please solve this memory leak problem in c++ - c++

class A
{
public:
unique_ptr<int> m_pM;
A() { m_pM = make_unique<int>(5); };
~A() { };
public:
void loop() { while (1) {}; } // it means just activating some works. for simplifying
};
int main()
{
_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
A a;
a.loop(); // if i use force quit while activating this function, it causes memory leak
}
is there any way to avoid memory leak when i use force quit while activating this program?

a.loop() is an infinite loop so everything after that is unreachable, so the compiler is within its right to remove all code after the call to a.loop(). See the compiler explorer for proof.

I believe that outside of some niche and very rare scenarios truly infinite loops like the one you wrote here are pretty useless, since they literally mean “loop indefinitely”. So what’s the compiler supposed to do? In some sense it just postpones the destruction of your object until some infinite time in the future.
What you usually do is use break inside such loop and break when some condition is met. A simplified example: https://godbolt.org/z/sxr7eG4W1
Here you can see the unique_ptr::default_delete in the disassembly and also see that the compiler is actually checking the condition inside the loop.
Note: extern volatile is used to ensure the compiler doesn’t optimise away the flag, since it’s a simplified example and the compiler is smart enough to figure out that the flag is not changed. In real code I’d advice against using volatile. Just check for the stop condition. That’s it.

Related

C++: compile-time checking for matching pairs of function calls?

I have a timer class I use to time blocks of code. Essentially something like this:
timer.start();
////do something
timer.end();
I am looking for a compile-time way to ensure that both the start and end call exist, and are within scope. Even hacky methods.
Here is one example of what I mean...this would generate a compile-time error if "end()" is called, but not "start()", due to the way a hidden variable "foo" is initialized.
#define start_macro bool foo = false; timer.start();
#define end_macro foo = true; timer.end();
//start_macro
////do something
end_macro //generates error because start_macro not called, thus foo not declared
But obviously the application of that method is limited because it generates no error if end() is the function not called.
Are there any clever ways I can ensure both functions are called, in order and in scope, at compile-time? I'm not interested in any run-time checking methods...I'd like a faster way to catch missing calls.
Unfortunaley there is no general solution. You would need to tell the compiler somehow, what are the matching functions. And, you never know, in which scope the closing function should be. So, rather difficult to impossible.
The better approach would be to use a wrapper class with constructor/destructor solution. The constructor would start the timer and the destrcutor would stop it. But that is runtime . . .
Another solution would be to write macro, which injects the code between timer start and stop, between such statements. But really not nice and anyway, marcros are not recommended. There could be also a template approach, trying to mimick that.
But for this to judge you need to specify more requirements.
You can use RAII, define a class wrapper, for example ScopedTimer, it's constructor calls start() and the destructor calls end(). Make your Timer::start() and Timer::end() protected, and make ScopedTimer as a friend of Timer, so that only ScopedTimer can calls to them.
There is no runtime checking. And there is no compile time checking either. It just makes it impossible to write code that calls one of the functions but not the other.
class ScopedTimer {
public:
explicit ScopedTimer(Timer *tm)
: tm_(tm) {
this->tm_->start();
}
~ScopedTimer() { this->tm_->stop(); }
protected:
Timer* tm;
};
// Your code will be like this:
{ // This pair of braces defines the scope that you want to measure.
ScopedTimer st(&timer);
////do something
}
Just as Shawn pointed out in his comment. To make sure timer has started, you simple put start of timer in constructor and stop in destructor. I used this method while making measurements for my project.
class Timer {
public:
Clock clock;
Timer() { clock.start(); }
~Timer()
{
clock.stop();
saveMeasurements();
}
private:
void saveMeasurements(); //save measurements to file
}

Use of goto for cleanly exiting a loop

I have a question about use of the goto statement in C++. I understand that this topic is controversial, and am not interested in any sweeping advice or arguments (I usually stray from using goto). Rather, I have a specific situation and want to understand whether my solution, which makes use of the goto statement, is a good one or not. I would not call myself new to C++, but would not classify myself as a professional-level programmer either. The part of the code which has generated my question spins in an infinite loop once started. The general flow of the thread in pseudocode is as follows:
void ControlLoop::main_loop()
{
InitializeAndCheckHardware(pHardware) //pHardware is a pointer given from outside
//The main loop
while (m_bIsRunning)
{
simulated_time += time_increment; //this will probably be += 0.001 seconds
ReadSensorData();
if (data_is_bad) {
m_bIsRunning = false;
goto loop_end;
}
ApplyFilterToData();
ComputeControllerOutput();
SendOutputToHardware();
ProcessPendingEvents();
while ( GetWallClockTime() < simulated_time ) {}
if ( end_condition_is_satisified ) m_bIsRunning = false;
}
loop_end:
DeInitializeHardware(pHardware);
}
The pHardware pointer is passed in from outside the ControlLoop object and has a polymorphic type, so it doesn't make much sense for me to make use of RAII and to create and destruct the hardware interface itself inside main_loop. I suppose I could have pHardware create a temporary object representing a sort of "session" or "use" of the hardware which could be automatically cleaned up at exit of main_loop, but I'm not sure whether that idea would make it clearer to somebody else what my intent is. There will only ever be three ways out of the loop: the first is if bad data is read from the external hardware; the second is if ProcessPendingEvents() indicates a user-initiated abort, which simply causes m_bIsRunning to become false; and the last is if the end-condition is satisfied at the bottom of the loop. I should maybe also note that main_loop could be started and finished multiple times over the life of the ControlLoop object, so it should exit cleanly with m_bIsRunning = false afterwards.
Also, I realize that I could use the break keyword here, but most of these pseudocode function calls inside main_loop are not really encapsulated as functions, simply because they would need to either have many arguments or they would all need access to member variables. Both of these cases would be more confusing, in my opinion, than simply leaving main_loop as a longer function, and because of the length of the big while loop, a statement like goto loop_end seems to read clearer to me.
Now for the question: Would this solution make you uncomfortable if you were to write it in your own code? It does feel a little wrong to me, but then I've never made use of the goto statement before in C++ code -- hence my request for help from experts. Are there any other basic ideas which I am missing that would make this code clearer?
Thanks.
Avoiding the use of goto is a pretty solid thing to do in object oriented development in general.
In your case, why not just use break to exit the loop?
while (true)
{
if (condition_is_met)
{
// cleanup
break;
}
}
As for your question: your use of goto would make me uncomfortable. The only reason that break is less readable is your admittance to not being a strong C++ developer. To any seasoned developer of a C-like language, break will both read better, as well as provide a cleaner solution than goto.
In particular, I simply do not agree that
if (something)
{
goto loop_end;
}
is more readable than
if (something)
{
break;
}
which literally says the same thing with built-in syntax.
With your one, singular condition which causes the loop to break early I would simply use a break. No need for a goto that's what break is for.
However, if any of those function calls can throw an exception or if you end up needing multiple breaks I would prefer an RAII style container, this is the exact sort of thing destructors are for. You always perform the call to DeInitializeHardware, so...
// todo: add error checking if needed
class HardwareWrapper {
public:
HardwareWrapper(Hardware *pH)
: _pHardware(pH) {
InitializeAndCheckHardware(_pHardware);
}
~HardwareWrapper() {
DeInitializeHardware(_pHardware);
}
const Hardware *getHardware() const {
return _pHardware;
}
const Hardware *operator->() const {
return _pHardware;
}
const Hardware& operator*() const {
return *_pHardware;
}
private:
Hardware *_pHardware;
// if you don't want to allow copies...
HardwareWrapper(const HardwareWrapper &other);
HardwareWrapper& operator=(const HardwareWrapper &other);
}
// ...
void ControlLoop::main_loop()
{
HardwareWrapper hw(pHardware);
// code
}
Now, no matter what happens, you will always call DeInitializeHardware when that function returns.
UPDATE
If your main concern is the while loop is too long, then you should aim at make it shorter, C++ is an OO language and OO is for split things to small pieces and component, even in general non-OO language we generally still think we should break a method/loop into small one and make it short easy for read. If a loop has 300 lines in it, no matter break/goto doesn't really save your time there isn't it?
UPDATE
I'm not against goto but I won't use it here as you do, I prefer just use break, generally to a developer that he saw a break there he know it means goto to the end of the while, and with that m_bIsRunning = false he can easily aware of that it's actually exit the loop within seconds. Yes a goto may save the time for seconds to understand it but it may also make people feel nervous about your code.
The thing I can imagine that I'm using a goto would be to exit a two level loop:
while(running)
{
...
while(runnning2)
{
if(bad_data)
{
goto loop_end;
}
}
...
}
loop_end:
Instead of using goto, you should use break; to escape loops.
There are several alternative to goto: break, continue and return depending on the situation.
However, you need to keep in mind that both break and continue are limited in that they only affect the most inner loop. return on the other hand is not affected by this limitation.
In general, if you use a goto to exit a particular scope, then you can refactor using another function and a return statement instead. It is likely that it will make the code easier to read as a bonus:
// Original
void foo() {
DoSetup();
while (...) {
for (;;) {
if () {
goto X;
}
}
}
label X: DoTearDown();
}
// Refactored
void foo_in() {
while (...) {
for (;;) {
if () {
return;
}
}
}
}
void foo() {
DoSetup();
foo_in();
DoTearDown();
}
Note: if your function body cannot fit comfortably on your screen, you are doing it wrong.
Goto is not good practice for exiting from loop when break is an option.
Also, in complex routines, it is good to have only one exit logic (with cleaning up) placed at the end. Goto is sometimes used to jump to the return logic.
Example from QEMU vmdk block driver:
static int vmdk_open(BlockDriverState *bs, int flags)
{
int ret;
BDRVVmdkState *s = bs->opaque;
if (vmdk_open_sparse(bs, bs->file, flags) == 0) {
s->desc_offset = 0x200;
} else {
ret = vmdk_open_desc_file(bs, flags, 0);
if (ret) {
goto fail;
}
}
/* try to open parent images, if exist */
ret = vmdk_parent_open(bs);
if (ret) {
goto fail;
}
s->parent_cid = vmdk_read_cid(bs, 1);
qemu_co_mutex_init(&s->lock);
/* Disable migration when VMDK images are used */
error_set(&s->migration_blocker,
QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
"vmdk", bs->device_name, "live migration");
migrate_add_blocker(s->migration_blocker);
return 0;
fail:
vmdk_free_extents(bs);
return ret;
}
I'm seeing loads of people suggesting break instead of goto. But break is no "better" (or "worse") than goto.
The inquisition against goto effectively started with Dijkstra's "Go To Considered Harmful" paper back in 1968, when spaghetti code was the rule and things like block-structured if and while statements were still considered cutting-edge. ALGOL 60 had them, but it was essentially a research language used by academics (cf. ML today); Fortran, one of the dominant languages at the time, would not get them for another 9 years!
The main points in Dijkstra's paper are:
Humans are good at spatial reasoning, and block-structured programs capitalise on that because program actions that occur near each other in time are described near each other in "space" (program code);
If you avoid goto in all its various forms, then it's possible to know things about the possible states of variables at each lexical position in the program. In particular, at the end of a while loop, you know that that loop's condition must be false. This is useful for debugging. (Dijkstra doesn't quite say this, but you can infer it.)
break, just like goto (and early returns, and exceptions...), reduces (1) and eliminates (2). Of course, using break often lets you avoid writing convoluted logic for the while condition, getting you a net gain in understandability -- and exactly the same applies for goto.

longjmp and RAII

So I have a library (not written by me) which unfortunately uses abort() to deal with certain errors. At the application level, these errors are recoverable so I would like to handle them instead of the user seeing a crash. So I end up writing code like this:
static jmp_buf abort_buffer;
static void abort_handler(int) {
longjmp(abort_buffer, 1); // perhaps siglongjmp if available..
}
int function(int x, int y) {
struct sigaction new_sa;
struct sigaction old_sa;
sigemptyset(&new_sa.sa_mask);
new_sa.sa_handler = abort_handler;
sigaction(SIGABRT, &new_sa, &old_sa);
if(setjmp(abort_buffer)) {
sigaction(SIGABRT, &old_sa, 0);
return -1
}
// attempt to do some work here
int result = f(x, y); // may call abort!
sigaction(SIGABRT, &old_sa, 0);
return result;
}
Not very elegant code. Since this pattern ends up having to be repeated in a few spots of the code, I would like to simplify it a little and possibly wrap it in a reusable object. My first attempt involves using RAII to handle the setup/teardown of the signal handler (needs to be done because each function needs different error handling). So I came up with this:
template <int N>
struct signal_guard {
signal_guard(void (*f)(int)) {
sigemptyset(&new_sa.sa_mask);
new_sa.sa_handler = f;
sigaction(N, &new_sa, &old_sa);
}
~signal_guard() {
sigaction(N, &old_sa, 0);
}
private:
struct sigaction new_sa;
struct sigaction old_sa;
};
static jmp_buf abort_buffer;
static void abort_handler(int) {
longjmp(abort_buffer, 1);
}
int function(int x, int y) {
signal_guard<SIGABRT> sig_guard(abort_handler);
if(setjmp(abort_buffer)) {
return -1;
}
return f(x, y);
}
Certainly the body of function is much simpler and more clear this way, but this morning a thought occurred to me. Is this guaranteed to work? Here's my thoughts:
No variables are volatile or change between calls to setjmp/longjmp.
I am longjmping to a location in the same stack frame as the setjmp and returning normally, so I am allowing the code to execute the cleanup code that the compiler emitted at the exit points of the function.
It appears to work as expected.
But I still get the feeling that this is likely undefined behavior. What do you guys think?
I assume that f is in a third party library/app, because otherwise you could just fix it to not call abort. Given that, and that RAII may or may not reliably produce the right results on all platforms/compilers, you have a few options.
Create a tiny shared object that defines abort and LD_PRELOAD it. Then you control what happens on abort, and NOT in a signal handler.
Run f within a subprocess. Then you just check the return code and if it failed try again with updated inputs.
Instead of using the RAII, just call your original function from multiple call points and let it manually do the setup/teardown explicitly. It still eliminates the copy-paste in that case.
I actually like your solution, and have coded something similar in test harnesses to check that a target function assert()s as expected.
I can't see any reason for this code to invoke undefined behaviour. The C Standard seems to bless it: handlers resulting from an abort() are exempted from the restriction on calling library functions from a handler. (Caveat: this is 7.14.1.1(5) of C99 - sadly, I don't have a copy of C90, the version referenced by the C++ Standard).
C++03 adds a further restriction: If any automatic objects would be destroyed by a thrown exception transferring control to another (destination) point in the program, then a call to longjmp(jbuf, val) at the throw point that transfers control to the same (destination) point has undefined behavior. I'm supposing that your statement that 'No variables are volatile or change between calls to setjmp/longjmp' includes instantiating any automatic C++ objects. (I guess this is some legacy C library?).
Nor is POSIX async signal safety (or lack thereof) an issue - abort() generates its SIGABRT synchronously with program execution.
The biggest concern would be corrupting the global state of the 3rd party code: it's unlikely that the author will take pains to get the state consistent before an abort(). But, if you're correct that no variables change, then this isn't a problem.
If someone with a better understanding of the standardese can prove me wrong, I'd appreciate the enlightenment.

Extra brace brackets in C++ code

Sometimes you run into code that has extra brace brackets, that have nothing to do with scope, only are for readability and avoiding mistakes.
For example:
GetMutexLock( handle ) ;
{
// brace brackets "scope" the lock,
// must close block / remember
// to release the handle.
// similar to C#'s lock construct
}
ReleaseMutexLock( handle ) ;
Other places I have seen it are:
glBegin( GL_TRIANGLES ) ;
{
glVertex3d( .. ) ;
glVertex3d( .. ) ;
glVertex3d( .. ) ;
} // must remember to glEnd!
glEnd() ;
This introduces a compiler error if the mutex isn't freed (assuming you remember both the } and the Release() call).
Is this a bad practice? Why?
If it isn't one, could it change how the code is compiled or make it slower?
The braces themselves are fine, all they do is limit scope and you won't slow anything down. It can be seen as cleaner. (Always prefer clean code over fast code, if it's cleaner, don't worry about the speed until you profile.)
But with respect to resources it's bad practice because you've put yourself in a position to leak a resource. If anything in the block throws or returns, bang you're dead.
Use Scope-bound Resource Management (SBRM, also known as RAII), which limits a resource to a scope, by using the destructor:
class mutex_lock
{
public:
mutex_lock(HANDLE pHandle) :
mHandle(pHandle)
{
//acquire resource
GetMutexLock(mHandle);
}
~mutex_lock()
{
// release resource, bound to scope
ReleaseMutexLock(mHandle);
}
private:
// resource
HANDLE mHandle;
// noncopyable
mutex_lock(const mutex_lock&);
mutex_lock& operator=(const mutex_lock&);
};
So you get:
{
mutex_lock m(handle);
// brace brackets "scope" the lock,
// AUTOMATICALLY
}
Do this will all resources, it's cleaner and safer. If you are in a position to say "I need to release this resource", you've done it wrong; they should be handled automatically.
Braces affect variable scope. As far as I know that is all they do.
Yes, this can affect how the program is compiled. Destructors will be called at the end of the block instead of waiting until the end of the function.
Often this is what you want to do. For example, your GetMutexLock and ReleaseMutexLock would be much better C++ code written like this:
struct MutexLocker {
Handle handle;
MutexLocker(handle) : handle(handle) { GetMutexLock(handle); }
~MutexLocker() { ReleaseMutexLock(handle); }
};
...
{
MutexLocker lock(handle);
// brace brackets "scope" the lock,
// must close block / remember
// to release the handle.
// similar to C#'s lock construct
}
Using this more C++ style, the lock is released automatically at the end of the block. It will be released in all circumstances, including exceptions, with the exceptions of setjmp/longjmp or a program crash or abort.
It's not bad practice. It does not make anything slower; it's just a way of structuring the code.
Getting the compiler to do error-checking & enforcing for you is always a good thing!
The specific placement of { ... } in your original example serves purely as formatting sugar by making it more obvious where a group of logically related statements begins and where it ends. As shown in your examples, it has not effect on the compiled code.
I don't know what you mean by "this introduces a compiler error if the mutex isn't freed". That's simply not true. Such use of { ... } cannot and will not introduce any compiler errors.
Whether it is a good practice is a matter of personal preference. It looks OK. Alternatively, you can use comments and/or indentation to indicate logical grouping of statements in the code, without any extra { ... }.
There are various scoping-based techniques out there, some of which have been illustrated by the other answers here, but what you have in your OP doesn't even remotely look anything like that. Once again, what you have in your OP (as shown) is purely a source formatting habit with superfluous { ... } that have no effect on the generated code.
It will make no difference to the compiled code, apart from calling any destructors at the end of that block rather than the end of the surrounding block, unless the compiler is completely insane.
Personally, I would call it bad practice; the way to avoid the kind of mistakes you might make here is to use scoped resource management (sometimes called RAII), not to use error-prone typographical reminders. I would write the code as something like
{
mutex::scoped_lock lock(mutex);
// brace brackets *really* scope the lock
} // scoped_lock destructor releases the lock
{
gl_group gl(GL_TRIANGLES); // calls glBegin()
gl.Vertex3d( .. );
gl.Vertex3d( .. );
gl.Vertex3d( .. );
} // gl_group destructor calls glEnd()
If you're putting code into braces, you should probably break it out into its own method. If it's a single discrete unit, why not label it and break it out functionally? That will make it explicit what the block does, and people who later read the code won't have to figure out.
Anything that improves readablity IMHO is good practice. If adding braces help with the readability, then go for it!
Adding additional braces will not change how the code is compiled. It won't make the running of the program any slower.
This is much more useful (IMHO) in C++ with object destructors; your examples are in C.
Imagine if you made a MutexLock class:
class MutexLock {
private:
HANDLE handle;
public:
MutexLock() : handle(0) {
GetMutexLock(handle);
}
~MutexLock() {
ReleaseMutexLock(handle);
}
}
Then you could scope that lock to just the code that needed it by providing an new scope with the braces:
{
MutexLock mtx; // Allocated on the stack in this new scope
// Use shared resource
}
// When this scope exits the destructor on mtx is called and the stack is popped

optimizing branching by re-ordering

I have this sort of C function -- that is being called a zillion times:
void foo ()
{
if (/*condition*/)
{
}
else if(/*another_condition*/)
{
}
else if (/*another_condition_2*/)
{
}
/*And so on, I have 4 of them, but we can generalize it*/
else
{
}
}
I have a good test-case that calls this function, causing certain if-branches to be called more than the others.
My goal is to figure the best way to arrange the if statements to minimize the branching.
The only way I can think of is to do write to a file for every if condition branched to, thereby creating a histogram. This seems to be a tedious way. Is there a better way, better tools?
I am building it on AS3 Linux, using gcc 3.4; using oprofile (opcontrol) for profiling.
It's not portable, but many versions of GCC support a function called __builtin_expect() that can be used to tell the compiler what we expect a value to be:
if(__builtin_expect(condition, 0)) {
// We expect condition to be false (0), so we're less likely to get here
} else {
// We expect to get here more often, so GCC produces better code
}
The Linux kernel uses these as macros to make them more intuitive, cleaner, and more portable (i.e. redefine the macros on non-GCC systems):
#ifdef __GNUC__
# define likely(x) __builtin_expect((x), 1)
# define unlikely(x) __builtin_expect((x), 0)
#else
# define likely(x) (x)
# define unlikely(x) (x)
#endif
With this, we can rewrite the above:
if(unlikely(condition)) {
// we're less likely to get here
} else {
// we expect to get here more often
}
Of course, this is probably unnecessary unless you're aiming for raw speed and/or you've profiled and found that this is a problem.
Try a profiler (gprof?) - it will tell you how much time is spent. I don't recall if gprof counts branches, but if not, just call a separate empty method in each branch.
Running your program under Callgrind will give you branch information. Also I hope you profiled and actually determined this piece of code is problematic, as this seems like a microoptimization at best. The compiler is going to generate a branch table from the if/else if/else if it's able to which would require no branching (this is dependent on what the conditionals are, obviously)0, and even failing that the branch predictor on your processor (assuming this is not for embedded work, if it is feel free to ignore me) is pretty good at determining the target of branches.
It doesn't actually matter what order you change them round to, IMO. The branch predictor will store the most common branch and auto take it anyway.
That said, there are something you could try ... You could maintain a set of job queues and then, based on the if statements, assign them to the correct job queue before executing them one after another at the end.
This could further be optimised by using conditional moves and so forth (This does require assembler though, AFAIK). This could be done by conditionally moving a 1 into a register, that is initialised as 0, on condition a. Place the pointer valueat the end of the queue and then decide to increment the queue counter or not by adding that conditional 1 or 0 to the counter.
Suddenly you have eliminated all branches and it becomes immaterial how many branch mispredictions there are. Of course, as with any of these things, you are best off profiling because, though it seems like it would provide a win ... it may not.
We use a mechanism like this:
// pseudocode
class ProfileNode
{
public:
inline ProfileNode( const char * name ) : m_name(name)
{ }
inline ~ProfileNode()
{
s_ProfileDict.Find(name).Value() += 1; // as if Value returns a nonconst ref
}
static DictionaryOfNodesByName_t s_ProfileDict;
const char * m_name;
}
And then in your code
void foo ()
{
if (/*condition*/)
{
ProfileNode("Condition A");
// ...
}
else if(/*another_condition*/)
{
ProfileNode("Condition B");
// ...
} // etc..
else
{
ProfileNode("Condition C");
// ...
}
}
void dumpinfo()
{
ProfileNode::s_ProfileDict.PrintEverything();
}
And you can see how it's easy to put a stopwatch timer in those nodes too and see which branches are consuming the most time.
Some counter may help. After You see the counters, and there are large differences, You can sort the conditions in a decreasing order.
static int cond_1, cond_2, cond_3, ...
void foo (){
if (condition){
cond_1 ++;
...
}
else if(/*another_condition*/){
cond_2 ++;
...
}
else if (/*another_condtion*/){
cond_3 ++;
...
}
else{
cond_N ++;
...
}
}
EDIT: a "destructor" can print the counters at the end of a test run:
void cond_print(void) __attribute__((destructor));
void cond_print(void){
printf( "cond_1: %6i\n", cond_1 );
printf( "cond_2: %6i\n", cond_2 );
printf( "cond_3: %6i\n", cond_3 );
printf( "cond_4: %6i\n", cond_4 );
}
I think it is enough to modify only the file that contains the foo() function.
Wrap the code in each branch into a function and use a profiler to see how many times each function is called.
Line-by-line profiling gives you an idea which branches are called more often.
Using something like LLVM could make this optimization automatically.
As a profiling technique, this is what I rely on.
What you want to know is: Is the time spent in evaluating those conditions a significant fraction of execution time?
The samples will tell you that, and if not, it just doesn't matter.
If it does matter, for example if the conditions include function calls that are on the stack a significant part of the time, what you want to avoid is spending much time in comparisons that are false. The way you tell this is, if you often see it calling a comparison function from, say, the first or second if statement, then catch it in such a sample and step out of it to see if it returns false or true. If it typically returns false, it should probably go farther down the list.