Checking if template specialization of member function exists [duplicate] - c++

Is there a way to establish at compile time if a certain function template was specialized?
For example, assume the following function template:
template<size_t N>
void foo();
I want to test if foo<42> was specialized. Note that the declaration above doesn't contain any default implementation.
I tried SFINAE but couldn't find a condition on the function that the compiler cannot deduce from its declaration.

Is there a way to establish in compile time if a certain template function was specialized?
With a function... I don't think so.
But if you create a functor, you can add a static const member (is_specialized, in the following example) that can give you this information
#include <iostream>
template <std::size_t N>
struct foo
{
static constexpr bool is_specialized { false };
void operator() () const
{ std::cout << "- generic (" << N << ") foo struct" << std::endl; }
};
template <>
struct foo<42U>
{
static constexpr bool is_specialized { true };
void operator() () const
{ std::cout << "- specialized (42) foo struct" << std::endl; }
};
int main()
{
foo<17U>()(); // print - generic (17) foo struct
foo<42U>()(); // print - specialized (42) foo struct
std::cout << foo<17U>::is_specialized << std::endl; // print 0
std::cout << foo<42U>::is_specialized << std::endl; // print 1
}
--- EDIT ---
Following the suggestion from Quentin (thanks again!) I've developed another functor-based solution that use something, to detect if the functor is generic or specialize, that is added only in the generic functor. In this case, a type instead a bool constant.
template <std::size_t N>
struct foo
{
// im_not_specialized is added only in the generic version!
using im_not_specialized = void;
void operator () () const
{ std::cout << "- generic (" << N << ") foo struct" << std::endl; }
};
template <>
struct foo<42U>
{
void operator () () const
{ std::cout << "- specialized (42) foo struct" << std::endl; }
};
This type can be used via SFINAE and I propose an example based on a constexpr isSpecialized() template function (with an helper function)
template <typename F>
constexpr bool isSpecializedHelper
(int, typename F::im_not_specialized const * = nullptr)
{ return false; }
template <typename F>
constexpr bool isSpecializedHelper (long)
{ return true; }
template <typename F>
constexpr bool isSpecialized ()
{ return isSpecializedHelper<F>(0); }
This require a little more work but isSpecialized() can be reused with different functors (im_not_specialized type based)
The following is a full working example
#include <iostream>
template <std::size_t N>
struct foo
{
// im_not_specialized is added only in the generic version!
using im_not_specialized = void;
void operator () () const
{ std::cout << "- generic (" << N << ") foo struct" << std::endl; }
};
template <>
struct foo<42U>
{
void operator () () const
{ std::cout << "- specialized (42) foo struct" << std::endl; }
};
template <typename F>
constexpr bool isSpecializedHelper
(int, typename F::im_not_specialized const * = nullptr)
{ return false; }
template <typename F>
constexpr bool isSpecializedHelper (long)
{ return true; }
template <typename F>
constexpr bool isSpecialized ()
{ return isSpecializedHelper<F>(0); }
int main()
{
foo<17U>()(); // print - generic (17) foo struct
foo<42U>()(); // print - specialized (42) foo struct
constexpr auto isSp17 = isSpecialized<foo<17U>>();
constexpr auto isSp42 = isSpecialized<foo<42U>>();
std::cout << isSp17 << std::endl; // print 0
std::cout << isSp42 << std::endl; // print 1
}

If you mark the base function as deleted (= delete), you can detect if it has been specialized using SFINAE (assuming the specialization itself is not deleted)
An expression like decltype(foo<N>()) will result in a substitution failure if foo<N> is marked as deleted. If you provide a specialization that is not deleted on the other hand the expression will not result in an error.
Using this you can create a simple trait class to check if foo has been specialized for a specific set of template parameters:
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo<N>(), void())> : std::true_type {};
1. Basic examples
C++11: godbolt
#include <type_traits>
template<std::size_t N>
void foo() = delete;
template<>
void foo<1>() { }
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo<N>(), void())> : std::true_type {};
int main()
{
static_assert(!is_foo_specialized<0>::value, ""); // foo<0> is not specialized
static_assert(is_foo_specialized<1>::value, ""); // foo<1> IS specialized
}
With C++20 you could also use a concept for this, e.g.: godbolt
#include <type_traits>
template<std::size_t N>
void foo() = delete;
template<>
void foo<1>() { }
template<std::size_t N>
concept is_foo_specialized = requires { foo<N>(); };
int main()
{
static_assert(!is_foo_specialized<0>); // foo<0> is not specialized
static_assert(is_foo_specialized<1>); // foo<1> IS specialized
}
2. Providing a default implementation
Due to the function being = delete'd it can't have a default implementation.
If you do require a default implementation for the function, you could use 2 functions instead:
one that is = delete'd (so SFINAE can detect it)
and another one that implements the default behaviour and forwards to the other if a specialization exists
C++11: godbolt
#include <type_traits>
#include <iostream>
template<std::size_t N>
void foo_specialized() = delete;
template<>
void foo_specialized<1>() { std::cout << "CUSTOMIZED!" << std::endl; }
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo_specialized<N>(), void())> : std::true_type {};
template<std::size_t N>
typename std::enable_if<!is_foo_specialized<N>::value>::type foo() {
std::cout << "DEFAULT!" << std::endl;
}
template<std::size_t N>
typename std::enable_if<is_foo_specialized<N>::value>::type foo() {
foo_specialized<N>();
}
int main()
{
foo<0>(); // -> DEFAULT!
foo<1>(); // -> CUSTOMIZED!
}
Or with C++20: godbolt
#include <type_traits>
#include <iostream>
template<std::size_t N>
void foo_specialize() = delete;
template<>
void foo_specialize<1>() { std::cout << "CUSTOMIZED!" << std::endl; }
template<std::size_t N>
concept is_foo_specialized = requires { foo_specialize<N>(); };
template<std::size_t N> requires (!is_foo_specialized<N>)
void foo() {
std::cout << "DEFAULT!" << std::endl;
}
template<std::size_t N> requires (is_foo_specialized<N>)
void foo() {
foo_specialize<N>();
}
int main()
{
foo<0>(); // -> DEFAULT!
foo<1>(); // -> CUSTOMIZED!
}
3. Compile-time shenanigans
This can of course also be used to iterate the specializations (within a certain limit) - or like you asked in the comments to find the nearest specialization of the function.
nearest_foo_specialized in this example will iterate over a range of values for N and check if a specialization of foo exists for this value.
N is the value where we want to start the search
SearchRange determines how many specializations will be checked (both up and down) from the provided N value (in this example we check for N's +/- 10)
CurrentDistance keeps track how far we've already searched from our starting N value, so we don't exceed the specified SearchRange
The last template parameter is used for SFINAE
e.g.:
nearest_foo_specialized<100, 10> would check for specializations of foo between N = 90 and N = 110, returning the one that is closer to 100 (prefering lower N values in case of a draw)
Example C++11: godbolt
#include <type_traits>
#include <iostream>
#include <utility>
template<std::size_t N>
void foo() = delete;
template<>
void foo<5>() { std::cout << 5 << std::endl; }
template<>
void foo<10>() { std::cout << 10 << std::endl; }
template<>
void foo<15>() { std::cout << 15 << std::endl; }
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo<N>(), void())> : std::true_type {};
template<std::size_t N, std::size_t SearchRange = 10, std::size_t CurrentDistance = 0, class = void>
struct nearest_foo_specialized {
static const std::size_t index = 0; // an index for which foo<> is specialized, if value is true.
static const std::size_t distance = CurrentDistance; // distance from original N
static const bool value = false; // have we found a specialization yet?
};
// Found a match -> Report Success
template<std::size_t N, std::size_t SearchRange, std::size_t CurrentDistance>
struct nearest_foo_specialized<N, SearchRange, CurrentDistance, typename std::enable_if< CurrentDistance <= SearchRange && is_foo_specialized<N>::value >::type> {
static const std::size_t index = N;
static const std::size_t distance = CurrentDistance;
static const bool value = true;
};
// No match found -> recurse until SearchRange limit
template<std::size_t N, std::size_t SearchRange, std::size_t CurrentDistance>
struct nearest_foo_specialized<N, SearchRange, CurrentDistance, typename std::enable_if< CurrentDistance < SearchRange && !is_foo_specialized<N>::value >::type> {
typedef nearest_foo_specialized<N - 1, SearchRange, CurrentDistance + 1> down;
typedef nearest_foo_specialized<N + 1, SearchRange, CurrentDistance + 1> up;
static const std::size_t distance = down::distance < up::distance ? down::distance : up::distance;
static const std::size_t index = down::distance == distance && down::value ? down::index : up::index;
static const std::size_t value = down::distance == distance && down::value ? down::value : up::value;
};
// calls the nearest foo() specialization (up to 10 away from the specified N)
template<std::size_t N>
typename std::enable_if<nearest_foo_specialized<N>::value>::type call_nearest_foo() {
foo<nearest_foo_specialized<N>::index>();
}
template<std::size_t N>
typename std::enable_if<!nearest_foo_specialized<N>::value>::type call_nearest_foo() {
static_assert(N!=N, "No nearest foo() specialization found!");
}
int main() {
call_nearest_foo<7>(); // calls foo<5>()
call_nearest_foo<8>(); // calls foo<10>()
call_nearest_foo<11>(); // calls foo<10>()
call_nearest_foo<15>(); // calls foo<15>()
call_nearest_foo<25>(); // calls foo<15>()
// call_nearest_foo<26>(); // error: No nearest foo() (only searching up to 10 up / down)
}

Related

count std::optional types in variadic template tuple

I've got a parameter pack saved as a tuple in some function traits struct.
How can I find out, how many of those parameters are std::optional types?
I tried to write a function to check each argument with a fold expression, but this doesn't work as I only pass a single template type which is the tuple itself.
void foo1(){}
void foo2(int,float){}
void foo3(int, std::optional<int>, float, std::optional<int>){}
void foo4(int, std::optional<int>, bool){}
template<typename R, typename... TArgs>
struct ftraits<R(TArgs...)>
{
using ret = R;
using args = std::tuple<TArgs...>;
};
template<typename T>
struct is_optional : std::false_type
{
};
template<typename T>
struct is_optional<std::optional<T>> : std::true_type
{
};
template<typename... Ts>
constexpr auto optional_count() -> std::size_t
{
// doesn't work since Ts is a single parameter with std::tuple<...>
return (0 + ... + (is_optional<Ts>::value ? 1 : 0));
}
int main() {
using t1 = typename ftraits<decltype(foo1)>::args;
std::cout << optional_count<t1>() << std::endl; // should print 0
using t2 = typename ftraits<decltype(foo2)>::args;
std::cout << optional_count<t2>() << std::endl; // should print 0
using t3 = typename ftraits<decltype(foo3)>::args;
std::cout << optional_count<t3>() << std::endl; // should print 2
using t4 = typename ftraits<decltype(foo4)>::args;
std::cout << optional_count<t4>() << std::endl; // should print 1
}
You can use template partial specialization to get element types of the tuple and reuse the fold-expression
template<typename>
struct optional_count_impl;
template<typename... Ts>
struct optional_count_impl<std::tuple<Ts...>> {
constexpr static std::size_t count =
(0 + ... + (is_optional<Ts>::value ? 1 : 0));
};
template<typename Tuple>
constexpr auto optional_count() -> std::size_t {
return optional_count_impl<Tuple>::count;
}
Demo
You can get the size of the tuple using std::tuple_size, then iterate over all its members using a recursive template. In that template, you can pretend to construct an instance of the tuple using std::declval, get the value at the current index using std::get, and then finally get the type of that value using decltype.
Example implementation:
#include <optional>
#include <tuple>
#include <utility>
template<typename T>
struct is_optional : std::false_type {};
template<typename T>
struct is_optional<std::optional<T>> : std::true_type {};
template<typename Tuple, size_t i>
constexpr size_t optional_count_impl() {
size_t val = is_optional<std::remove_reference_t<decltype(std::get<i>(std::declval<Tuple>()))>>::value ? 1 : 0;
if constexpr (i) {
val += optional_count_impl<Tuple, i - 1>();
}
return val;
}
template<typename Tuple>
constexpr size_t optional_count() {
const size_t tuple_size = std::tuple_size<Tuple>::value;
if constexpr (tuple_size == 0) {
return 0;
} else {
return optional_count_impl<Tuple, tuple_size - 1>();
}
}
using Tup1 = std::tuple<int, int, std::optional<size_t>, bool, std::optional<bool>, std::optional<std::optional<int>>>;
int main() {
return optional_count<Tup1>();
}

Template specialization with non-type

Considering I have a simple class template:
template <typename T>
class foo
{
T t;
};
Is it possible to specialize foo such that T is not a type but a non-type value so that:
foo<float> my_foo;
Uses the class template shown above, while
foo<20> my_other_foo;
Uses a different template specialization? Is this possible, and if yes, what would the template specialization code look like?
Is this possible, and if yes, what would the partial specialization code look like?
As you exactly want, no: it's impossible.
But, if you can use C++17, you can make almost the contrary: receiving an auto value (T become the declval() of the value)
template <auto Val>
struct foo
{
using T = decltype(Val);
T t { Val }; // or also decltype(Val) t {Val};
static constexpr bool isSpecialized { false };
};
you can specialize for 20 (where 20 is an int; doesn't match (by example) 20L or 20U)
template <>
struct foo<20>
{
static constexpr bool isSpecialized { true };
};
The problem of this solution is that you can't have foo<float> because a float value can't be a template not-type parameter (so you can't write foo<0.0f>, by example).
You can roughly bypass this problem adding a second template type parameter with a default value (the type of the first parameter)
template <auto Val, typename T = decltype(Val)>
struct bar
{
T t { Val };
static constexpr bool isSpecialized { false };
};
and the 20 specialization remain
template <>
struct bar<20>
{
static constexpr bool isSpecialized { true };
};
but now you can call bar<0, float> as substitute of the old foo<float>
The following is a full compiling (C++17, obviously) example
#include <iostream>
template <auto Val>
struct foo
{
using T = decltype(Val);
T t { Val }; // or also decltype(Val) t {Val};
static constexpr bool isSpecialized { false };
};
template <>
struct foo<20>
{
static constexpr bool isSpecialized { true };
};
template <auto Val, typename T = decltype(Val)>
struct bar
{
T t { Val };
static constexpr bool isSpecialized { false };
};
template <>
struct bar<20>
{
static constexpr bool isSpecialized { true };
};
int main ()
{
std::cout << foo<0>::isSpecialized << std::endl; // print 0
std::cout << foo<20>::isSpecialized << std::endl; // print 1
std::cout << foo<20L>::isSpecialized << std::endl; // print 0
std::cout << bar<0>::isSpecialized << std::endl; // print 0
std::cout << bar<20>::isSpecialized << std::endl; // print 1
std::cout << bar<20L>::isSpecialized << std::endl; // print 0
std::cout << bar<20, float>::isSpecialized << std::endl; // print 0
}
#include <type_traits>
#include <iostream>
template <typename T>
struct foo
{
foo(T x) : t(x) {};
T t;
};
// specialise for integral constant
template<class T, T N>
struct foo<std::integral_constant<T, N>>
{
// same interface
static constexpr T t = N;
};
// test
int main()
{
auto foo1 = foo<float>(10.0);
auto foo2 = foo<std::integral_constant<int, 20>>();
std::cout << foo1.t << std::endl;
std::cout << foo2.t << std::endl;
}

Partial class template specialisation for multiple types

I have a class which allows for a vector to be created holding any type or class. However I'd like to add additional functionality for numerical types.
template <>
class Vec<double> : public VecBase<double>
{
// == METHODS ==
public:
// -- Constructors & Destructors --
explicit Vec(const unsigned long long t_size);
virtual ~Vec();
// -- Operators --
friend Vec<double> operator+(const Vec<double>&, const double);
// -- Methods --
double sum();
... etc.
I have partially specialised the class template to allow overloading of mathematical operators for double specialisation. I'd now like to extend this specialisation to int as well, but rather than copy the specialisation replacing double with int, is there a way to add it into the specialisation list?
That is, is there any way to allow for:
template<>
class Vec<double (or) int>
Cheers!
I suppose you can use a boolean default value, like in foo struct in the following example
#include <iostream>
template <typename>
struct isSpecialType
{ static constexpr bool value { false }; };
template <>
struct isSpecialType<int>
{ static constexpr bool value { true }; };
template <>
struct isSpecialType<double>
{ static constexpr bool value { true }; };
template <typename T, bool = isSpecialType<T>::value>
struct foo;
template <typename T>
struct foo<T, true>
{ static constexpr bool value { true }; };
template <typename T>
struct foo<T, false>
{ static constexpr bool value { false }; };
int main()
{
std::cout << "- void value: " << foo<void>::value << std::endl;
std::cout << "- bool value: " << foo<bool>::value << std::endl;
std::cout << "- int value: " << foo<int>::value << std::endl;
std::cout << "- double value: " << foo<double>::value << std::endl;
}
The idea is define a sort of type traits (isSpecialType) to choose the selected types (int and double, in your example) with a booleand value that is false in the generic implementation and true in the specializations.
template <typename>
struct isSpecialType
{ static constexpr bool value { false }; };
template <>
struct isSpecialType<int>
{ static constexpr bool value { true }; };
template <>
struct isSpecialType<double>
{ static constexpr bool value { true }; };
Next you have to declare the foo struct (class Vec, in your question) with a supplemental bool template value with the isSpecialType<T>::value default value
template <typename T, bool = isSpecialType<T>::value>
struct foo;
Last, you have to implement two partially specialized version of foo: the first one with the boolean true value
template <typename T>
struct foo<T, true>
{ static constexpr bool value { true }; };
corresponding to the specialized version of your Vec; the one with the false boolean value
template <typename T>
struct foo<T, false>
{ static constexpr bool value { false }; };
corresponding to the generic version of your Vec.
Another point: my example is C++11 or newer code; if you want a C++98 version, you have only to define the bool values as const (instead constexpr) and initialize they whit the C++98 style; I mean
static bool const bool value = true;
instead of
static constexpr bool value { true };
There sure is but you might find this already done in http://en.cppreference.com/w/cpp/numeric/valarray
have a look at std::enable_if and std::is_integral and std::is_floating_point. (copied from cplusplus.com)
// enable_if example: two ways of using enable_if
#include <iostream>
#include <type_traits>
// 1. the return type (bool) is only valid if T is an integral type:
template <class T>
typename std::enable_if<std::is_integral<T>::value,bool>::type
is_odd (T i) {return bool(i%2);}
// 2. the second template argument is only valid if T is an integral type:
template < class T,
class = typename std::enable_if<std::is_integral<T>::value>::type>
bool is_even (T i) {return !bool(i%2);}
int main() {
short int i = 1; // code does not compile if type of i is not integral
std::cout << std::boolalpha;
std::cout << "i is odd: " << is_odd(i) << std::endl;
std::cout << "i is even: " << is_even(i) << std::endl;
return 0;
}
I have same idea with #max66, but you can use a helper function to do this a bit easier.
#include <iostream>
#include <type_traits>
// helper
template <typename ...Ts>
struct allowed_types
{
template <typename T>
using check = std::disjunction<std::is_same<T, Ts>...>;
template <typename T>
inline static constexpr bool check_v = check<T>::value;
};
// usage
template <typename T, bool = allowed_types<double, float>::check_v<T>>
struct foo;
template <typename T>
struct foo<T, true> // for double and float
{
inline static constexpr size_t value = 1;
};
template <typename T>
struct foo<T, false> // for other types
{
inline static constexpr size_t value = 2;
};
int main()
{
std::cout << foo<float>::value << '\n'; // 1
std::cout << foo<double>::value << '\n'; // 1
std::cout << foo<int>::value << '\n'; // 2
std::cout << foo<char>::value << '\n'; // 2
}
Just put any set of types you need.
For example:
template <typename T, bool = allowed_types<char, int, std::vector<int>>::check_v<T>>
EDIT:
If you need to split your specializations more than on 2 groups, then you need to use enable_if approach.
With helper from above it could be written like this:
// default, for any type
template <typename T, typename = void>
struct foo
{
inline static constexpr size_t value = 1;
};
// for double and float
template <typename T>
struct foo<T, std::enable_if_t<allowed_types<double, float>::check_v<T>>>
{
inline static constexpr size_t value = 2;
};
// for int and char
template <typename T>
struct foo<T, std::enable_if_t<allowed_types<int, char>::check_v<T>>>
{
inline static constexpr size_t value = 3;
};
int main()
{
std::cout << foo<bool>::value << '\n'; // 1
std::cout << foo<double>::value << '\n'; // 2
std::cout << foo<float>::value << '\n'; // 2
std::cout << foo<int>::value << '\n'; // 3
std::cout << foo<char>::value << '\n'; // 3
}

How to check if a function template has been specialized?

Is there a way to establish at compile time if a certain function template was specialized?
For example, assume the following function template:
template<size_t N>
void foo();
I want to test if foo<42> was specialized. Note that the declaration above doesn't contain any default implementation.
I tried SFINAE but couldn't find a condition on the function that the compiler cannot deduce from its declaration.
Is there a way to establish in compile time if a certain template function was specialized?
With a function... I don't think so.
But if you create a functor, you can add a static const member (is_specialized, in the following example) that can give you this information
#include <iostream>
template <std::size_t N>
struct foo
{
static constexpr bool is_specialized { false };
void operator() () const
{ std::cout << "- generic (" << N << ") foo struct" << std::endl; }
};
template <>
struct foo<42U>
{
static constexpr bool is_specialized { true };
void operator() () const
{ std::cout << "- specialized (42) foo struct" << std::endl; }
};
int main()
{
foo<17U>()(); // print - generic (17) foo struct
foo<42U>()(); // print - specialized (42) foo struct
std::cout << foo<17U>::is_specialized << std::endl; // print 0
std::cout << foo<42U>::is_specialized << std::endl; // print 1
}
--- EDIT ---
Following the suggestion from Quentin (thanks again!) I've developed another functor-based solution that use something, to detect if the functor is generic or specialize, that is added only in the generic functor. In this case, a type instead a bool constant.
template <std::size_t N>
struct foo
{
// im_not_specialized is added only in the generic version!
using im_not_specialized = void;
void operator () () const
{ std::cout << "- generic (" << N << ") foo struct" << std::endl; }
};
template <>
struct foo<42U>
{
void operator () () const
{ std::cout << "- specialized (42) foo struct" << std::endl; }
};
This type can be used via SFINAE and I propose an example based on a constexpr isSpecialized() template function (with an helper function)
template <typename F>
constexpr bool isSpecializedHelper
(int, typename F::im_not_specialized const * = nullptr)
{ return false; }
template <typename F>
constexpr bool isSpecializedHelper (long)
{ return true; }
template <typename F>
constexpr bool isSpecialized ()
{ return isSpecializedHelper<F>(0); }
This require a little more work but isSpecialized() can be reused with different functors (im_not_specialized type based)
The following is a full working example
#include <iostream>
template <std::size_t N>
struct foo
{
// im_not_specialized is added only in the generic version!
using im_not_specialized = void;
void operator () () const
{ std::cout << "- generic (" << N << ") foo struct" << std::endl; }
};
template <>
struct foo<42U>
{
void operator () () const
{ std::cout << "- specialized (42) foo struct" << std::endl; }
};
template <typename F>
constexpr bool isSpecializedHelper
(int, typename F::im_not_specialized const * = nullptr)
{ return false; }
template <typename F>
constexpr bool isSpecializedHelper (long)
{ return true; }
template <typename F>
constexpr bool isSpecialized ()
{ return isSpecializedHelper<F>(0); }
int main()
{
foo<17U>()(); // print - generic (17) foo struct
foo<42U>()(); // print - specialized (42) foo struct
constexpr auto isSp17 = isSpecialized<foo<17U>>();
constexpr auto isSp42 = isSpecialized<foo<42U>>();
std::cout << isSp17 << std::endl; // print 0
std::cout << isSp42 << std::endl; // print 1
}
If you mark the base function as deleted (= delete), you can detect if it has been specialized using SFINAE (assuming the specialization itself is not deleted)
An expression like decltype(foo<N>()) will result in a substitution failure if foo<N> is marked as deleted. If you provide a specialization that is not deleted on the other hand the expression will not result in an error.
Using this you can create a simple trait class to check if foo has been specialized for a specific set of template parameters:
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo<N>(), void())> : std::true_type {};
1. Basic examples
C++11: godbolt
#include <type_traits>
template<std::size_t N>
void foo() = delete;
template<>
void foo<1>() { }
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo<N>(), void())> : std::true_type {};
int main()
{
static_assert(!is_foo_specialized<0>::value, ""); // foo<0> is not specialized
static_assert(is_foo_specialized<1>::value, ""); // foo<1> IS specialized
}
With C++20 you could also use a concept for this, e.g.: godbolt
#include <type_traits>
template<std::size_t N>
void foo() = delete;
template<>
void foo<1>() { }
template<std::size_t N>
concept is_foo_specialized = requires { foo<N>(); };
int main()
{
static_assert(!is_foo_specialized<0>); // foo<0> is not specialized
static_assert(is_foo_specialized<1>); // foo<1> IS specialized
}
2. Providing a default implementation
Due to the function being = delete'd it can't have a default implementation.
If you do require a default implementation for the function, you could use 2 functions instead:
one that is = delete'd (so SFINAE can detect it)
and another one that implements the default behaviour and forwards to the other if a specialization exists
C++11: godbolt
#include <type_traits>
#include <iostream>
template<std::size_t N>
void foo_specialized() = delete;
template<>
void foo_specialized<1>() { std::cout << "CUSTOMIZED!" << std::endl; }
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo_specialized<N>(), void())> : std::true_type {};
template<std::size_t N>
typename std::enable_if<!is_foo_specialized<N>::value>::type foo() {
std::cout << "DEFAULT!" << std::endl;
}
template<std::size_t N>
typename std::enable_if<is_foo_specialized<N>::value>::type foo() {
foo_specialized<N>();
}
int main()
{
foo<0>(); // -> DEFAULT!
foo<1>(); // -> CUSTOMIZED!
}
Or with C++20: godbolt
#include <type_traits>
#include <iostream>
template<std::size_t N>
void foo_specialize() = delete;
template<>
void foo_specialize<1>() { std::cout << "CUSTOMIZED!" << std::endl; }
template<std::size_t N>
concept is_foo_specialized = requires { foo_specialize<N>(); };
template<std::size_t N> requires (!is_foo_specialized<N>)
void foo() {
std::cout << "DEFAULT!" << std::endl;
}
template<std::size_t N> requires (is_foo_specialized<N>)
void foo() {
foo_specialize<N>();
}
int main()
{
foo<0>(); // -> DEFAULT!
foo<1>(); // -> CUSTOMIZED!
}
3. Compile-time shenanigans
This can of course also be used to iterate the specializations (within a certain limit) - or like you asked in the comments to find the nearest specialization of the function.
nearest_foo_specialized in this example will iterate over a range of values for N and check if a specialization of foo exists for this value.
N is the value where we want to start the search
SearchRange determines how many specializations will be checked (both up and down) from the provided N value (in this example we check for N's +/- 10)
CurrentDistance keeps track how far we've already searched from our starting N value, so we don't exceed the specified SearchRange
The last template parameter is used for SFINAE
e.g.:
nearest_foo_specialized<100, 10> would check for specializations of foo between N = 90 and N = 110, returning the one that is closer to 100 (prefering lower N values in case of a draw)
Example C++11: godbolt
#include <type_traits>
#include <iostream>
#include <utility>
template<std::size_t N>
void foo() = delete;
template<>
void foo<5>() { std::cout << 5 << std::endl; }
template<>
void foo<10>() { std::cout << 10 << std::endl; }
template<>
void foo<15>() { std::cout << 15 << std::endl; }
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo<N>(), void())> : std::true_type {};
template<std::size_t N, std::size_t SearchRange = 10, std::size_t CurrentDistance = 0, class = void>
struct nearest_foo_specialized {
static const std::size_t index = 0; // an index for which foo<> is specialized, if value is true.
static const std::size_t distance = CurrentDistance; // distance from original N
static const bool value = false; // have we found a specialization yet?
};
// Found a match -> Report Success
template<std::size_t N, std::size_t SearchRange, std::size_t CurrentDistance>
struct nearest_foo_specialized<N, SearchRange, CurrentDistance, typename std::enable_if< CurrentDistance <= SearchRange && is_foo_specialized<N>::value >::type> {
static const std::size_t index = N;
static const std::size_t distance = CurrentDistance;
static const bool value = true;
};
// No match found -> recurse until SearchRange limit
template<std::size_t N, std::size_t SearchRange, std::size_t CurrentDistance>
struct nearest_foo_specialized<N, SearchRange, CurrentDistance, typename std::enable_if< CurrentDistance < SearchRange && !is_foo_specialized<N>::value >::type> {
typedef nearest_foo_specialized<N - 1, SearchRange, CurrentDistance + 1> down;
typedef nearest_foo_specialized<N + 1, SearchRange, CurrentDistance + 1> up;
static const std::size_t distance = down::distance < up::distance ? down::distance : up::distance;
static const std::size_t index = down::distance == distance && down::value ? down::index : up::index;
static const std::size_t value = down::distance == distance && down::value ? down::value : up::value;
};
// calls the nearest foo() specialization (up to 10 away from the specified N)
template<std::size_t N>
typename std::enable_if<nearest_foo_specialized<N>::value>::type call_nearest_foo() {
foo<nearest_foo_specialized<N>::index>();
}
template<std::size_t N>
typename std::enable_if<!nearest_foo_specialized<N>::value>::type call_nearest_foo() {
static_assert(N!=N, "No nearest foo() specialization found!");
}
int main() {
call_nearest_foo<7>(); // calls foo<5>()
call_nearest_foo<8>(); // calls foo<10>()
call_nearest_foo<11>(); // calls foo<10>()
call_nearest_foo<15>(); // calls foo<15>()
call_nearest_foo<25>(); // calls foo<15>()
// call_nearest_foo<26>(); // error: No nearest foo() (only searching up to 10 up / down)
}

calculating data compile time with template metaprogramming

Suppose we have code like this. It works well and pre-calculate first 5 Fibonacci numbers.
#include <iostream>
template <int T>
struct fib;
template <>
struct fib<0>{
constexpr static int value = 1;
};
template <>
struct fib<1>{
constexpr static int value = 1;
};
template <int I>
struct fib{
constexpr static int value = fib<I - 1>::value + fib<I - 2>::value;
};
int main(){
std::cout << fib<0>::value << std::endl;
std::cout << fib<1>::value << std::endl;
std::cout << fib<2>::value << std::endl;
std::cout << fib<3>::value << std::endl;
std::cout << fib<4>::value << std::endl;
std::cout << fib<5>::value << std::endl;
}
However there is "small" problem with it.
What if we need to use this for values, that are not known at compile time?
For few values we can do this:
const int max = 5;
int getData(){
return 5; // return value between 0 and max.
}
int something(){
switch(getData()){
case 0: return fib<0>::value;
case 1: return fib<1>::value;
case 2: return fib<2>::value;
case 3: return fib<3>::value;
case 4: return fib<4>::value;
case 5: return fib<5>::value;
}
}
This will works OK for 5 values, but what if we have 150 or 300?
Is not really serious to change the code with 300 rows...
What could be the workaround here?
If you need to use a value at runtime that isn't known at compile time, you can't compute it at compile time. Obvious.
But... if you can impose a top value to values needed, you can compute all values (from zero to top) at compile time and store them in an std::array.
In the following example I have modified your fib structs (to use a std::size_t index and a template type (with default unsigned long) for the value) and I have added a templated struct fibVals that contain an std::array that is initialized using fib<n>::value
The following main() show that is possible to define a constexpr fibvals<N> (with N == 20 in the example) to compute (at compile time) all fib<n> values in range [0,N[.
#include <array>
#include <utility>
#include <iostream>
template <std::size_t, typename T = unsigned long>
struct fib;
template <typename T>
struct fib<0U, T>
{ constexpr static T value { T(1) }; };
template <typename T>
struct fib<1U, T>
{ constexpr static T value { T(1) }; };
template <std::size_t I, typename T>
struct fib
{ constexpr static T value { fib<I-1U>::value + fib<I-2U>::value }; };
template <std::size_t I, typename T = unsigned long>
struct fibVals
{
const std::array<T, I> vals;
template <std::size_t ... Is>
constexpr fibVals ( std::index_sequence<Is...> const & )
: vals { { fib<Is, T>::value ... } }
{ }
constexpr fibVals () : fibVals { std::make_index_sequence<I> { } }
{ }
};
int main()
{
constexpr fibVals<20> fv;
for ( auto ui = 0U ; ui < fv.vals.size() ; ++ui )
std::cout << "fib(" << ui << ") = " << fv.vals[ui] << std::endl;
}
Unfortunately this example use std::make_index_sequence<I> and std::index_sequence<Is...> that are C++14 features.
If you want implement struct fibVals in C++11, you can implement the following structs struct indexSeq and struct indexSeqHelper, to substitute std::index_sequence<Is...> and std::make_index_sequence<I>
template <std::size_t ...>
struct indexSeq
{ };
template <std::size_t N, std::size_t ... Next>
struct indexSeqHelper
{ using type = typename indexSeqHelper<N-1U, N-1U, Next ... >::type; };
template <std::size_t ... Next >
struct indexSeqHelper<0U, Next ... >
{ using type = indexSeq<Next ... >; };
and implement fibVals constructors as follows
template <std::size_t ... Is>
constexpr fibVals ( indexSeq<Is...> const & )
: vals { { fib<Is, T>::value ... } }
{ }
constexpr fibVals () : fibVals { typename indexSeqHelper<I>::type { } }
{ }
Templates are evaluated at compile time, so there is no solution with templates that works at runtime.
You can make a constexpr function, which may be evaluated at compile time, depending on the value passed. Obviously, a runtime value may not be computed at compile time, as it is not known at compile time.