We are designing a new serverless application in AWS for fist time that makes API call to external system to perform certain operations. Before performing any API call related to certain functionality we need to establish a session with that external system and that session Id needs to be passed with every API call . Here comes my questions
It was suggested to create a separate lambda to perform login operations. In that case how this lambda can share session details with other lambda ?
To share the session we thought of having it in cache. But then another suggestion came to use an adapter. We are totally clueless about what adapter is ??
If session gets expired how we can get another session established ??
Related
Is there a common way to establish a network connection from a CloudFoundry-Service to a CloudFoundry App which the service is bound to.
In typical fashion apps receive their bind credentials and establish network connections to provisioned service for example databases.
It would be very handy to establish a connection from a service to an app, so the service could scrape endpoints that are provided by the app.
Any thoughts on this, why is it / or isn't it possible, why could it be a bad idea.
Normally, you have your service and the application receives credentials from the service through the service binding (i.e. VCAP_SERVICES).
You want to reverse this arrangement, which is fine, but the service will need to have some way to know how to reach the applications. The way to do this would be through routes bound to your application.
I have seen something like this done before, this is roughly the process. I'm sure you can adapt it to your requirements.
Create a service broker. The broker is responsible for managing service instances and service credentials. The broker is notified when an instance is created and when a binding occurs. Your broker will need to handle these requests.
The broker, in addition to its normal responsibilities, is going to need to maintain state indicating which applications have instances & bindings. In addition, the broker is going to need to use the org/space/app guids it's provided through the service broker API and talk to the CloudFoundry API to fetch the routes for the applications that are bound to it. You don't usually get these through the service broker API, but since you want to talk to the applications from the service, you need this information. It gives the service a way to communicate with the application.
Your broker may also provide the service in question (i.e. talking to applications), or it can delegate to some other process/container/VM to provide the service. If your service does the latter, then you need a way to a.) create the process/container/VM and b.) pass along the information it requires to talk to your application.
Obviously, you need to code the logic that will take the routes for applications that have created instances and bindings and communicate with them.
There can be some limitations with using the routes. First, not all routes are public. For internal routes, it would be kind of complicated to allow the broker/service to talk to the app. The broker/service would need to be an application on CF and you would need to specifically allow that communication (would require more API calls). Second, some apps just don't have routes. Perhaps this won't happen in your case, but it's worth considering. Lastly, not all routes are HTTP, some can be TCP as well. Your broker/service would need to handle both of those.
A variation on the above process, instead of using routes or talking to the API, you could have your broker/service provide some mechanism through the credentials to the application such that it registers itself with the broker/service. Thus when your applications start, they'll read the service info, register with the service and then go about their business. In this way, the application would have some additional flexibility about what information it provides when it registers with the broker/service. The downside is that the app has to do some work to be compatible.
Background:
I've a local application that process the user input for 3 second (approximately) and then return an answer (output) to the user.
(I don't want to go into details about my application in purpose of not complicate the question and keep it a pure architectural question)
My Goal:
I want to make my application a service in the cloud and expose API
(for the upcoming website and for clients that will connect the service without install the software locally)
Possible Solutions:
Deploy WCF on the cloud and use my application there, so clients can invoke the service and use my application on the cloud. (RPC style)
Use a Web-API that will insert the request into queue and then a worker role will dequeue requests and post the results to a DB, so the client will send one request for creating a request in the queue, and another request for getting the result (which the Web-API will get from the DB).
The Problems:
If I go with the WCF solution (#1) I cant handle great loads of requests, maybe 10-20 simultaneously.
If I go with the WebAPI-Queue-WorkerRole solution (#2) sometimes the client will need to request the results multiple times its can be a problem.
If I go with the WebAPI-Queue-WorkerRole solution (#2) the process isn't sync, the client will not get the result once the process of his request is done, he need to request the result.
Questions:
In the WebAPI-Queue-WorkerRole solution (#2), can I somehow alert the client once his request has processed and done ? so I can save the client multiple request (for the result).
Asking multiple times for the result isn't old stuff ? I remmemeber that 10 - 15 years ago its was accepted but now ? I know that VirusTotal API use this kind of design.
There is a better solution ? one that will handle great loads and will be sync or async (returning result to the client once it done) ?
Thank you.
If you're using Azure, why not simply fire up more servers and use load balancing to handle more load? In that way, as your load increases, you have more servers to handle the requests.
Microsoft recently made available the Azure Service Fabric, which gives you a lot of control over spinning up and shutting down these services.
I am using the Staff Library built on top of the Apache Axis2c library to implement a service, which I intend to be stateless.
As I understand it, whether a service is stateful or not (i.e. "whether the interaction of client and server involves the server keeping track of the interaction-specific data as each subsequent interaction may depend upon the outcome of the previous interaction" or not) is something that will depend on the implementation of the service architecture.
As I understand it, it is perfectly possible for me to use Staff to create a stateless service. Why then does the 'features' page of staff explicitly mention "stateful Web services implementation"? Does it even make sense for the Staff library to do that?
Maybe it's not truly stateful.
The idea why it's called "stateful" is: server stores service instances per session. Your service can store local data as class properties and you will have the same data when you working within the session.
When you log in and use sessionId provided by Login service, server will create(lazily) service instances bound to this sessionId. So for two different sessions you will have two service instances with different values of properties. This may be very useful if you working with some large objects which can't be initialized and destroyed on each call, for example the geodesic information systems.
Stateless Web service frameworks usually create service instances per client call and nothing can be stored locally, in exception you use some global mechanism like shared memory or DBMS and pass some id to distinguish one client to another.
I would like to use Amazon SQS in my application to queue requests from other external systems that don't belong to me.
What is the better way of doing this, directly expose the SQS Queue and the required messageformat OR publish a web service (WCF) that queues the request.
Also I read that SQS is relative slow for a singe access, but am I right that it can handle easyly a lot of concurrent accesses from different clients?
Best
Thomas
This is largely a matter of preference and depends a bit on your situation. But my recommendation would be to wrap it with your own web-service.
Building your web-service allows you to do things like validation, throttling, schema versioning etc. E.g. you can reject invalid messages with immediate synchronous feedback to the sender. If the external systems are publishing directly to your queue, then invalid messages become your problem not theirs, and if you revise your schema and want to reject old-schema messages then you either have to drop them or set up a separate back-channel to feed back information to the publisher. That adds unnecessary complexity to your system. Having a web-service would even let you switch to other queuing technologies later if you need to.
But building your own web-service has downsides too: will your own service be able to handle the same load as the SQS API with the same low latency? It won't scale infinitely like SQS, so how responsive will you need to be to changes in load? Have you got the resources to manage a separate service? And it's more work than just giving a client's AWS account permission to publish to your queue.
If you're happy with the extra work involved, and you want a more future-proof system, IMHO it's worth building the web-service wrapper.
What kind of server do you people see in real projects?
1) Web Services MUST be stateless: Basically you must send username/password with every request, every request must use HTTPS and I will authenticate and load the User object everytime if needed.
2) A Session for Web Services: like in a web container so I can at least save the authenticated User object and have something similar to a session ID so I don't need to authenticate, load and check the User on every request.
3) Sticky Service (persistent service across requests): https://jax-ws.dev.java.net/nonav/2.1/docs/statefulWebservice.html
I understand the scalability problems of stateful services (and of web application sessions), but sometimes you must have some kind of state, for example for a shopping cart. But you can also put this state in the database (use the back-end as a kind of session argh) or passing the entire state to the client (the client becomes responsible for resending the entire shopping cart).
The truth is, at least for web applications, the session helps a lot in many situations. Scalability issues can be ignored if your system accepts that "the user must start over doing whatever he is doing if his web server happens to go down" or you can try a session cluster if that's unacceptable.
How it is for web services? I am inclined to conclude that web services are very different than web applications and accept option 1) (always stateless), but it would be nice to hear other opinions based on real project experience.
While it's only a small difference but it should still be mentioned:
It's not state in web services that kill scalability, rather it's state on the App Server that's hosting the web services that will kill scalability. The moment you say that this user needs to access this server (as done in sticky sessions) you are effectively limiting your scalability options. The point you want to get to is that 'Any of your free load-balanced App servers' can handle this web service request and if I add 1 more App Server I should be able to handle % more users.
It's totally fine (and personally recommended) if you want to maintain state to pass in an authentication token and on each request get the service to retrieve your 'state' from a data store (preferably a redundant and partitioned one, e.g. distributed+replicated key/value data store). That's how Amazon does it with SimpleDb and Google with BigTable.
Ebay takes a slightly different approach and stores most of the clients state in a cookie so it gets passed in with every request. Although it generates a lot more traffic, it still scalable as any of their servers can still handle the request.
If you want a scalable data store I would recommend looking at redis it has speed and features that can't be beat in a key/value data store.
You should also check out highscalability.com if you want access to good material on how to build fast and scalable services.
Ideally webservices (and web sites) should be stateless.
Unfortunately this takes very well thought out problem domain, and clear separation of concerns.
I've found that in practice most real-world web sites depend on state even though this limits their scalability.
I've also found that many real-world web-services also rely on state.
Ultimately the 'right' decision is the one that works for the specific problem, so it's probably okay to write a webservice that relies on state, and refactor it later if scalability becomes an issue.
Highly dependent on whether the service is single transaction oriented (say getting stock quotes) or if the output from the service is dependent on a data provided from a particular client across multiple transactions(in that case state must be maintained.)
As far as scalability issues, storing state in a database isn't actually a bad way to go (in fact it's probably the only way to go if you're load balancing your service across a server farm.)
I think with Flex clients the state is moved out of the service and into the client tier. Keep the services stateless and let the clients maintain the state needed. The services stay simple, and the clients are free to mash them together as they wish.
You seem to be equating state and authentication. Perhaps you're accustomed to storing username and password in session state?
This is not necessary, even with old ASMX web services. Simply pass whatever information you need to your "Login" operation. This operation will be defined to return an "Authentication Ticket" header.
All other operations that require authentication will require this "Authentication Ticket" header. They will each check the header to see if it represents a valid, authenticated user. If so, then they will perform their task. If not, then they will return a SOAP Fault indicating that authentication is required.
No state is required. Simply make sure that the authentication ticket can be validated on any server your service runs on (for instance, in a web farm), and you'll be fine.