In my application, multiple threads need to access to a map object for inserting new items or reading the existing items. (There is no 'erase' operation).
The threads uses this code for accessing map elements:
struct PayLoad& ref = myMap[index];
I just want to know do I still need to wrap this block of this code inside of mutex ? Or is it safe to not using mutex for this purpose ?
Thanks.
Since there is at least one write operation, i.e. an insert, then you need to have thread synchronization when accessing the map. Otherwise you have a race condition.
Also, returning a reference to the value in a map is not thread-safe:
struct PayLoad& ref = myMap[index];
since multiple threads could access the value, and at least one of them could involve a write. That would also lead to a race condition. It is better to return the value by value like this:
Payload GetPayload(int index)
{
std::lock_guard<std::mutex> lock(mutex);
return myMap[index];
}
where mutex is an accessible std::mutex object.
Your insert/write operation also needs to lock the same mutex:
void SetPayload(int index, Payload payload)
{
std::lock_guard<std::mutex> lock(mutex);
myMap[index] = std::move(payload);
}
Related
I have an unordered_map that I want to be accessible by multiple threads but locking the whole thing with a mutex would be too slow.
To get around this I put a mutex in each element of the unordered_map:
class exampleClass{
std::mutex m;
int data;
};
std::unordered_map<int,exampleClass> exampleMap;
The issue is I'm unable to safely erase elements, because in order to destroy a mutex it must be unlocked but if it's unlocked then another thread could lock it and be writing to or reading the element during destruction.
unordered_map is not suitable for fine-grained parallelism. It is not legal
to add or remove elements without ensuring mutual exclusion during the process.
I would suggest using something like tbb::concurrent_hash_map instead, which will result in less lock contention than locking the map as a whole. (There are other concurrent hash table implementations out there; the advantage of TBB is that it's well-supported and stable.)
#Sneftel's answer is good enough.
But if you insist on using std::unordered_map, I suggest you two use one mutex to protect the insertion/deletion of the map, and another mutex for each element for modifying the element.
class exampleClass{
std::mutex m;
int data;
};
std::unordered_map<int,exampleClass> exampleMap;
std::mutex mapLock;
void add(int key, int value) {
std::unique_lock<std::mutex> _(mapLock);
exampleMap.insert({key, value});
}
void delete(int key) {
std::unique_lock<std::mutex> _(mapLock);
auto it = exampleMap.find(key);
if (it != exampleMap.end()) {
std::unique_lock<std::mutex> _1(it->m);
exampleMap.erase(it);
}
}
These should perform better for a big lock on the whole map if delete is not a frequent operation.
But be careful of these kinds of code, because it is hard to reason and to get right.
I strongly recommend #Sneftel's answer.
You have the following options:
Lock the entire mutex
Use a container of shared_ptr so the actual class can be modified (with or without a mutex) unrelated to the container.
Consider the following class:
class testThreads
{
private:
int var; // variable to be modified
std::mutex mtx; // mutex
public:
void set_var(int arg) // setter
{
std::lock_guard<std::mutex> lk(mtx);
var = arg;
}
int get_var() // getter
{
std::lock_guard<std::mutex> lk(mtx);
return var;
}
void hundred_adder()
{
for(int i = 0; i < 100; i++)
{
int got = get_var();
set_var(got + 1);
sleep(0.1);
}
}
};
When I create two threads in main(), each with a thread function of hundred_adder modifying the same variable var, the end result of the var is always different i.e. not 200 but some other number.
Conceptually speaking, why is this use of mutex with getter and setter functions not thread-safe? Do the lock-guards fail to prevent the race-condition to var? And what would be an alternative solution?
Thread a: get 0
Thread b: get 0
Thread a: set 1
Thread b: set 1
Lo and behold, var is 1 even though it should've been 2.
It should be obvious that you need to lock the whole operation:
for(int i = 0; i < 100; i++){
std::lock_guard<std::mutex> lk(mtx);
var += 1;
}
Alternatively, you could make the variable atomic (even a relaxed one could do in your case).
int got = get_var();
set_var(got + 1);
Your get_var() and set_var() themselves are thread safe. But this combined sequence of get_var() followed by set_var() is not. There is no mutex that protects this entire sequence.
You have multiple concurrent threads executing this. You have multiple threads calling get_var(). After the first one finishes it and unlocks the mutex, another thread can lock the mutex immediately and obtain the same value for got that the first thread did. There's absolutely nothing that prevents multiple threads from locking and obtaining the same got, concurrently.
Then both threads will call set_var(), updating the mutex-protected int to the same value.
That's just one possibility that can happen here. You could easily have multiple threads acquiring the mutex sequentially and thus incrementing var by several values, only to be followed by some other, stalled thread, that called get_var() several seconds ago, and only now getting around to calling set_var(), thus resetting var to a much smaller value.
The code show in thread-safe in a sense that it will never set or get partial value of the variable.
But your usage of the methods does not guarantee that value will correctly change: reading and writing from multiple threads can collide with each other. Both threads read the value (11), both increment it (to 12) and than both set to the same (12) - now you counted 2 but effectively incremented only once.
Option to fix:
provide "safe increment" operation
provide equivalent of InterlockedCompareExchange to make sure value you are updating correspond to original one and retry as necessary
wrap calling code into separate mutex or use other synchronization mechanism to prevent operations to intermix.
Why don't you just use std::atomic for the shared data (var in this case)? That will be more safe efficient.
This is an absolute classic.
One thread obtains the value of var, releases the mutex and another obtains the same value before the first thread has chance to update it.
Consequently the process risks losing increments.
There are three obvious solutions:
void testThreads::inc_var(){
std::lock_guard<std::mutex> lk(mtx);
++var;
}
That's safe because the mutex is held until the variable is updated.
Next up:
bool testThreads::compare_and_inc_var(int val){
std::lock_guard<std::mutex> lk(mtx);
if(var!=val) return false;
++var;
return true;
}
Then write code like:
int val;
do{
val=get_var();
}while(!compare_and_inc_var(val));
This works because the loop repeats until it confirms it's updating the value it read. This could result in live-lock though in this case it has to be transient because a thread can only fail to make progress because another does.
Finally replace int var with std::atomic<int> var and either use ++var or var.compare_exchange(val,val+1) or var.fetch_add(1); to update it.
NB: Notice compare_exchange(var,var+1) is invalid...
++ is guaranteed to be atomic on std::atomic<> types but despite 'looking' like a single operation in general no such guarantee exists for int.
std::atomic<> also provides appropriate memory barriers (and ways to hint what kind of barrier is needed) to ensure proper inter-thread communication.
std::atomic<> should be a wait-free, lock-free implementation where available. Check your documentation and the flag is_lock_free().
I'm not sure I got the terminology right but here goes - I have this function that is used by multiple threads to write data (using pseudo code in comments to illustrate what I want)
//these are initiated in the constructor
int* data;
std::atomic<size_t> size;
void write(int value) {
//wait here while "read_lock"
//set "write_lock" to "write_lock" + 1
auto slot = size.fetch_add(1, std::memory_order_acquire);
data[slot] = value;
//set "write_lock" to "write_lock" - 1
}
the order of the writes is not important, all I need here is for each write to go to a unique slot
Every once in a while though, I need one thread to read the data using this function
int* read() {
//set "read_lock" to true
//wait here while "write_lock"
int* ret = data;
data = new int[capacity];
size = 0;
//set "read_lock" to false
return ret;
}
so it basically swaps out the buffer and returns the old one (I've removed capacity logic to make the snippets shorter)
In theory this should lead to 2 operating scenarios:
1 - just a bunch of threads writing into the container
2 - when some thread executes the read function, all new writers will have to wait, the reader will wait until all existing writes are finished, it will then do the read logic and scenario 1 can continue.
The question part is that I don't know what kind of a barrier to use for the locks -
A spinlock would be wasteful since there are many containers like this and they all need cpu cycles
I don't know how to apply std::mutex since I only want the write function to be in a critical section if the read function is triggered. Wrapping the whole write function in a mutex would cause unnecessary slowdown for operating scenario 1.
So what would be the optimal solution here?
If you have C++14 capability then you can use a std::shared_timed_mutex to separate out readers and writers. In this scenario it seems you need to give your writer threads shared access (allowing other writer threads at the same time) and your reader threads unique access (kicking all other threads out).
So something like this may be what you need:
class MyClass
{
public:
using mutex_type = std::shared_timed_mutex;
using shared_lock = std::shared_lock<mutex_type>;
using unique_lock = std::unique_lock<mutex_type>;
private:
mutable mutex_type mtx;
public:
// All updater threads can operate at the same time
auto lock_for_updates() const
{
return shared_lock(mtx);
}
// Reader threads need to kick all the updater threads out
auto lock_for_reading() const
{
return unique_lock(mtx);
}
};
// many threads can call this
void do_writing_work(std::shared_ptr<MyClass> sptr)
{
auto lock = sptr->lock_for_updates();
// update the data here
}
// access the data from one thread only
void do_reading_work(std::shared_ptr<MyClass> sptr)
{
auto lock = sptr->lock_for_reading();
// read the data here
}
The shared_locks allow other threads to gain a shared_lock at the same time but prevent a unique_lock gaining simultaneous access. When a reader thread tries to gain a unique_lock all shared_locks will be vacated before the unique_lock gets exclusive control.
You can also do this with regular mutexes and condition variables rather than shared. Supposedly shared_mutex has higher overhead, so I'm not sure which will be faster. With Gallik's solution you'd presumably be paying to lock the shared mutex on every write call; I got the impression from your post that write gets called way more than read so maybe this is undesirable.
int* data; // initialized somewhere
std::atomic<size_t> size = 0;
std::atomic<bool> reading = false;
std::atomic<int> num_writers = 0;
std::mutex entering;
std::mutex leaving;
std::condition_variable cv;
void write(int x) {
++num_writers;
if (reading) {
--num_writers;
if (num_writers == 0)
{
std::lock_guard l(leaving);
cv.notify_one();
}
{ std::lock_guard l(entering); }
++num_writers;
}
auto slot = size.fetch_add(1, std::memory_order_acquire);
data[slot] = x;
--num_writers;
if (reading && num_writers == 0)
{
std::lock_guard l(leaving);
cv.notify_one();
}
}
int* read() {
int* other_data = new int[capacity];
{
std::unique_lock enter_lock(entering);
reading = true;
std::unique_lock leave_lock(leaving);
cv.wait(leave_lock, [] () { return num_writers == 0; });
swap(data, other_data);
size = 0;
reading = false;
}
return other_data;
}
It's a bit complicated and took me some time to work out, but I think this should serve the purpose pretty well.
In the common case where only writing is happening, reading is always false. So you do the usual, and pay for two additional atomic increments and two untaken branches. So the common path does not need to lock any mutexes, unlike the solution involving a shared mutex, this is supposedly expensive: http://permalink.gmane.org/gmane.comp.lib.boost.devel/211180.
Now, suppose read is called. The expensive, slow heap allocation happens first, meanwhile writing continues uninterrupted. Next, the entering lock is acquired, which has no immediate effect. Now, reading is set to true. Immediately, any new calls to write enter the first branch, and eventually hit the entering lock which they are unable to acquire (as its already taken), and those threads then get put to sleep.
Meanwhile, the read thread is now waiting on the condition that the number of writers is 0. If we're lucky, this could actually go through right away. If however there are threads in write in either of the two locations between incrementing and decrementing num_writers, then it will not. Each time a write thread decrements num_writers, it checks if it has reduced that number to zero, and when it does it will signal the condition variable. Because num_writers is atomic which prevents various reordering shenanigans, it is guaranteed that the last thread will see num_writers == 0; it could also be notified more than once but this is ok and cannot result in bad behavior.
Once that condition variable has been signalled, that shows that all writers are either trapped in the first branch or are done modifying the array. So the read thread can now safely swap the data, and then unlock everything, and then return what it needs to.
As mentioned before, in typical operation there are no locks, just increments and untaken branches. Even when a read does occur, the read thread will have one lock and one condition variable wait, whereas a typical write thread will have about one lock/unlock of a mutex and that's all (one, or a small number of write threads, will also perform a condition variable notification).
I have a map<int, queue<int>> with one thread writing into it i.e. pushing messages into the queues. They key refers to a client_id, and the queue holds messages for the client. I am looking to make this read-write thread safe.
Currently, the thread that writes into it does something like this
map<int, queue<int>> msg_map;
if (msg_map.find(client_id) != msg_map.end())
{
queue<int> dummy_queue;
dummy_queue.push(msg); //msg is an int
msg_map.insert(make_pair(client_id, dummy_queue);
}
else
{
msg_map[client_id].push(msg);
}
There are many clients reading - and removing - from this map.
if (msg_map.find(client_id) != msg_map.end())
{
if (!msg_map.find(client_id)->second.empty())
{
int msg_rxed = msg_map[client_id].front();
//processing message
msg_map[client_id].pop();
}
}
I am reading this on mutexes (haven't used them before) and I was wondering when and where I ought to lock the mutex. My confusion lies in the fact that they are accessing individual queues (held within the same map). Do I lock the queues, or the map?
Is there a standard/accepted way to do this - and is using a mutex the best way to do this? There are '0s of client threads, and just that 1 single writing thread.
Simplifying and optimizing your code
For now we'll not concern ourselves with mutexes, we'll handle that later when the code is cleaned up a bit (it will be easier then).
First, from the code you showed there seems to be no reason to use an ordered std::map (logarithmic complexity), you could use the much more efficient std::unordered_map (average constant-time complexity). The choice is entirely up to you, if you don't need the container to be ordered you just have to change its declaration:
std::map<int, std::queue<int>> msg_map;
// or
std::unordered_map<int, std::queue<int>> msg_map; // C++11 only though
Now, maps are quite efficient by design but if you insist on doing lookups for each and every operation then you lose all the advantage of maps.
Concerning the writer thread, all your block of code (for the writer) can be efficiently replaced by just this line:
msg_map[client_id].push(msg);
Note that operator[] for both std::map and std::unordered_map is defined as:
Inserts a new element to the container using key as the key and a default constructed mapped value and returns a reference to the newly constructed mapped value. If an element with key key already exists, no insertion is performed and a reference to its mapped value is returned.
Concerning your reader threads, you can't directly use operator[] because it would create a new entry if none currently exists for a specific client_id so instead, you need to cache the iterator returned by find in order to reuse it and thus avoid useless lookups:
auto iter = msg_map.find(client_id);
// iter will be either std::map<int, std::queue<int>>::iterator
// or std::unordered_map<int, std::queue<int>>::iterator
if (iter != msg_map.end()) {
std::queue<int>& q = iter->second;
if (!q.empty()) {
int msg = q.front();
q.pop();
// process msg
}
}
The reason why I pop the message immediately, before processing it, is because it will improve concurrency when we add mutexes (we can unlock the mutex sooner, which is always good).
Making the code thread-safe
#hmjd's idea about multiple locks (one for the map, and one per queue) is interesting, but based on the code you showed us I disagree: any benefit you'll get from the additional concurrency will quite probably be negated by the additional time it takes to lock the queue mutexes (indeed, locking mutexes is a very expensive operation), not to mention the additional code complexity you'll have to handle. I'll bet my money on a single mutex (protecting the map and all the queues at once) being more efficient.
Incidentally, a single mutex solves the iterator invalidation problem if you want to use the more efficient std::unordered_map (std::map doesn't suffer from that problem though).
Assuming C++11, just declare a std::mutex along with your map:
std::mutex msg_map_mutex;
std::map<int, std::queue<int>> msg_map; // or std::unordered_map
Protecting the writer thread is quite straightforward, just lock the mutex before accessing the map:
std::lock_guard<std::mutex> lock(msg_map_mutex);
// the lock is held while the lock_guard object stays in scope
msg_map[client_id].push(msg);
Protecting the reader threads is barely any harder, the only trick is that you'll probably want to unlock the mutex ASAP in order to improve concurrency so you'll have to use std::unique_lock (which can be unlocked early) instead of std::lock_guard (which can only unlock when it goes out of scope):
std::unique_lock<std::mutex> lock(msg_map_mutex);
auto iter = msg_map.find(client_id);
if (iter != msg_map.end()) {
std::queue<int>& q = iter->second;
if (!q.empty()) {
int msg = q.front();
q.pop();
// assuming you don't need to access the map from now on, let's unlock
lock.unlock();
// process msg, other threads can access the map concurrently
}
}
If you can't use C++11, you'll have to replace std::mutex et al. with whatever your platform provides (pthreads, Win32, ...) or with the boost equivalent (which has the advantage of being as portable and as easy to use as the new C++11 classes, unlike the platform-specific primitives).
Read and write access to both the map and the queue need synchronized as both structures are being modified, including the map:
map<int, queue<int>> msg_map;
if (msg_map.find(client_id) != msg_map.end())
{
queue<int> dummy_queue;
dummy_queue.push(msg); //msg is an int
msg_map.insert(make_pair(client_id, dummy_queue);
}
else
{
msg_map[client_id].push(msg); // Modified here.
}
Two options are a mutex that locks both the map and queue or have a mutex for the map and a mutex per queue. The second approach is preferable as it reduces the length of time a single lock is held and means multiple threads can be updating several queues concurrently.
Is it possible to use mutex to lock only one element of a data structure ?
e.g.
boost::mutex m_mutex;
map<string, int> myMap;
// initialize myMap so that it has 10 elements
// then in thread 1
{
boost::unique_lock<boost::mutex> lock(m_mutex);
myMap[1] = 5 ; // write map[1]
}
// in thread 2
{
boost::unique_lock<boost::mutex> lock(m_mutex);
myMap[2] = 4 ; // write map[1]
}
My question:
When thread 1 is writing map[1], thread 2 can writing map[2] at the same time ?
The thread lock the whole map data structure or only an element, e.g. map[1] or map[2].
thanks
If you can guarantee that nobody is modifying the container itself (via insert and erase etc.), then as long as each thread accesses a different element of the container, you should be fine.
If you need per-element locking, you could modify the element type to something that offers synchronized access. (Worst case a pair of a mutex and the original value.)
You need a different mutex for every element of the map. You can do this with a map of mutex or adding a mutex to the mapped type (in your case it is int, so you can't do it without creating a new class like SharedInt)
Mutexes lock executable regions not objects. I always think about locking any code regions that read/modify thread objects. If an object is locked within a region but that object is accessible within another un-synchronized code region, you are not safe (ofcourse). In your case, I'd lock access to the entire object as insertions and reading from containers can easily experience context switching and thus increase the likelihood of data corruption.
Mutex is all about discipline. One thread can call write and other thread can call write1. C++ runtime will assume it is intentional. But most of the cases it is not the programmer intended. Summary is as long as all threads/methods follow the discipline (understand the the critical section and respect it) there will be consistency.
int i=0;
Write()
{
//Lock
i++;
//Unlock
}
Write1()
{
i++;
}