; Xs = [_A,_A,_A], Ys = []
...
?- list_uniques([], []).
true.
?- list_uniques([1,2,2,1,3,4], [3,4]).
true.
?- list_uniques([a,b,b,a], []).
true.
?- list_uniques([1,2,2,1,3,4], Xs).
Xs = [3,4].
?- list_uniques([n,i,x,o,n], Xs).
Xs = [i,x,o].
?- list_uniques([i,s,p,y,i,s,p,y], Xs).
Xs = [].
?- list_uniques([A,B], [X,Y]).
A = X, B = Y, dif(Y,X).
?- list_uniques([A,B,C], [D,E]).
false.
?- list_uniques([A,B,C,D], [X]).
A = B, B = C, D = X, dif(X,C)
; A = B, B = D, C = X, dif(X,D)
; A = C, C = D, B = X, dif(D,X)
; A = X, B = C, C = D, dif(D,X)
; false.
Just like my previous answer, the following answer is based on library(reif)—and uses it in a somewhat more idiomatic way.
:- use_module(library(reif)).
list_uniques([], []).
list_uniques([V|Vs], Xs) :-
tpartition(=(V), Vs, Equals, Difs),
if_(Equals = [], Xs = [V|Xs0], Xs = Xs0),
list_uniques(Difs, Xs0).
While this code does not improve upon my previous one regarding efficiency / complexity, it is arguably more readable (fewer arguments in the recursion).
In this solution a slightly modified version of tpartition is used to have more control over what happens when an item passes the condition (or not):
tpartition_p(P_2, OnTrue_5, OnFalse_5, OnEnd_4, InitialTrue, InitialFalse, Xs, RTrue, RFalse) :-
i_tpartition_p(Xs, P_2, OnTrue_5, OnFalse_5, OnEnd_4, InitialTrue, InitialFalse, RTrue, RFalse).
i_tpartition_p([], _P_2, _OnTrue_5, _OnFalse_5, OnEnd_4, CurrentTrue, CurrentFalse, RTrue, RFalse):-
call(OnEnd_4, CurrentTrue, CurrentFalse, RTrue, RFalse).
i_tpartition_p([X|Xs], P_2, OnTrue_5, OnFalse_5, OnEnd_4, CurrentTrue, CurrentFalse, RTrue, RFalse):-
if_( call(P_2, X)
, call(OnTrue_5, X, CurrentTrue, CurrentFalse, NCurrentTrue, NCurrentFalse)
, call(OnFalse_5, X, CurrentTrue, CurrentFalse, NCurrentTrue, NCurrentFalse) ),
i_tpartition_p(Xs, P_2, OnTrue_5, OnFalse_5, OnEnd_4, NCurrentTrue, NCurrentFalse, RTrue, RFalse).
InitialTrue/InitialFalse and RTrue/RFalse contains the desired initial and final state, procedures OnTrue_5 and OnFalse_5 manage state transition after testing the condition P_2 on each item and OnEnd_4 manages the last transition.
With the following code for list_uniques/2:
list_uniques([], []).
list_uniques([V|Vs], Xs) :-
tpartition_p(=(V), on_true, on_false, on_end, false, Difs, Vs, HasDuplicates, []),
if_(=(HasDuplicates), Xs=Xs0, Xs = [V|Xs0]),
list_uniques(Difs, Xs0).
on_true(_, _, Difs, true, Difs).
on_false(X, HasDuplicates, [X|Xs], HasDuplicates, Xs).
on_end(HasDuplicates, Difs, HasDuplicates, Difs).
When the item passes the filter (its a duplicate) we just mark that the list has duplicates and skip the item, otherwise the item is kept for further processing.
This answer goes similar ways as this previous answer by #gusbro.
However, it does not propose a somewhat baroque version of tpartition/4, but instead an augmented, but hopefully leaner, version of tfilter/3 called tfilter_t/4 which can be defined like so:
tfilter_t(C_2, Es, Fs, T) :-
i_tfilter_t(Es, C_2, Fs, T).
i_tfilter_t([], _, [], true).
i_tfilter_t([E|Es], C_2, Fs0, T) :-
if_(call(C_2,E),
( Fs0 = [E|Fs], i_tfilter_t(Es,C_2,Fs,T) ),
( Fs0 = Fs, T = false, tfilter(C_2,Es,Fs) )).
Adapting list_uniques/2 is straightforward:
list_uniques([], []).
list_uniques([V|Vs], Xs) :-
if_(tfilter_t(dif(V),Vs,Difs), Xs = [V|Xs0], Xs = Xs0),
list_uniques(Difs, Xs0).
Save scrollbars. Stay lean! Use filter_t/4.
You have problems already in the first predicate, noDupl/2.
The first clause, noDupl([], []). looks fine.
The second clause is wrong.
noDupl([H|T],L):-
\+member(H,T),
noDupl(T,[H|T]).
What does that really mean I leave as an exercise to you. If you want, however, to add H to the result, you would write it like this:
noDupl([H|T], [H|L]) :-
\+ member(H, T),
noDupl(T, L).
Please look carefully at this and try to understand. The H is added to the result by unifying the result (the second argument in the head) to a list with H as the head and the variable L as the tail. The singleton variable L in your definition is a singleton because there is a mistake in your definition, namely, you do nothing at all with it.
The last clause has a different kind of problem. You try to clean the rest of the list from this one element, but you never return to the original task of getting rid of all duplicates. It could be fixed like this:
noDupl([H|T], L) :-
member(H, T),
helper(T, H, T0),
noDupl(T0, L).
Your helper/3 cleans the rest of the original list from the duplicate, unifying the result with T0, then uses this clean list to continue removing duplicates.
Now on to your helper. The first clause seems fine but has a singleton variable. This is a valid case where you don't want to do anything with this argument, so you "declare" it unused for example like this:
helper([], _, []).
The second clause is problematic because it removes a single occurrence. What should happen if you call:
?- helper([1,2,3,2], 2, L).
The last clause also has a problem. Just because you use different names for two variables, this doesn't make them different. To fix these two clauses, you can for example do:
helper([H|T], H, L) :-
helper(T, H, L).
helper([H|T], X, [H|L]) :-
dif(H, X),
helper(T, X, L).
These are the minimal corrections that will give you an answer when the first argument of noDupl/2 is ground. You could do this check this by renaming noDupl/2 to noDupl_ground/2 and defining noDupl/2 as:
noDupl(L, R) :-
must_be(ground, L),
noDupl_ground(L, R).
Try to see what you get for different queries with the current naive implementation and ask if you have further questions. It is still full of problems, but it really depends on how you will use it and what you want out of the answer.
I have a list [a, b, a, a, a, c, c]
and I need to add two more occurrences of each element.
The end result should look like this:
[a, a, a, b, b, b, a, a, a, a, a, c, c, c, c]
If I have an item on the list that is the same as the next item, then it keeps going until there is a new item, when it finds the new item, it adds two occurrences of the previous item then moves on.
This is my code so far, but I can't figure out how to add two...
dbl([], []).
dbl([X], [X,X]).
dbl([H|T], [H,H|T], [H,H|R]) :- dbl(T, R).
Your code looks a bit strange because the last rule takes three parameters. You only call the binary version, so no recursion will ever try to derive it.
You already had a good idea to look at the parts of the list, where elements change. So there are 4 cases:
1) Your list is empty.
2) You have exactly one element.
3) Your list starts with two equal elements.
4) Your list starts with two different elements.
Case 1 is not specified, so you might need to find a sensible choice for that. Case 2 is somehow similar to case 4, since the end of the list can be seen as a change in elements, where you need to append two copies, but then you are done. Case 3 is quite simple, we can just keep the element and recurse on the rest. Case 4 is where you need to insert the two copies again.
This means your code will look something like this:
% Case 1
dbl([],[]).
% Case 2
dbl([X],[X,X,X]).
% Case 3
dbl([X,X|Xs], [X|Ys]) :-
% [...] recursion skipping the leading X
% Case 4
dbl([X,Y|Xs], [X,X,X|Ys]) :-
dif(X,Y),
% [...] we inserted the copies, so recursion on [Y|Xs] and Ys
Case 3 should be easy to finish, we just drop the first X from both lists and recurse on dbl([X|Xs],Ys). Note that we implicitly made the first two elements equal (i.e. we unified them) by writing the same variable twice.
If you look at the head of case 4, you can directly imitate the pattern you described: supposed the list starts with X, then Y and they are different (dif(X,Y)), the X is repeated 3 times instead of just copied and we then continue with the recursion on the rest starting with Y: dbl([Y|Xs],Ys).
So let's try out the predicate:
?- dbl([a,b,a,a,a,c,c],[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]).
true ;
false.
Our test case is accepted (true) and we don't find more than one solution (false).
Let's see if we find a wrong solution:
?- dif(Xs,[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]), dbl([a,b,a,a,a,c,c],Xs).
false.
No, that's also good. What happens, if we have variables in our list?
?- dbl([a,X,a],Ys).
X = a,
Ys = [a, a, a, a, a] ;
Ys = [a, a, a, X, X, X, a, a, a],
dif(X, a),
dif(X, a) ;
false.
Either X = a, then Ys is single run of 5 as; or X is not equal to a, then we need to append the copies in all three runs. Looks also fine. (*)
Now lets see, what happens if we only specify the solution:
?- dbl(X,[a,a,a,b,b]).
false.
Right, a list with a run of only two bs can not be a result of our specification. So lets try to add one:
?- dbl(X,[a,a,a,b,b,b]).
X = [a, b] ;
false.
Hooray, it worked! So lets as a last test look what happens, if we just call our predicate with two variables:
?- dbl(Xs,Ys).
Xs = Ys, Ys = [] ;
Xs = [_G15],
Ys = [_G15, _G15, _G15] ;
Xs = [_G15, _G15],
Ys = [_G15, _G15, _G15, _G15] ;
Xs = [_G15, _G15, _G15],
Ys = [_G15, _G15, _G15, _G15, _G15] ;
Xs = [_G15, _G15, _G15, _G15],
Ys = [_G15, _G15, _G15, _G15, _G15, _G15] ;
[...]
It seems we get the correct answers, but we see only cases for a single run. This is a result of prolog's search strategy(which i will not explain in here). But if we look at shorter lists before we generate longer ones, we can see all the solutions:
?- length(Xs,_), dbl(Xs,Ys).
Xs = Ys, Ys = [] ;
Xs = [_G16],
Ys = [_G16, _G16, _G16] ;
Xs = [_G16, _G16],
Ys = [_G16, _G16, _G16, _G16] ;
Xs = [_G86, _G89],
Ys = [_G86, _G86, _G86, _G89, _G89, _G89],
dif(_G86, _G89) ;
Xs = [_G16, _G16, _G16],
Ys = [_G16, _G16, _G16, _G16, _G16] ;
Xs = [_G188, _G188, _G194],
Ys = [_G188, _G188, _G188, _G188, _G194, _G194, _G194],
dif(_G188, _G194) ;
[...]
So it seems we have a working predicate (**), supposed you filled in the missing goals from the text :)
(*) A remark here: this case only works because we are using dif. The first predicates with equality, one usually encounters are =, == and their respective negations \= and \==. The = stands for unifyability (substituting variables in the arguments s.t. they become equal) and the == stands for syntactic equality (terms being exactly equal). E.g.:
?- f(X) = f(a).
X = a.
?- f(X) \= f(a).
false.
?- f(X) == f(a).
false.
?- f(X) \== f(a).
true.
This means, we can make f(X) equal to f(a), if we substitute X by a. This means if we ask if they can not be made equal (\=), we get the answer false. On the other hand, the two terms are not equal, so == returns false, and its negation \== answers true.
What this also means is that X \== Y is always true, so we can not use \== in our code. In contrast to that, dif waits until it can decide wether its arguments are equal or not. If this is still undecided after finding an answer, the "dif(X,a)" statements are printed.
(**) One last remark here: There is also a solution with the if-then-else construct (test -> goals_if_true; goals_if_false, which merges cases 3 and 4. Since i prefer this solution, you might need to look into the other version yourself.
TL;DR:
From a declarative point of view, the code sketched by #lambda.xy.x is perfect.
Its determinacy can be improved without sacrificing logical-purity.
Code variant #0: #lambda.xy.x's code
Here's the code we want to improve:
dbl0([], []).
dbl0([X], [X,X,X]).
dbl0([X,X|Xs], [X|Ys]) :-
dbl0([X|Xs], Ys).
dbl0([X,Y|Xs], [X,X,X|Ys]) :-
dif(X, Y),
dbl0([Y|Xs], Ys).
Consider the following query and the answer SWI-Prolog gives us:
?- dbl0([a],Xs).
Xs = [a,a,a] ;
false.
With ; false the SWI prolog-toplevel
indicates a choicepoint was left when proving the goal.
For the first answer, Prolog did not search the entire proof tree.
Instead, it replied "here's an answer, there may be more".
Then, when asked for more solutions, Prolog traversed the remaining branches of the proof tree but finds no more answers.
In other words: Prolog needs to think twice to prove something we knew all along!
So, how can we give determinacy hints to Prolog?
By utilizing:
control constructs !/0 and / or (->)/2 (potentially impure)
first argument indexing on the principal functor (never impure)
The code presented in the earlier answer by #CapelliC—which is based on !/0, (->)/2, and the meta-logical predicate (\=)/2—runs well if all arguments are sufficiently instantiated. If not, erratic answers may result—as #lambda.xy.x's comment shows.
Code variant #1: indexing
Indexing can improve determinacy without ever rendering the code non-monotonic. While different Prolog processors have distinct advanced indexing capabilities, the "first-argument principal-functor" indexing variant is widely available.
Principal? This is why executing the goal dbl0([a],Xs) leaves a choicepoint behind: Yes, the goal only matches one clause—dbl0([X],[X,X,X]).—but looking no deeper than the principal functor Prolog assumes that any of the last three clauses could eventually get used. Of course, we know better...
To tell Prolog we utilize principal-functor first-argument indexing:
dbl1([], []).
dbl1([E|Es], Xs) :-
dbl1_(Es, Xs, E).
dbl1_([], [E,E,E], E).
dbl1_([E|Es], [E|Xs], E) :-
dbl1_(Es, Xs, E).
dbl1_([E|Es], [E0,E0,E0|Xs], E0) :-
dif(E0, E),
dbl1_(Es, Xs, E).
Better? Somewhat, but determinacy could be better still...
Code variant #2: indexing on reified term equality
To make Prolog see that the two recursive clauses of dbl1_/3 are mutually exclusive (in certain cases), we reify the truth value of
term equality and then index on that value:
This is where reified term equality (=)/3 comes into play:
dbl2([], []).
dbl2([E|Es], Xs) :-
dbl2_(Es, Xs, E).
dbl2_([], [E,E,E], E).
dbl2_([E|Es], Xs, E0) :-
=(E0, E, T),
t_dbl2_(T, Xs, E0, E, Es).
t_dbl2_(true, [E|Xs], _, E, Es) :-
dbl2_(Es, Xs, E).
t_dbl2_(false, [E0,E0,E0|Xs], E0, E, Es) :-
dbl2_(Es, Xs, E).
Sample queries using SWI-Prolog:
?- dbl0([a],Xs).
Xs = [a, a, a] ;
false.
?- dbl1([a],Xs).
Xs = [a, a, a].
?- dbl2([a],Xs).
Xs = [a, a, a].
?- dbl0([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b] ;
false.
?- dbl1([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b] ;
false.
?- dbl2([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b].
To make above code more compact, use control construct if_/3 .
I was just about to throw this version with if_/3 and (=)/3 in the hat when I saw #repeat already suggested it. So this is essentially the more compact version as outlined by #repeat:
list_dbl([],[]).
list_dbl([X],[X,X,X]).
list_dbl([A,B|Xs],DBL) :-
if_(A=B,DBL=[A,B|Ys],DBL=[A,A,A,B|Ys]),
list_dbl([B|Xs],[B|Ys]).
It yields the same results as dbl2/2 by #repeat:
?- list_dbl([a],DBL).
DBL = [a,a,a]
?- list_dbl([a,b,b],DBL).
DBL = [a,a,a,b,b,b,b]
The example query by the OP works as expected:
?- list_dbl([a,b,a,a,a,c,c],DBL).
DBL = [a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]
Plus here are some of the example queries provided by #lambda.xy.x. They yield the same results as #repeat's dbl/2 and #lambda.xy.x's dbl/2:
?- dif(Xs,[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]), list_dbl([a,b,a,a,a,c,c],Xs).
no
?- list_dbl(X,[a,a,a,b,b]).
no
?- list_dbl(L,[a,a,a,b,b,b]).
L = [a,b] ? ;
no
?- list_dbl(L,DBL).
DBL = L = [] ? ;
DBL = [_A,_A,_A],
L = [_A] ? ;
DBL = [_A,_A,_A,_A],
L = [_A,_A] ? ;
DBL = [_A,_A,_A,_A,_A],
L = [_A,_A,_A] ? ;
...
?- list_dbl([a,X,a],DBL).
DBL = [a,a,a,a,a],
X = a ? ;
DBL = [a,a,a,X,X,X,a,a,a],
dif(X,a),
dif(a,X)
?- length(L,_), list_dbl(L,DBL).
DBL = L = [] ? ;
DBL = [_A,_A,_A],
L = [_A] ? ;
DBL = [_A,_A,_A,_A],
L = [_A,_A] ? ;
DBL = [_A,_A,_A,_B,_B,_B],
L = [_A,_B],
dif(_A,_B) ? ;
DBL = [_A,_A,_A,_A,_A],
L = [_A,_A,_A] ?
dbl([X,Y|T], [X,X,X|R]) :- X \= Y, !, dbl([Y|T], R).
dbl([H|T], R) :-
T = []
-> R = [H,H,H]
; R = [H|Q], dbl(T, Q).
The first clause handles the basic requirement, adding two elements on sequence change.
The second one handles list termination as a sequence change, otherwise, does a plain copy.
I need a function in Prolog: swapcouple(L, L1).
swapcouple([a,b,c,d,e], M) --> output M=[b,a,d,c,e]
swapcouple([a,b,c,d], M) --> output M=[b,a,d,c]
(what have you tried?) This is a valid definition:
swapcouple([a,b,c,d,e], M) :- M=[b,a,d,c,e].
swapcouple([a,b,c,d], M) :- M=[b,a,d,c].
Proceed by abstraction. For example,
swapcouple([A,B,C,D,E], M) :- M=[B,A,D,C,E].
swapcouple([A,B,C,D], M) :- M=[B,A,D,C].
Do you see where I'm going? [A,B,C,D,E] = [A,B | R] where R = [C,D,E]. Can we use that?
swapcouple([A,B|R], M) :- R=[C,D,E], M=[B,A|S], S=[D,C,E].
Right? Here's the crucial bit. R=[C,D,E], S=[D,C,E] is the same as swapcouple(R,S), isn't it?
swapcouple([A,B|R], M) :- M=[B,A|S], swapcouple(R,S).
Assuming that swapcouple does what it is advertised to do, we can just use it when the need arises. Here you've got your very own recursive procedure (well, predicate). It is even tail recursive modulo cons, which is even more hip and fun.
Few more edge cases are missing there. I'm positive you can finish it up.
The implementation can hardly get more direct than this:
list_swappedcouples([],[]).
list_swappedcouples([A],[A]).
list_swappedcouples([A,B|Xs],[B,A|Ys]) :-
list_swappedcouples(Xs,Ys).
Here are your sample queries:
?- list_swappedcouples([a,b,c,d,e],Ls).
Ls = [b,a,d,c,e] ; % succeeds, but leaves behind choicepoint
false.
?- list_swappedcouples([a,b,c,d],Ls).
Ls = [b,a,d,c]. % succeeds deterministically
Edit 2015-06-03
We can utilize first argument indexing to improve determinism.
list_with_swapped_couples([],[]).
list_with_swapped_couples([X|Xs],Ys) :-
list_prev_w_swapped_couples(Xs,X,Ys).
list_prev_w_swapped_couples([],X,[X]).
list_prev_w_swapped_couples([X1|Xs],X0,[X1,X0|Ys]) :-
list_with_swapped_couples(Xs,Ys).
Note that all following sample queries succeed deterministically.
?- list_with_swapped_couples([],Xs).
Xs = [].
?- list_with_swapped_couples([1],Xs).
Xs = [1].
?- list_with_swapped_couples([1,2],Xs).
Xs = [2,1].
?- list_with_swapped_couples([1,2,3],Xs).
Xs = [2,1,3].
?- list_with_swapped_couples([1,2,3,4],Xs).
Xs = [2,1,4,3].
?- list_with_swapped_couples([1,2,3,4,5],Xs).
Xs = [2,1,4,3,5].
Hi i was wondering if you could help me out with this
From programming in Prolog: write Prolog script for replacement any given element in lists by an another given element. For example:
replace( 3, a,[1,2,3,4,3,5], [1,2,a,4,a,5])=true
Many Thanks in advance
In Prolog, most list processing is done by processing the head and then recursively processing the rest of the list. Of course, you can't forget about the base case, which is an empty list.
Replacing anything with anything in an empty list results again in an empty list. If the head of the list is the same as the element to replace, replace it, otherwise, keep it as it is. In both cases, process recursively the rest of the list. Translated from English into Prolog:
replace(_, _, [], []).
replace(O, R, [O|T], [R|T2]) :- replace(O, R, T, T2).
replace(O, R, [H|T], [H|T2]) :- H \= O, replace(O, R, T, T2).
All implementations presented so far in other answers are logically unsound when being used with non-ground terms. Consider the original query and a slight variant:
?- replace(3,three,[1,2,3],Xs).
Xs = [1,2,three] ; % OK: correct
false
?- A=3, replace(A,B,[1,2,3],Xs). % OK: correct
Xs = [1,2,B], A = 3 ;
false
It works! Let's ask some very similar queries:
?- replace(A,B,[1,2,3],Xs). % FAIL: should succeed more than once...
Xs = [B,2,3], A = 1 ; % ... but the other solutions are missing
false
?- replace(A,B,[1,2,3],Xs), A=3. % FAIL: this query _should_ succeed ...
false % ... it does not!
What's going on? Put the blame on meta-logical builtins (!)/0 and (\=)/2, which are very hard to use right and often make code brittle, impure, and logically unsound.
To preserve logical soundness, stick to logical purity and abstain from meta-logical "features" whenever possible! Luckily, most Prolog implementations support dif/2 as a logical alternative to (\=)/2. Let's use it:
% code by #svick, modified to use dif/2 instead of (\=)/2
replaceP(_, _, [], []).
replaceP(O, R, [O|T], [R|T2]) :- replaceP(O, R, T, T2).
replaceP(O, R, [H|T], [H|T2]) :- dif(H,O), replaceP(O, R, T, T2).
Let's run above queries again, this time with the improved replaceP/4:
?- replaceP(3,three,[1,2,3],Xs).
Xs = [1,2,three] ; % OK: correct, like before
false
?- replaceP(A,B,[1,2,3],Xs). % OK: four solutions, not just one
Xs = [B,2,3], A = 1 ;
Xs = [1,B,3], A = 2 ;
Xs = [1,2,B], A = 3 ;
Xs = [1,2,3], dif(A,1),dif(A,2),dif(A,3) ;
false
?- replaceP(A,B,[1,2,3],Xs), A=3. % OK (succeeds now)
Xs = [1,2,B], A = 3 ;
false
?- A=3, replaceP(A,B,[1,2,3],Xs). % OK (same as before)
Xs = [1,2,B], A = 3 ;
false
replace(_, _ , [], []).
replace(X, Y, [ X | Z ], [ Y | ZZ]):- ! , replace( X, Y, Z, ZZ).
replace(X, Y, [ W | Z], [ W | ZZ] :- replace(X, Y, Z, ZZ).
Though, one would usually arrange the 3. arg to be the first one. And strictly speaking above does not replace anything in the list, it just anwsers if 4th arg is like the one in the 3rd but with Y' instead of X'.
replace(E,S,[],[]).
replace(E,S,[E|T1],[S|T2]):-replace(E,S,T1,T2).
replace(E,S,[H|T1],[H|T2]):-E\=H, replace(E,S,T1,T2).
the idea is simple, if the elements match, change it, if not, go forward until empty.
domains
I=integer*
K=integer*
Z=integer
A=integer
predicates
nondeterm rep(I,Z,A,K)
clauses
rep([],_,_,[]).
rep([Z|T1],Z,A,[A|T2]):- rep(T1,Z,A,T2).
rep([H|T1],Z,A,[H|T2]) :- rep(T1,Z,A,T2).
goal
rep([1,2,3],2,4,X).