How do I define integer array for given variable nBoxes [duplicate] - fortran

I'm writing a code for LU decomposition and I don't know how to fix the "unexpected data declaration statement" pointed at line 8 (where I'm declaring an array. See the code fragment). Why is it unexpected?
!Decomposição LU
!-----------------------------------------------------------
PROGRAM LUdecomp
IMPLICIT INTEGER (I-K,N), REAL (A-H, L-M,O-Z)
INTEGER, PARAMETER :: N=3
REAL, DIMENSION (N,N) :: A,L,U
A = reshape((/3.,1.,4.,4.,2.,0.,3.,2.,3./),(/3,3/)) !exemplo do Bortoli*******
REAL, DIMENSION(3) :: B=(/9.,3.,-2./),Z,X
OPEN(1,file = 'LUFACTOR.out')
!
! FORALL (I = 1:N, J = 1:N) A(I,J) = 1.0/REAL(I+J-1)
!-------Fazendo a fatoração A = LU-----------------------------
CALL LU(N, A, L, U)
DO I=1,N
WRITE(*,10)(L(I,J), J=1,N), (U(I,J), J=1,N)
END DO
10 FORMAT(3(F8.4), 7x, 3(F8.4))
!

This statement
REAL, DIMENSION(3) :: B=(/9.,3.,-2./),Z,X
is in the wrong place. In a Fortran program-unit (program, subroutine, function) -- certainly one without the new ASSOCIATE and BLOCK constructs -- all declarations have to precede all executable statements.
Move the misplaced statement ahead of the first executable statement.

Related

Do loop inside a where block in Fortran

Even though I do not exactly know why, it seems that Fortran (90) does not allow do loops inside where blocks. A code structured as follows does not compile with gfortran (Unexpected DO statement in WHERE block at (1)):
real :: a(30), b(30,10,5)
integer :: i, j
do i=1,10
where(a(:) > 0.)
! do lots of calculations
! modify a
do j=1,5
b(:,i,j)=...
enddo
endwhere
enddo
The only workaround that I can think of would be
real :: a2(30)
do i=1,10
a2(:)=a(:)
where(a(:) > 0.)
! do lots of calculations
! modify a
endwhere
do j=1,5
where(a2(:) > 0.)
b(:,i,j)=...
endwhere
enddo
enddo
I suppose that there are more elegant solutions? Especially if the where condition is less straightforward, this will look messy pretty soon... Thanks!
If your arrays are all 1-indexed, you can replace where constructs by explicitly storing and using array masks, for example
program test
implicit none
real :: a(30), b(30,10,5)
integer :: i, j
integer, allocatable :: mask(:)
do i=1,10
mask = filter(a(:)>0.)
! do lots of calculations
! modify a
do j=1,5
b(mask,i,j)=...
enddo
enddo
contains
! Returns the array of indices `i` for which `input(i)` is `true`.
function filter(input) result(output)
logical, intent(in) :: input(:)
integer, allocatable :: output(:)
integer :: i
output = pack([(i,i=1,size(input))], mask=input)
end function
end program

Fortran character format string as subroutine argument

I am struggling with reading a text string in. Am using gfortran 4.9.2.
Below I have written a little subroutine in which I would like to submit the write format as argument.
Ideally I'd like to be able to call it with
call printarray(mat1, "F8.3")
to print out a matrix mat1 in that format for example. The numbers of columns should be determined automatically inside the subroutine.
subroutine printarray(x, udf_temp)
implicit none
real, dimension(:,:), intent(in) :: x ! array to be printed
integer, dimension(2) :: dims ! array for shape of x
integer :: i, j
character(len=10) :: udf_temp ! user defined format, eg "F8.3, ...
character(len = :), allocatable :: udf ! trimmed udf_temp
character(len = 10) :: udf2
character(len = 10) :: txt1, txt2
integer :: ncols ! no. of columns of array
integer :: udf_temp_length
udf_temp_length = len_trim(udf_temp)
allocate(character(len=udf_temp_length) :: udf)
dims = shape(x)
ncols = dims(2)
write (txt1, '(I5)') ncols
udf2 = trim(txt1)//adjustl(udf)
txt2 = "("//trim(udf2)//")"
do i = 1, dims(1)
write (*, txt2) (x(i, j), j = 1, dims(2)) ! this is line 38
end do
end suroutine printarray
when I set len = 10:
character(len=10) :: udf_temp
I get compile error:
call printarray(mat1, "F8.3")
1
Warning: Character length of actual argument shorter than of dummy argument 'udf_temp' (4/10) at (1)
When I set len = *
character(len=*) :: udf_temp
it compiles but at runtime:
At line 38 of file where2.f95 (unit = 6, file = 'stdout')
Fortran runtime error: Unexpected element '( 8
What am I doing wrong?
Is there a neater way to do this?
Here's a summary of your question that I will try to address: You want to have a subroutine that will print a specified two-dimensional array with a specified format, such that each row is printed on a single line. For example, assume we have the real array:
real, dimension(2,8) :: x
x = reshape([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], shape=[2,8], order=[2,1])
! Then the array is:
! 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000
! 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000
We want to use the format "F8.3", which prints floating point values (reals) with a field width of 8 and 3 decimal places.
Now, you are making a couple of mistakes when creating the format within your subroutine. First, you try to use udf to create the udf2 string. This is a problem because although you have allocated the size of udf, nothing has been assigned to it (pointed out in a comment by #francescalus). Thus, you see the error message you reported: Fortran runtime error: Unexpected element '( 8.
In the following, I make a couple of simplifying changes and demonstrate a few (slightly) different techniques. As shown, I suggest the use of * to indicate that the format can be applied an unlimited number of times, until all elements of the output list have been visited. Of course, explicitly stating the number of times to apply the format (ie, "(8F8.3)" instead of "(*(F8.3))") is fine, but the latter is slightly less work.
program main
implicit none
real, dimension(2,8) :: x
character(len=:), allocatable :: udf_in
x = reshape([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], shape=[2,8], order=[2,1])
udf_in = "F8.3"
call printarray(x, udf_in)
contains
subroutine printarray(x, udf_in)
implicit none
real, dimension(:,:), intent(in) :: x
character(len=*), intent(in) :: udf_in
integer :: ncols ! size(x,dim=2)
character(len=10) :: ncols_str ! ncols, stringified
integer, dimension(2) :: dims ! shape of x
character(len=:), allocatable :: udf0, udf1 ! format codes
integer :: i, j ! index counters
dims = shape(x) ! or just use: ncols = size(x, dim=2)
ncols = dims(2)
write (ncols_str, '(i0)') ncols ! use 'i0' for min. size
udf0 = "(" // ncols_str // udf_in // ")" ! create string: "(8F8.3)"
udf1 = "(*(" // udf_in // "))" ! create string: "(*(F8.3))"
print *, "Version 1:"
do i = 1, dims(1)
write (*, udf0) (x(i, j), j = 1,ncols) ! implied do-loop over j.
end do
print *, "Version 2:"
do i = 1, dims(1)
! udf1: "(*(F8.3))"
write (*, udf1) (x(i, j), j = 1,ncols) ! implied do-loop over j
end do
print *, "Version 3:"
do i = 1, size(x,dim=1) ! no need to create nrows/ncols vars.
write(*, udf1) x(i,:) ! let the compiler handle the extents.
enddo
end subroutine printarray
end program main
Observe: the final do-loop ("Version 3") is very simple. It does not need an explicit count of ncols because the * takes care of it automatically. Due to its simplicity, there is really no need for a subroutine at all.
besides the actual error (not using the input argument), this whole thing can be done much more simply:
subroutine printarray(m,f)
implicit none
character(len=*)f
real m(:,:)
character*10 n
write(n,'(i0)')size(m(1,:))
write(*,'('//n//f//')')transpose(m)
end subroutine
end
note no need for the loop constructs as fortran will automatically write the whole array , line wrapping as you reach the length of data specified by your format.
alternately you can use a loop construct, then you can use a '*' repeat count in the format and obviate the need for the internal write to construct the format string.
subroutine printarray(m,f)
implicit none
character(len=*)f
real m(:,:)
integer :: i
do i=1,size(m(:,1))
write(*,'(*('//f//'))')m(i,:)
enddo
end subroutine
end

Using MKL to solve a non-linear system of equations with an objective function stored in another module

I'm trying to use the MKL trust region algorithm to solve a nonlinear system of equations in a Fortran program. I started from the example provided online (ex_nlsqp_f90_x.f90 https://software.intel.com/en-us/node/501498) and everything works correctly. Now, because I have to use this in a much bigger program, I need the user defined objective function to be loaded from a separate module. Hence, I split the example into 2 separate files, but I'm not able to make it compile correctly.
So here is the code for module which contains user defined data structure and the objective function
module modFun
implicit none
private
public my_data, extended_powell
type :: my_data
integer a
integer sum
end type my_data
contains
subroutine extended_powell (m, n, x, f, user_data)
implicit none
integer, intent(in) :: m, n
real*8 , intent(in) :: x(n)
real*8, intent(out) :: f(m)
type(my_data) :: user_data
integer i
user_data%sum = user_data%sum + user_data%a
do i = 1, n/4
f(4*(i-1)+1) = x(4*(i-1)+1) + 10.0 * x(4*(i-1)+2)
f(4*(i-1)+2) = 2.2360679774998 * (x(4*(i-1)+3) - x(4*(i-1)+4))
f(4*(i-1)+3) = ( x(4*(i-1)+2) - 2.0 * x(4*(i-1)+3) )**2
f(4*(i-1)+4) = 3.1622776601684 * (x(4*(i-1)+1) - x(4*(i-1)+4))**2
end do
end subroutine extended_powell
end module modFun
and here the portion of the main program calling it
include 'mkl_rci.f90'
program EXAMPLE_EX_NLSQP_F90_X
use MKL_RCI
use MKL_RCI_type
use modFun
! user's objective function
! n - number of function variables
! m - dimension of function value
integer n, m
parameter (n = 4)
parameter (m = 4)
! precisions for stop-criteria (see manual for more details)
real*8 eps(6)
real*8 x(n)
real*8 fjac(m*n)
! number of iterations
integer fun
! Additional users data
type(my_data) :: m_data
m_data%a = 1
m_data%sum = 0
rs = 0.0
fun = djacobix(extended_powell,n,m,fjac,x,eps(1),%val(loc(m_data)))
end program EXAMPLE_EX_NLSQP_F90_X
Also djacobix code
INTERFACE
INTEGER FUNCTION DJACOBIX(fcn, n, m, fjac, x, eps, user_data)
USE, INTRINSIC :: ISO_C_BINDING
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: m
DOUBLE PRECISION, INTENT(IN) :: eps
DOUBLE PRECISION, INTENT(IN), DIMENSION(*) :: x
DOUBLE PRECISION, INTENT(OUT), DIMENSION(m, *) :: fjac
INTEGER(C_INTPTR_T) :: user_data
INTERFACE
SUBROUTINE fcn(m, n, x, f, user_data)
USE, INTRINSIC :: ISO_C_BINDING
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: m
DOUBLE PRECISION, INTENT(IN), DIMENSION(*) :: x
DOUBLE PRECISION, INTENT(OUT), DIMENSION(*) :: f
INTEGER(C_INTPTR_T), INTENT(IN) :: user_data
END SUBROUTINE
END INTERFACE
END FUNCTION
END INTERFACE
When i compile the following errors are generated:
mpiifort -g -t -mkl -I/apps/rhel6/intel/composer_xe_2015.3.187/mkl/include/intel64/lp64 -c modFun.f90
mpiifort -g -t -mkl -I/apps/rhel6/intel/composer_xe_2015.3.187/mkl/include/intel64/lp64 -c main.f90
main.f90(30): error #7065: The characteristics of dummy argument 5 of the associated actual procedure differ from the characteristics of dummy argument 5 of the dummy procedure. [EXTENDED_POWELL]
fun = djacobix(extended_powell,n,m,fjac,x,eps(1),%val(loc(m_data)))
-------------------^
I have the feeling I have to create an interface to override the check on the m_data, but I can't figure out where and how. Can anyone help me with this problem providing a working example?
I guess the reason is that the function djacobix passes the pointer instead of the true value of variable user_data.
You can check the manual at https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/nonlinear-optimization-problem-solvers/jacobian-matrix-calculation-routines/jacobix.html where a sentence shows that "You need to declare fcn as extern in the calling program."

Prevent changing variables with intent(in)

so reading the following question (Correct use of FORTRAN INTENT() for large arrays) I learned that defining a variable with intent(in) isn't enough, since when the variable is passed to another subroutine/function, it can be changed again. So how can I avoid this? In the original thread they talked about putting the subroutine into a module, but that doesn't help for me. For example I want to calculate the determinant of a matrix with a LU-factorization. Therefore I use the Lapack function zgetrf, but however this function alters my input matrix and the compiler don't displays any warnings. So what can I do?
module matHelper
implicit none
contains
subroutine initMat(AA)
real*8 :: u
double complex, dimension(:,:), intent(inout) :: AA
integer :: row, col, counter
counter = 1
do row=1,size(AA,1)
do col=1,size(AA,2)
AA(row,col)=cmplx(counter ,0)
counter=counter+1
end do
end do
end subroutine initMat
!subroutine to write a Matrix to file
!Input: AA - double complex matrix
! fid - integer file id
! fname - file name
! stat - integer status =replace[0] or old[1]
subroutine writeMat(AA,fid, fname, stat)
integer :: fid, stat
character(len=*) :: fname
double complex, dimension(:,:), intent(in) :: AA
integer :: row, col
character (len=64) :: fmtString
!opening file with given options
if(fid /= 0) then
if(stat == 0) then
open(unit=fid, file=fname, status='replace', &
action='write')
else if(stat ==1) then
open(unit=fid, file=fname, status='old', &
action='write')
else
print*, 'Error while trying to open file with Id', fid
return
end if
end if
!initializing matrix print format
write(fmtString,'(I0)') size(aa,2)
fmtString = '('// trim(fmtString) //'("{",ES10.3, ",", 1X, ES10.3,"}",:,1X))'
!write(*,*) fmtString
!writing matrix to file by iterating through each row
do row=1,size(aa,1)
write(fid,fmt = fmtString) AA(row,:)
enddo
write(fid,*) ''
end subroutine writeMat
!function to calculate the determinant of the input
!Input: AA - double complex matrix
!Output determinantMat - double complex,
! 0 if AA not a square matrix
function determinantMat(AA)
double complex, dimension(:,:), intent(in) :: AA
double complex :: determinantMat
integer, dimension(min(size(AA,1),size(AA,2)))&
:: ipiv
integer :: ii, info
!check if not square matrix, then set determinant to 0
if(size(AA,1)/= size(AA,2)) then
determinantMat = 0
return
end if
!compute LU facotirzation with LAPACK function
call zgetrf(size(AA,1),size(AA,2), AA,size(AA,1), ipiv,info)
if(info /= 0) then
determinantMat = cmplx(0.D0, 0.D0)
return
end if
determinantMat = cmplx(1.D0, 0.D0)
!determinant of triangular matrix is product of diagonal elements
do ii=1,size(AA,1)
if(ipiv(ii) /= ii) then
!a permutation was done, so a factor of -1
determinantMat = -determinantMat *AA(ii,ii)
else
!no permutation, so no -1
determinantMat = determinantMat*AA(ii,ii)
end if
end do
end function determinantMat
end module matHelper
!***********************************************************************
!module which stores matrix elements, dimension, trace, determinant
program test
use matHelper
implicit none
double complex, dimension(:,:), allocatable :: AA, BB
integer :: n, fid
fid = 0;
allocate(AA(3,3))
call initMat(AA)
call writeMat(AA,0,' ', 0)
print*, 'Determinante: ',determinantMat(AA) !changes AA
call writeMat(AA,0, ' ', 0)
end program test
PS: I am using the ifort compiler v15.0.3 20150407
I do not have ifort at home, but you may want to try compiling with '-check interfaces' and maybe with '-ipo'. You may need the path to 'zgetrf' for the '-check interfaces' to work, and if that is not source then it may not help.
If you declare 'function determinantMat' as 'PURE FUNCTION determinantMat' then I am pretty sure it would complain because 'zgetrf' is not known to be PURE nor ELEMENTAL. Try ^this stuff^ first.
If LAPACK has a module, then zgetrf could be known to be, or not be, PURE/ELEMENTAL. https://software.intel.com/en-us/articles/blas-and-lapack-fortran95-mod-files
I would suggest you add to your compile line:
-check interfaces -ipo
During initial build I like (Take it out for speed once it works):
-check all -warn all
Making a temporary array is one way around it. (I have not compiled this, so it is only a conceptual exemplar.)
PURE FUNCTION determinantMat(AA)
USE LAPACK95 !--New Line--!
IMPLICIT NONE !--New Line--!
double complex, dimension(:,:) , intent(IN ) :: AA
double complex :: determinantMat !<- output
!--internals--
integer, dimension(min(size(AA,1),size(AA,2))) :: ipiv
!!--Next line is new--
double complex, dimension(size(AA,1),size(AA,2)) :: AA_Temp !!<- I have no idea if this will work, you may need an allocatable??
integer :: ii, info
!check if not square matrix, then set determinant to 0
if(size(AA,1)/= size(AA,2)) then
determinantMat = 0
return
end if
!compute LU factorization with LAPACK function
!!--Next line is new--
AA_Temp = AA !--Initialise AA_Temp to be the same as AA--!
call zgetrf(size(AA_temp,1),size(AA_Temp,2), AA_Temp,size(AA_Temp,1), ipiv,info)
if(info /= 0) then
determinantMat = cmplx(0.D0, 0.D0)
return
end if
determinantMat = cmplx(1.D0, 0.D0)
!determinant of triangular matrix is product of diagonal elements
do ii=1,size(AA_Temp,1)
if(ipiv(ii) /= ii) then
!a permutation was done, so a factor of -1
determinantMat = -determinantMat *AA_Temp(ii,ii)
else
!no permutation, so no -1
determinantMat = determinantMat*AA_Temp(ii,ii)
end if
end do
end function determinantMat
With the 'USE LAPACK95' you probably do not need PURE, but if you wanted it to be PURE then you want to explicitly say so.

Unexpected data declaration statement

I'm writing a code for LU decomposition and I don't know how to fix the "unexpected data declaration statement" pointed at line 8 (where I'm declaring an array. See the code fragment). Why is it unexpected?
!Decomposição LU
!-----------------------------------------------------------
PROGRAM LUdecomp
IMPLICIT INTEGER (I-K,N), REAL (A-H, L-M,O-Z)
INTEGER, PARAMETER :: N=3
REAL, DIMENSION (N,N) :: A,L,U
A = reshape((/3.,1.,4.,4.,2.,0.,3.,2.,3./),(/3,3/)) !exemplo do Bortoli*******
REAL, DIMENSION(3) :: B=(/9.,3.,-2./),Z,X
OPEN(1,file = 'LUFACTOR.out')
!
! FORALL (I = 1:N, J = 1:N) A(I,J) = 1.0/REAL(I+J-1)
!-------Fazendo a fatoração A = LU-----------------------------
CALL LU(N, A, L, U)
DO I=1,N
WRITE(*,10)(L(I,J), J=1,N), (U(I,J), J=1,N)
END DO
10 FORMAT(3(F8.4), 7x, 3(F8.4))
!
This statement
REAL, DIMENSION(3) :: B=(/9.,3.,-2./),Z,X
is in the wrong place. In a Fortran program-unit (program, subroutine, function) -- certainly one without the new ASSOCIATE and BLOCK constructs -- all declarations have to precede all executable statements.
Move the misplaced statement ahead of the first executable statement.